
Vol.:(0123456789)

Discover Oncology           (2022) 13:97  | https://doi.org/10.1007/s12672-022-00565-3

1 3

Discover Oncology

Research

Progression of prostate cancer reprograms MYC‑mediated lipid 
metabolism via lysine methyltransferase 2A

Nichelle C. Whitlock1 · Margaret E. White1,2 · Brian J. Capaldo1 · Anson T. Ku1 · Supreet Agarwal1 · Lei Fang1 · 
Scott Wilkinson1 · Shana Y. Trostel1 · Zhen‑Dan Shi3 · Falguni Basuli3 · Karen Wong2 · Elaine M. Jagoda2 · 
Kathleen Kelly1 · Peter L. Choyke2 · Adam G. Sowalsky1

Received: 18 August 2022 / Accepted: 27 September 2022

© The Author(s) 2022  OPEN

Abstract
Background The activities of MYC, the androgen receptor, and its associated pioneer factors demonstrate substantial 
reprogramming between early and advanced prostate cancer. Although previous studies have shown a shift in cellular 
metabolic requirements associated with prostate cancer progression, the epigenetic regulation of these processes is 
incompletely described. Here, we have integrated chromatin immunoprecipitation sequencing (ChIP-seq) and whole-
transcriptome sequencing to identify novel regulators of metabolism in advanced prostate tumors characterized by 
elevated MYC activity.
Results Using ChIP-seq against MYC, HOXB13, and AR in LNCaP cells, we observed redistribution of co-bound sites sug-
gestive of differential KMT2A activity as a function of MYC expression. In a cohort of 177 laser-capture microdissected foci 
of prostate tumors, KMT2A expression was positively correlated with MYC activity, AR activity, and HOXB13 expression, 
but decreased with tumor grade severity. However, KMT2A expression was negatively correlated with these factors in 25 
LuCaP patient-derived xenograft models of advanced prostate cancer and 99 laser-capture microdissected foci of meta-
static castration-resistant prostate cancer. Stratified by KMT2A expression, ChIP-seq against AR and HOXB13 in 15 LuCaP 
patient-derived xenografts showed an inverse association with sites involving genes implicated in lipid metabolism, 
including the arachidonic acid metabolic enzyme PLA2G4F. LuCaP patient-derived xenograft models grown as organoids 
recapitulated the inverse association between KMT2A expression and fluorine-18 labeled arachidonic acid uptake in vitro.
Conclusions Our study demonstrates that the epigenetic activity of transcription factor oncogenes exhibits a shift during 
prostate cancer progression with distinctive phenotypic effects on metabolism. These epigenetically driven changes in 
lipid metabolism may serve as novel targets for the development of novel imaging agents and therapeutics.
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Abbreviations
[18F]ArA  Fluorine-18 labeled arachidonic acid
AR  Androgen receptor
ArA  Arachidonic acid
CRPC  Castration-resistant prostate cancer
mCRPC  Metastatic castration-resistant prostate cancer
PCa  Prostate cancer
PDX  Patient-derived xenograft
TF  Transcription factor

1  Background

Prostate cancers (PCa) are distinctively sensitive to the transcriptional activity of the androgen receptor (AR) during 
tumorigenesis and in response to hormone-based therapies for advanced disease [1]. In early PCa, the AR’s role in 
mediating luminal cell terminal differentiation undergoes a distinctive switch as AR remains active in progressively 
less-differentiated disease [2]. Concurrent with early transformation of these cells, the MYC proto-oncogene reacti-
vates and opposes the antiproliferative functions of AR to drive continued cell growth [3, 4]. Although elevated MYC 
protein levels are detectable very early in both pre-neoplastic and neoplastic prostate luminal cells, unlike many other 
tumor types, its mRNA expression remains largely uncoupled from genomic alterations affecting the MYC locus with 
aneuploidies involving most of chromosome 8q [5–7]. By contrast, in advanced and metastatic castration-resistant 
prostate cancer (mCRPC), MYC frequently undergoes high-level or focal amplification which significantly co-occurs 
with focal gains of the AR gene body and/or its enhancer [8, 9].

