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Abstract

Pancreatic islet b-cells produce large amounts of c-aminobutyric acid (GABA), which is co-released with insulin. GABA
inhibits glucagon secretion by hyperpolarizing a-cells via type-A GABA receptors (GABAARs). We and others recently
reported that islet b-cells also express GABAARs and that activation of GABAARs increases insulin release. Here we
investigate the effects of insulin on the GABA-GABAAR system in the pancreatic INS-1 cells using perforated-patch recording.
The results showed that GABA produces a rapid inward current and depolarizes INS-1 cells. However, pre-treatment of the
cell with regular insulin (1 mM) suppressed the GABA-induced current (IGABA) by 43%. Zinc-free insulin also suppressed IGABA

to the same extent of inhibition by regular insulin. The inhibition of IGABA occurs within 30 seconds after application of
insulin. The insulin-induced inhibition of IGABA persisted in the presence of PI3-kinase inhibitor, but was abolished upon
inhibition of ERK, indicating that insulin suppresses GABAARs through a mechanism that involves ERK activation.
Radioimmunoassay revealed that the secretion of C-peptide was enhanced by GABA, which was blocked by pre-incubating
the cells with picrotoxin (50 mM, p,0.01) and insulin (1 mM, p,0.01), respectively. Together, these data suggest that
autocrine GABA, via activation of GABAARs, depolarizes the pancreatic b-cells and enhances insulin secretion. On the other
hand, insulin down-regulates GABA-GABAAR signaling presenting a feedback mechanism for fine-tuning b-cell secretion.
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Introduction

Gamma-aminobutyric acid (GABA) is a major neurotransmit-

ter in the central nervous system (CNS), where GABA produces

fast inhibition in mature neurons primarily by activation of A-

type GABA receptor (GABAAR), a hetero-pentameric Cl-

channel [1]. A large amount of GABA is also produced in the

pancreatic islet [2], where it exists at the highest concentration

outside of the CNS [3]. Pancreatic GABA is primarily produced

by the b-cell [4], in which GABA is stored in synaptic-like

microvesicles that are distinct from insulin-containing large-dense

core vesicles (LDCVs) [5]. However, recent evidence indicates

that GABA is co-localized with insulin in LDCVs in human islets

and that the release of GABA from the b-cells is glucose-

dependent [6]. The release of GABA from b-cells is ‘‘tonic’’ [7,8],

yet the amount of released GABA is regulated by the metabolic

state of b-cells [9].

In the pancreatic islet, GABA released from b-cells plays a

critical role in the regulation of glucagon secretion from a-cells.

Specifically, GABA activates GABAARs in a-cells, sequentially

leading to an influx of Cl- and membrane hyperpolarization, and

hence an inhibition of glucagon secretion. The GABAAR-

mediated hyperpolarization of a-cells represents a physiological

mechanism for glucose-induced suppression of glucagon release

because blockade of GABAAR diminishes the inhibitory effect of

high glucose on glucagon secretion in isolated rat [10] or mouse

[11] islets. In relation to this notion, we have recently

demonstrated that insulin suppresses glucagon secretion by

enhancing intra-islet GABA-GABAAR signaling through translo-

cation of GABAAR from an intracellular pool to the cell surface of

a-cells [12].

Studies, including ours, have demonstrated that GABAARs

are also expressed in the primary islet b-cells [12,13] and

insulin-secreting clonal b-cell lines [14,15]. Unlike in mature

neurons and a-cells, stimulation of GABAARs in b-cells induces

membrane depolarization, enhancing insulin secretion in the

presence of physiological concentrations of glucose [6,15].

Consistent with the notion that the autocrine insulin is essential

for b-cell function [16,17], we recently demonstrated that

GABA, in cooperation with insulin, enhances the proliferation

and survival of the b-cells through activation of the PI3-K/Akt

pathway. Remarkably, GABA promotes b-cell regeneration and

reverses diabetes in mouse models [18]. In the present study, we

found that insulin negatively regulates GABAAR function and

inhibits GABA-induced b-cell secretion. Our results demon-

strated a feedback mechanism that fine-tunes b-cell secretion.

PLoS ONE | www.plosone.org 1 October 2011 | Volume 6 | Issue 10 | e26225



Materials and Methods

Cell culture
Rat insulinoma INS-1 cells (passage 50–65) were maintained in

RPMI 1640 medium (Invitrogen, Burlington, ON, Canada)

containing fetal bovine serum (10% v/v), 100 Units/ml penicillin

G sodium, 100 mg/ml streptomycin sulphate, 55 mg/500 ml

sodium pyruvate, 1.14 g/500 ml HEPES, and 1.7 ml/500 ml b-

mercaptoethanol at 37uC in an atmosphere of humidified air

(95%) and CO2 (5%). Four hours before being used for patch-

clamp recordings, INS-1 cells were glucose-starved in serum-free

RPMI 1640 medium that contained 1.4 mM glucose.