Although increased transcriptional output is canonically associated with increased expression of transcription fac-
tors, both MYC and AR show evidence of rewiring or reprogramming upon progression of primary PCa to advanced 
disease, especially in the context of hormonal therapies used for treating recurrent PCa [10]. Hormone- and context-
dependent activities of these master regulators further involve pioneer factors that mediate AR-driven transcriptional 
programming; GATA2, FOXA1, and HOXB13 drive lineage-specific gene expression that is critical for tumor develop-
ment [11]. Although somatic mutations to FOXA1 and inherited mutations to HOXB13 are potential drivers, studies 
of prostate tumors suggest mostly that differential activity of these factors is associated with disease progression 
[11]. Recently, the mixed-lineage leukemia (MLL) protein complex, more commonly implicated as a driver of MLL 
fusion-positive leukemias, was also shown to interact with AR signaling in advanced PCa, demonstrating the increas-
ing complexity of characterizing transcriptional drivers of PCa [12]. KMT2A encodes MLL1, a SET domain encoding 
histone lysine methyltransferase and although it rarely exhibits somatic genomic alterations in PCa, changes to its 
expression and recruitment to gene promoters and enhancers profoundly impact target gene expression [13].

A primary physiological function of a prostate luminal cell is to secrete prostatic fluid, a major component of which 
is citrate [14, 15]. This distinctive metabolic requirement for generating citrate precursors is maintained during PCa 
tumorigenesis with elevated flux through the tricarboxylic acid cycle despite tumorigenic hypoxic conditions [15]. In 
addition, MYC and AR cooperate to facilitate de novo synthesis of polyunsaturated long-chain fatty acids to accom-
modate increased demand for phospholipids on account of increased cell division events [16–18]. The 20-carbon 
arachidonic acid (ArA) is routinely incorporated into phospholipids; ArA is normally acquired dietarily but can be 
released from phospholipids by deacetylating phospholipases A (PLA) for generating eicosanoids and prostaglandins 
[19–21]. PLA2G4F encodes a Group IV cytosolic phospholipase  A2  (cPLA2) with high specificity for ArA [21]. Although 
 cPLA2 proteins are ubiquitously expressed, the relationship between cellular ArA requirements and the effects of AR 
and MYC on PCa progression are not known.

Here, we report that in prostate cancer cells, differential binding of AR and HOXB13 on account of varying MYC 
levels centers on genes regulated by KMT2A/MLL1, which in turn is inversely proportional to the expression of PLA2G4F 
in cohorts of advanced, but not localized, PCa. Patient-derived prostate cancer xenografts grown as organoids have 
increased uptake of ArA in models with increased MYC activity and PLA2G4F expression. Our data demonstrate a 
phenotypic ramification of epigenetic reprogramming that accompanies disease progression, with potential implica-
tions for the design of novel therapeutics and imaging agents.
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2  Results

2.1  AR and HOXB13 co‑localize with MYC at genes regulated by KMT2A

Although MYC activity is a well-known driver of prostate tumorigenesis, its relationship with individual genes and 
molecular processes remains actively investigated, with current efforts focusing on identifying effector genes or 
co-factors necessary for its positive association with androgen receptor (AR) activity [7, 10]. Using an institutional 
cohort of 177 laser capture microdissected (LCM) foci of primary prostate cancer (PCa), we examined the range of 
global gene expression that tracked with MYC transcript abundance. While the top 1% of correlating genes were 
strongly enriched for ribosomal biogenesis genes, AR and multiple AR target genes were also represented (Fig. 1A). 
Given the known role of MYC in mediating the AR-HOXB13 signaling axis, we analyzed a series of chromatin immu-
noprecipitation sequencing (ChIP-seq) experiments using antibodies against AR, HOXB13, and MYC, where the level 
of MYC was modulated by MYC-targeting hairpins (shMYC) [22, 23]. The overlap between MYC and AR or MYC and 
HOXB13 binding identified targets that may contribute to its function in primary PCa (outlined in Fig. 1B), which in 
turn pinpointed potential master regulators that regulate tumorigenesis.

Comparison of MYC and AR ChIP-seq data showed ~ 2600 and ~ 3200 MYC binding sites that colocalized with 
AR binding sites in LNCaP/NTC and LNCaP/shMYC cells, respectively; of these, 67% of peaks were shared (2154 of 
3213 sites; Fig. 1C). For HOXB13 ChIP-seq, ~ 850 and ~ 1050 MYC binding sites were co-occupied in LNCaP/NTC and 
LNCaP/shMYC cells, respectively, with ~ 63% overlap (663 of 1049 sites, Fig. 1D). Co-bound sites were categorized as 
being core or redistributed and annotated to the nearest gene body or transcription start site. Here, we defined core 
peaks as co-occupied binding sites enriched in both MYC high- and low-expressing cells, and redistributed peaks as 
co-occupied binding sites enriched in MYC low-expressing cells. The corresponding lists of genes were then used as 
input for Ingenuity Pathway Analysis (IPA) to identify potential upstream transcriptional regulators (Supplementary 
Table 1).

This upstream regulator analysis identified nine shared transcription regulators among MYC/AR bound sites and 
four shared transcription regulators among MYC/HOXB13 bound sites (Fig. 1E). Of these, three were also shared 
by HOXB13 and AR: BCOR (BCL6 corepressor), BMI1 (B lymphoma Mo-MLV insertion region 1), and KMT2A (H3K4 
lysine methyltransferase 2A) (Fig. 1E). BCOR and BMI1 encode members of the polycomb repressor complex 1 and 
are involved in cell differentiation; however, only BMI1 is implicated in PCa [24, 25]. Recently, a positive relationship 
between MYC and KMT2A has been documented and given that changes in KMT2A expression are associated with 
advanced disease, we selected KMT2A for further analysis [13, 26, 27].

2.2  KMT2A is positively associated with MYC activity in primary, but not advanced, PCa

Our ChIP-seq analyses of genetically-modified prostate cancer cell lines suggested that KMT2A activity may positively 
mediate the tumorigenic function of MYC. To address this potential interaction further, we analyzed whole-tran-
scriptome sequencing (WTS) data from LCM primary prostate tumor foci (N = 177). Case-by-case, KMT2A expression 
was positively correlated with single-sample gene set enrichment analysis (ssGSEA) scores for MYC activity (Fig. 2A; 
r = 0.48, 95% CI 0.36 to 0.59, Pr < 0.0001). We next asked whether AR activity or HOXB13 expression was altered in the 
context of KMT2A. We observed a statistically significant and positive correlation between KMT2A and the ssGSEA 
scores for AR activity (Fig. 2B; r = 0.50, 95% CI 0.38 to 0.60, Pr < 0.0001) and the expression of HOXB13 (Fig. 2C; r = 0.32, 
95% CI 0.18 to 0.45, Pr < 0.0001). However, when we subdivided these tumor foci by histological aggressivity (i.e., 
Gleason pattern, Gp), these positive associations generally decreased in effect size (Fig. 2A–C) from Gp3 (N = 48) to 
Gp4 (N = 101) to Gp5 (N = 28).

To validate this finding, we examined a separate cohort of LCM pairs of adjacent Gp3 and Gp4 tumor foci (from 
Gleason score 7 PCa) previously analyzed by Affymetrix microarray [28]. Across all foci (N = 26), and separately, KMT2A 
expression was positively correlated with MYC activity, AR activity, and HOXB13 expression (Supplementary Fig. 1). 
Interestingly however, analysis of WTS data from the TCGA-PRAD cohort (N = 484) did not recapitulate these associa-
tions (Supplementary Fig. 2), likely due in part to the bulk and admixed nature of TCGA tumor cases.