Electrophysiology
For electrophysiological recordings, cells were bathed in the

standard extracellular solution (ECS) containing (in mmol/l) 145

NaCl, 1.3 CaCl2, 5.4 KCl, 25 HEPES and 1.4 glucose (pH 7.4,

320–340 mOsm), and the ECS was maintained at 30uC. Patch-

clamp recordings were performed using an Axopatch-1D amplifier

(Axon Instruments, Foster City, CA, USA). Electrodes (1.8–

2.3 MV) were constructed from thin-walled glass (1.5 mm

diameter, World Precision Instruments, Sarasota FL, USA) using

a two-stage puller (PP-830; Narshige, East Meadow NY, USA).

The standard intracellular solution (ICS) consisted of (in mmol/l)

150 KCl, 10 KOH, 10 HEPES, 2 MgCl2 and 1 CaCl2 (ATP-free).

The pore-forming agent gramicidin (60 mg/ml, Sigma-Aldrich

Corp., Buchs, Switzerland) [19] was included in the ICS to

perforate the membrane patch of the recorded cell. Under voltage-

clamp mode, the membrane perforation was observed as a

constant decrease in serial resistance after the electrode seal. In

most of the recordings, the resistance declined to a value ranging

from 28 to 301MV within 5–15 min after the seal, and then

stabilized for 45–80 min. All perforated patch recordings began

when the serial resistance had attained values below 30 MV. To

monitor a possible formation of whole-cell configuration, a testing

voltage-ramp (a gradual voltage-change from -100 to 100 mV in

1.5 s) was applied to the cell at the start of the recording. With this

testing protocol, a sigmoid-shaped current-voltage (I–V) curve was

seen under stable perforated patch recordings, whereas a large

linear I–V relationship appeared after whole-cell configuration

due to the activation of KATP channels by dilution of the cytosolic

ATP. The endogenous membrane potential of INS-1 cells was

about 260 mV [20]. Thus, INS-1 cells were voltage-clamped at

260 mV while under constant perfusion by fresh ECS. Patch-

clamp recording was performed under voltage- or current-clamp

mode. Via a computer-controlled multi-barreled perfusion system

(SF-77Bl Warner Instruments, Hamden, CT, USA), 30 mM

GABA [the EC50 of GABA in INS-1 cell is 22.3 mM [15]] was

briefly (6 s) applied to the patched cells in two-minute intervals.

After four stable recordings of GABA-induced current (IGABA),

insulin was added to the standard ECS. All electrical signals were

digitized, filtered (30 kHz), and acquired on-line using the

program Clampex and analysed off-line using the program

Clampfit 9 (Axon Instruments).

Measurement of intracellular calcium levels
Cells cultured in 96-well plates were loaded with 5 mM Fluo-3

AM (Molecular Probes, Eugene, OR, USA) for 2 hours in Locke’s

Buffer. Cells were then treated with GABA (30 mM), or 5 mM

KCl as positive control. Changes in relative fluorescence units

(RFU) were monitored with the Fluoroskan Ascent FL fluorescent

plate reader equipped with a micro-injection syringe pump

(Labsystems, Helsinki, Finland), based on the method provided

by the manufacturer (Molecular Probes and Labsystems Fluo-3

AM Application Note).

Plasmids transfection
Dominant negative Akt (DN-Akt) vector was constructed as

described previously [12], Green fluorescent protein (GFP)-

expressing vector (Invitrogen) was used as an indicator of

transfection. INS-1 cells transfected with or without relevant

plasmids using LipofectamineTM 2000 (Invitrogen, 24 hrs) ac-

cording to manufacture’s instruction.

Western blot analysis
Cells were serum-starved (16 hrs) and treated with or without

insulin (100 nM) for 10 min, or in the presence of PI3-K inhibitor

wortmannin (100 nM) or MEK/ERK inhibitor PD98059 (20 mM).

Cells were lysed in RIPA lysis buffer containing the protease

inhibitors phenylmethylsulphonylfluoride (PMSF) (1 mol/l) and

EDTA (1 mol/l), Na3VO4 (1 mol/l), and NaF (1 mol/l). Protein of

25 mg was resolved by SDS-PAGE, transferred to nitrocellulose

membranes and probed by anti-Akt and anti-phospho-Akt, or anti-

ERK1/2 and anti-phospho-ERK1/2 (1:1,000, Cell Signaling) as

described previously [12].