Nonetheless, these data suggest that at least in a subset of primary PCa, increased expression of KMT2A may con-
tribute to tumor development, and that its expression in relationship to MYC activity modulates cancer progression. 
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To assess this relationship in advanced disease, we examined gene expression profiles from WTS of two additional 
cohorts: a panel of metastatic prostate cancer patient derived xenografts (LuCaP PDX series, N = 25, [23, 29–32]) 
and the West Coast Dream Team-Prostate Cancer Foundation (WCDT-PCF) cohort of metastatic castration-resistant 
prostate cancer (mCRPC, N = 99, [8]). As depicted in Fig. 2A–C, the association between MYC activity, AR activity, 
HOXB13 expression and KMT2A expression decreased with dedifferentiation associated with higher Gleason pat-
terns. Continuing this trend, we observed no strong association in LuCaP tumors (Fig. 3A), and this association 
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was inversely related in WCDT-PCF tumors (Fig. 3B; r = − 0.35, 95% CI − 0.51 to − 0.16, Pr = 0.0004). Consistent with 
this inverse tendency, KMT2A expression was also negatively correlated with AR activity and HOXB13 expression 
in both the LuCaP PDX (Fig. 3C, D) and WCDT-PCF (Fig. 3E, F) cohorts. As the KMT2A expression and MYC activity 
relationship become inverted upon progression to metastatic disease, the tight association with AR and HOXB13 
lineage-specific drivers is presumably lost, suggesting a context-dependent role for KMT2A in PCa with increased 
MYC activity; increased KMT2A expression (and likely its activity) may drive development of primary disease but 
not advanced PCa.
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2.3  Fluorine‑18 labeled arachidonic acid uptake is increased in CRPC with low KMT2A expression and high 
MYC activity

Because KMT2A was differentially expressed relative to MYC activity in primary PCa versus mCRPC, we next examined 
potential functional implications of this relationship using the LuCaP PDX cohorts as a model of advanced disease in a 
series of ChIP-seq experiments. As depicted in Fig. 4A, we stratified this cohort based on mean KMT2A expression  (log2 
CPM) across the entire LuCaP series, with ChIP-seq data available for 15 of these LuCaP models; nine were classified 
KMT2A-high and six were classified KMT2A-low. From ChIP-seq experiments with antibodies against AR and HOXB13, 
peaks were merged within each subgroup to create a union set of sites for each factor based on KMT2A status. For AR 
and HOXB13, we identified 180 and 203 differentially enriched peaks (cutoff of P < 0.1), respectively (Supplementary 

Fig. 3  Inverse association of 
KMT2A expression with pros-
tate cancer drivers in meta-
static disease. A–F Pearson 
correlation of the  log2 CPM 
expression level for KMT2A 
with the 54-gene ssGSEA 
MYC activity score (A, B), a 
266-gene ssGSEA AR activity 
score (C, E), or the  log2 CPM 
expression level for HOXB13 
(D, F) in the LuCaP series of 
patient-derived xenografts 
(N = 25) (A, C, D) or the West 
Coast Dream Team-Prostate 
Cancer Foundation metastatic 
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Table 2); the majority of which enriched in KMT2A-low samples (Fig. 4B). This enrichment is consistent with increased 
MYC-associated transcriptional activity of AR and HOXB13 in tumors with lower KMT2A expression (see Fig. 3B).

We then sought to identify potential phenotypic effects in the KMT2A-low setting. We generated a list of differentially 
enriched genes for each transcription factor (TF) and histone mark and used these lists as input for IPA. IPA identified eight 
shared pathways, and examination of genes giving rise to pathway enrichment revealed strong representation of genes 
involved in fatty acid synthesis (Fig. 4C). The most common shared gene appearing in four of the eight pathways from 
both ChIP series, was PLA2G4F (phospholipase A2 group IVF), a key component of the arachidonic acid (ArA) metabolic 
pathway [33]. However, this enrichment was inversely proportional to KMT2A levels, with AR and HOXB13 being recruited 
to the PLA2G4F locus in the six KMT2A-low LuCaPs and mostly absent from the PLA2G4F locus in the nine KMT2A-high 
LuCaP models (Fig. 4D). Consistent with AR and HOXB13 binding, PLA2G4F mRNA expression was negatively correlated 
with KMT2A expression across all LuCaP PDXs (Fig. 4E) and maintained a negative correlation with MYC activity as well 
(Fig. 4F). This trend was also maintained in the WCDT-PCF mCRPC cohort (Fig. 4G, H). Interestingly, both KMT2A expres-
sion and MYC activity were positively correlated with PLA2G4F expression in primary PCa, with decreasing association 
stepwise from Gp3 to Gp4 to G5 (Supp Fig. 3). Taken together, these results further indicate a disparate role for KMT2A 
in MYC-driven advanced vs. localized PCa.

Due to the involvement of the protein product of PLA2G4F, cytosolic phospholipase A2 zeta, in ArA metabolism, we 
hypothesized that MYC activity-high, KMTA2-low, and PLA2G4F-high tumors have an increased cellular demand for ArA, 
due in part to its presence in phospholipids. We assessed uptake of fluorine-18 labeled ArA  ([18F]ArA) over a two-hour time 
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course in LuCaP PDX’s grown as organoids. As presented in Fig. 5A, the rate of  [18F]ArA uptake varied across LuCaPs, ranging 
from 6 to 88% per million cells in KMT2A-high LuCaP models and 27–154% per million cells in the KMT2A-low LuCaP models. 
Overall, KMT2A-low models demonstrated greater median  [18F]ArA uptake at two hours (54%) than the KMT2A-high models 
(22%) (P = 0.026, Mann–Whitney U test; Fig. 5B). This uptake tracked in part with the expression of PLA2G4F, with strong 
positive correlations observed between both the uptake of  [18F]ArA at two hours (Fig. 5C) and the rate of uptake over two 
hours (Fig. 5D) versus PLA2G4F expression across the LuCaP cohort. These findings indicate that differential co-regulation 
of KMT2A expression, and its effects on PLA2G4F expression, by the chromatin binding activities of MYC, AR, and HOXB13, is 
modulated during PCa progression and is associated with a shift in cellular metabolic requirements.

3  Discussion

Although compounds targeting MYC continue to be developed, many efforts to dissect and target the tumorigenic 
properties of MYC in PCa have shifted to its effector genes or co-factors necessary for its activity [34]. Thus, in this study, 
we started by assessing sites differentially bound by MYC, AR, and HOXB13 in the setting of high or low MYC expression 
using LNCaP PCa cells to identify novel transcriptional regulators that likely contributed to changes in MYC activity over 
the course of human PCa progression. From that analysis we identified KMT2A/MLL1, whose expression in association with 
MYC activity shifted from directly to inversely proportional as PCa progressed from localized to metastatic. Integrating 
ChIP-seq and WTS data from LuCaP PDX models revealed that AR and HOXB13 direct the regulation of lipid metabolism 
as a function of KMT2A levels.

The consequence of this finding, that MYC indirectly, but positively, regulates lipid metabolism in part through 
PLA2G4F, agrees with numerous reports that dysregulated MYC function drives glycolysis and lipogenesis, such that 
inhibition of MYC activity reduced accumulation of intracellular lipid droplets [17, 35]. The implications of increased 
lipid metabolism are two-fold: increased synthesis and turnover of membrane lipids associated with cell division, and 
fatty acid oxidation as an alternative energy source [36]. With respect to PCa specifically, studies have linked changes in 
ArA metabolism to PCa development and progression in vitro, with these studies suggesting that ArA is preferentially 
metabolized by PCa cells [37, 38]. However, to the best of our knowledge, the current study is the first to demonstrate 
an epigenetic link between ArA metabolism, uptake, and MYC activity in human prostate tumors.

The central premise of our finding relies on the observation that MYC is rewired from opposing PLA2G4F expression in 
early cancer to being positively associated with it in progressively advanced disease. The stepwise histologic progression 
from lower to higher Gleason grades is reflective of dedifferentiation, which in turn is a direct consequence of altered 
AR activity [39]. Similarly, AR-directed therapies suppress AR activity in patients with metastatic PCa, such that resistant 
tumors are less dependent on AR for growth and survival [39]. Thus, histologically and clinically aggressive tumors may 
reflect a causal link between increased MYC activity and decreased but persistent AR activity, due in part to a transcrip-
tional pause-release effect that accounts for lower AR tumors having worse clinical outcomes [4, 40]. A logical future 
study will be to broadly assess the metabolic and lipogenic ramifications of differential AR/MYC status.

This current study has two important limitations. First, we observed a switch in the association between KMT2A or 
PLA2G4F expression and MYC activity, AR activity, and HOXB13 expression transcriptomically between primary localized 
PCa. Although we could recapitulate the inverse association using ChIP-seq from LuCaP PDX models for which matched 
transcriptional data was available, similar ChIP-seq assays from primary PCa with matched RNA-seq were not obtain-
able. Second, we demonstrated functional changes in lipid metabolism using  [18F]ArA uptake as a surrogate for cellular 
metabolic needs. Measurements of actual  cPLA2 protein levels would have been ideal, but after extensive testing, none 
of the four commercial antibodies with described reactivity against the Group IV zeta (PLA2G4F) isoform were specific.