Insulin secretion
INS-1 cells were plated in 24-well plates with a density of

2.56105 cells/well in RPMI 1640 medium containing 10% FBS.

The following day, the medium was replaced with fresh KRB

buffer (containing, in mmol/l, 115 NaCl, 5 KCl, 24 NaHCO3, 2.5

CaCl2, 1 MgCl2, 10 HEPES, 1.4 glucose, and 0.1% BSA) for

60 min. The cells were then treated with 1.4 or 11.1 mM glucose

in KRB buffer for 2 h, in the presence or absence of GABA

(30 mM). To determine the effects of insulin and/or GABA on the

INS-1 cell secretion, in some parallel assays, cells were pre-treated

with insulin (Novolin Toronto, Novo Nordisk, 1 mM) or picrotoxin

(50 mM) for 15 min prior to GABA treatment during the secretion

assay. The insulin levels in conditioned KRB buffer were

evaluated by measuring C-peptide using a rat C-peptide RIA kit

(Linco Research, St. Louis, MO, USA), according to the

manufacturer’s instructions.

Confocal Imaging
INS-1 cells were grown on poly-D-lysine (Sigma)-coated 8-well

chamber slides (BD Falcon). Serum-starved cells were pre-treated

with or without wortmannin (100 nM, 15 min) and incubated

with or without insulin (1 mM) for 15 min). Cells were fixed with

4% paraformaldehyde and blocked with 2% BSA in PBS

containing 0.1% Triton X-100 at room temperature for 1 hour.

The cells were then incubated with monoclonal mouse anti-

GABAAR b2/3 subunit (UBI 1:100) and Cy3-conjugated anti-

mouse IgG (Jackson Labs, 1:500), consecutively. The images were

captured using a Leica TCS 4D laser confocal fluorescence

microscope.

Statistical Analysis
IGABA is expressed as mean current normalized to the current

amplitude obtained immediately preceding insulin treatment (in all

cases the fourth sweep in the series of same-cell current recordings)

6 SEM. All data were presented as mean 6 SEM. Statistical

analysis was performed using unpaired or paired Student’s t-test

where appropriate. A p-value,0.05 was considered as significant.

Statistical analyses were performed using SigmaPlot 2002 from

SPSS Inc. (Chicago, IL, USA) and Microsoft Excel from Microsoft

Corp. (Redmond, WA, USA).

Insulin Suppresses GABA Current in b-Cells
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Results

GABA induces membrane depolarization and increases
intracellular Ca2+ levels in INS-1 cells

As previously demonstrated [20], under current-clamp condi-

tions INS-1 cells displayed a quiescent membrane potential

around 260 mV when ECS contained 1.4 mM glucose

(Figure 1A). Perfusion of the cell with ECS containing 28 mM

glucose caused a gradual and sustained depolarization. In some

cases, bursts of action potentials were superimposed on the

glucose-induced depolarization (Figure 1A). Under the same

recording conditions, perfusion of GABA induced a fast

membrane depolarization in the INS-1 cell (Figure 1B). The

GABA-induced depolarization was completely blocked by GA-

BAAR antagonist picrotoxin (Figure 1B) or largely attenuated by

bicuculline (not shown), consistent with our previous findings, and

those of others in the same cell line or isolated human islet beta b-

cells [6,18]. These results suggest that GABA, via activation of

GABAAR, induces membrane potential depolarization in pancre-

atic INS-1 cells.

We then performed intracellular Ca2+ measurements to

determine if GABA-induced membrane depolarization increases

intracellular Ca2+ levels in INS-1 cells. As shown in Figure 1C,

GABA (30 mM) evoked a steep rise in intracellular Ca2+

concentrations, which declines and then persists at a stable level

during the course of the 20 to 30 min recording period. These

results indicate that GABA induces membrane depolarization that

is associated with increased intracellular Ca2+ in a population of

pancreatic b-cells.

Insulin inhibits IGABA in INS-1 cells
Under voltage-clamp mode, perfusion of GABA evoked typical

bicuculline-sensitive GABA current (Figure 2A). We next

determined the effect of insulin on GABA-induced current (IGABA).

Treatment of INS-1 cells with insulin (100 nM) significantly

decreased IGABA by 22% (P,0.05, n = 8). The insulin-induced

suppression of IGABA was more prominent when the insulin

concentration was increased, for instance a reduction of 43% in

IGABA was achieved with 1 mM insulin (Figure 2A, 2B p,0.05,

n = 5). Thus, insulin-induced suppression of IGABA was dose-

dependent (Figure 2C).