Despite these limitations, we have demonstrated concordance between transcriptional and chromatin readouts of 
TF activity within the same panel of PDX models, with further qualification of potential lipid metabolic differences using 
the PDXs in an in vitro functional assay. Our findings indicate that ArA metabolism is specifically sensitive to AR and MYC 
activity during PCa progression.

4  Conclusions

We have reported that ArA metabolism and uptake are enriched in MYC-high prostate tumors. This finding has implica-
tions for the subset of treatment resistant prostate cancers that maintain high MYC activity and develop resistance to 
both hormonal and cytotoxic chemotherapies. Future studies are needed to validate these findings in larger cohorts, 
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assess the viability of targeting ArA metabolism therapeutically, and determine whether ArA-based imaging agents 
demonstrate specific uptake in MYC-high/KMT2A-low prostate cancers.

5  Methods

5.1  Study design

The aim of this study was to assess changes in gene expression patterns and corresponding cellular phenotypes asso-
ciated with repositioning of MYC in prostate cancer. This study utilized LNCaP cells engineered to have reduced levels 
of MYC expression as described in [22], LuCaP PDX organoids as described in [31], and integration of both novel and 
published datasets derived from these lines and patient cohorts [8, 22, 23, 29–31].

5.2  ChIP‑seq analysis in LNCaP cells

ChIP-seq against MYC in LNCaP cells harboring a nontargeting control hairpin (NTC) or MYC-targeting hairpins (MYC 
shRNA) was described previously [22]. ChIP-seq performed in LNCaP cells or LuCaP patient-derived xenografts (PDXs) 
were previously described [23, 29] and were retrieved from GEO (https:// www. ncbi. nlm. nih. gov/ geo/) using accession 
numbers GSE94682 and GSE130408, respectively. Downloaded FASTQ files were reprocessed through the nextflow [41] 
nf-core/chipseq (v1.2.2) pipeline (https:// github. com/ nf- core/ chips eq). De-multiplexed reads were aligned to build 
GRCh37 of the human genome using BWA-MEM [42]. MACS2 [43] was used to perform peak calling using a cutoff FDR 
q-value of 0.01 and the parameter --narrow_peak. HOMER [44] annotePeaks.pl was used to annotate called peaks rela-
tive to known genomic features.

5.3  RNA‑seq analysis

Whole transcriptome profiling of laser capture microdissected (LCM) primary prostate cancer (PCa) was previously 
described [22]. Transcriptomes from the Stand Up To Cancer West Coast Dream Team-Prostate Cancer Foundation meta-
static castration resistant prostate cancer (WCDT-PCF mCRPC) cohort [8] were downloaded from the NCI Genomic Data 
Commons (https:// gdc. cancer. gov) via access to dbGaP phs001648. Transcriptomes from the LuCaP [23, 29–31] series 
of patient-derived xenografts (PDXs) were downloaded from GEO using accession numbers GSE113741, GSE156292, 
and GSE126078. Downloaded FASTQ files were processed through the nextflow nf-core/rnaseq (v3.5) pipeline (https:// 
github. com/ nf- core/ rnaseq). Sample reads were mapped to the GRCh37 reference genome using STAR [45] and quanti-
fied using featureCounts [46] with default parameters. EdgeR (v3.32.1) was used to generate the  log2 counts per million 
(CPM) values used for downstream analysis [47].

Single-sample gene set enrichment (ssGSEA) was performed using the R package GSVA (v1.38.2) with the following 
parameters: tau: 0.75; ssgsea.norm: FALSE [48]. For each sample, ssGSEA projection values were obtained for a 54-gene 
MYC activity score [49] or a 266-gene AR activity score [50].

5.4  Identification of core and redistributed ChIP‑seq peaks in LNCaP cells

Bed files for LNCaP ChIP-seq peaks created by MACS2 were used as input for BEDTools (v2.30.0) [51] to identify core and 
redistributed peaks. Each independent MYC ChIP-seq (NTC and MYC shRNA) was compared to AR or HOXB13 ChIP-seq 
data. Here, core (overlapping) peaks were defined as co-occupied binding sites enriched in both NTC- and MYC shRNA-
harboring LNCaP cells. Redistributed (unique) peaks were defined as co-occupied binding sites enriched in MYC shRNA 
cells. New peak files representing this intersection were collated where appropriate and annotated to the nearest gene 
body (GB) or transcription start site (TSS) within ± 3 kb, and redundant gene symbols were removed.

5.5  ChIP‑seq analysis in LuCaP xenografts

LuCaP xenografts for which ChIP-seq data were available were classified as KMT2A-high (N = 9) or KMT2A-low (N = 6) 
based on corresponding average KMT2A  log2 CPM expression values across the entire LuCaP cohort, including cases 
where ChIP-seq was not performed. DESeq2 (v1.30.1) was used to identify differential peaks between KMT2A-high and 

https://www.ncbi.nlm.nih.gov/geo/
https://github.com/nf-core/chipseq
https://gdc.cancer.gov
https://github.com/nf-core/rnaseq
https://github.com/nf-core/rnaseq
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KMT2A-low samples selecting peaks with adjusted P < 0.05 [52]. BigWig files were merged to create a consensus wiggle 
file based on KMT2A status for each ChIP-seq using WiggleTools (v1.2) [53] and converted into bigWig files using the UCSC 
wigToBigWig tool [54]. Generated bigWig files were visualized with the integrative genomics viewer. ChIP-seq heatmaps 
were prepared using deepTools (v3.5.1) computeMatrix and plotHeatmap tools [55].

5.6  Pathway analysis

Core analyses were performed with Ingenuity Pathway Analysis (IPA) tools [56]. For deduplicated core and redistributed 
peak lists derived from LNCaP ChIP-seq data, Upstream Regulator Analysis (URA) was used to identify factors upstream of 
the genes in the peak lists. URA was limited to transcription regulators. Enriched gene sets selected by GSEA (FDR q < 0.05) 
were used as input for Canonical Pathway analysis and normalized gene counts for shared core enrichment genes identi-
fied for primary PCa or CRPC were used. Counts were normalized as follows: (MYC counts + KMT2A counts)/total shared 
gene sets. Consensus differential peaks for LuCaP ChIP-seq data were also used for Canonical Pathways analysis, with 
overlapping pathways selected at a cutoff of P < 0.1.

5.7  Fluorine‑18 labeled arachidonic acid  ([18F]ArA) uptake in LuCaP xenografts

LuCaP xenografts were processed and cultured as organoids as described previously [31]. Organoid identity was validated 
every 6 months by STR profiling (Laragen). Organoids were cultured for 7 days in 2% Matrigel, collected, washed with PBS, 
then resuspended in 1 mL of Beshiri’s Modified Clevers Media [31] in duplicate tubes for in vitro  [18F]ArA uptake assays.

[18F]ArA was prepared following as previously described with minor modifications [57]. Briefly, the tosylate precursor 
was heated with  [18F]TBAF in acetonitrile at 120 °C for 20 min followed by hydrolysis with potassium hydroxide (120 °C for 
10 min) to produce 20-[18F]ArA. The overall radiochemical yields were 15–24% (uncorrected, n > 6) with a molar activity 
of 59–163 GBq/µmol (n > 6).

Organoid cultures were radiolabeled with 2 μCi  [18F]ArA in BMCM for 120 min at 37 °C/5%  CO2, washed twice with 
PBS to remove residual unincorporated  [18F]ArA, and resuspended in 1 mL trypsin as a single-cell suspension. Cells were 
counted using acridine orange/propidium iodide cell counting dye.  [18F]ArA uptake was determined by PerkinElmer 2480 
Wizard3 Gamma Counter. For each sample, percent uptake per  106 live cells was calculated as follows:

5.8  Statistical analysis

Statistical analyses were performed with GraphPad Prism version 9 (GraphPad Software) for Mac. Associations between 
factors were measured using Pearson or Spearman correlations. Comparisons of single factors between dichotomized 
samples was performed using Mann–Whitney U tests.
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