Zinc-free insulin inhibits IGABA in INS-1 cells
Clinically-used insulin contains zinc [21] and zinc inhibits IGABA

in neurons [22] by directly binding to GABAAR channel and

lowering its open probability [23]. Therefore, we used zinc-free

insulin to verify the suppressive effects of insulin on IGABA. Our

result showed that the zinc-free insulin also suppressed IGABA in

INS-1 cells (Figure 3A, p,0.05). The efficacy of zinc-free insulin

was similar to that of regular insulin (Figures 3B and 3C).

However, the suppression of IGABA by insulin disappeared when

zinc-free insulin was applied simultaneously with GABA

(Figures 3D and 3E, p.0.05, n = 3). We found that the

reduction of IGABA was seen only when zinc-free insulin was pre-

applied to the cell (i.e., .30 seconds) prior to GABA application

(Figures 3D and 3E, p,0.05, n = 3). These results suggest that

zinc-free insulin-induced inhibition of IGABA is not a result of

direct blockade of GABAAR channels, but rather through a

signaling process.

Insulin-induced inhibition on IGABA is PI3-K/Akt
independent

PI3-K is a key signaling molecule that mediates the trophic

effects of insulin [24]. We therefore examined whether insulin-

induced inhibition of IGABA requires involvement of PI3-K. INS-1

cells were pretreated with 100 nM of the specific PI3-K inhibitor

wortmannin for 10 minutes, and then treated with 1 mM zinc-free

insulin prior to measurement of IGABA. As shown (Figures 4A
and 4B), the zinc-free insulin-induced inhibition of IGABA

persisted in the presence of PI3-K inhibitor, which is suggestive

of a PI3-K independent process. To confirm this finding, we

transfected INS-1 cells with a vector expressing a dominant-

negative form of Akt (DN-Akt) and tagged with green fluorescent

protein (GFP) [12]. The dominant negative effect of DN-Akt was

Figure 1. GABA depolarizes membrane potential and increases intracellular Ca2+ in INS-1 cells. (A) Perfusion of ECS containing 28 mM
glucose induces a gradual and sustained depolarization of the membrane potential (Vm) (n = 5). (B) GABA induces a rapid and GABAAR inhibition-
sensitive depolarization of Vm under the current-clamp conditions at 1.4 mM glucose (n = 5). (C) Cells cultured in 96-well plates pre-loaded with Fluo-
3 AM were treated with GABA (30 mM), or 5 mM KCl as positive control. Changes in relative fluorescence units (RFU) were monitored with a
fluorescent plate reader. Data are Mean6SE, n = 6.
doi:10.1371/journal.pone.0026225.g001

Insulin Suppresses GABA Current in b-Cells
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determined in parallel experiments by Western Blot using anti-

phospho-Akt (Ser473) antibody in either transfected or non-

transfected INS-cells treated with or without inhibitors as

indicated (Figure 4C). Application of zinc-free insulin (1 mM) to

the transfected INS-1 cells still caused a remarkable reduction of

IGABA (Figures 4D). Normalized IGABA from separated experi-

ments showed zinc-free insulin reduced IGABA by approximately

30% in INS-1 cells expressing DN-Akt (Figure 4E, n = 5,

p,0.05). These observations suggest that zinc-free insulin-induced

inhibition on IGABA is not sensitive to the PI3-K/Akt inhibition.

Insulin does not alter the localization of GABAAR at the
INS-1 plasma membrane

We previously demonstrated that insulin enhances the insertion

of GABAAR into the plasma membrane in neuron [25] and a-cell

[12]. We thus investigated whether insulin could alter GABAAR

membrane expression in INS-1 cells by immunostaining using

antibody against the GABAARb2/3 subunits. As shown, insulin

(1 mM, 15 min) did not alter the staining profile of GABAARb2/3

subunits (Figure 5A) in INS-1 cells treated with or without

wortmannin, suggesting that insulin-induced suppression of IGABA

is not related to GABAAR redistribution in INS-1 cells.

Insulin-induced inhibition of IGABA is ERK dependent
Activation of the MRK/ERK pathway represents another

important branch of the insulin receptor signal transduction

pathway in pancreatic b-cells [26]. We performed experiments

to examine whether or not insulin-induced inhibition of IGABA

requires activation of MEK/ERK. We found that incubation of

INS-1 cells with insulin (100 nM, 5 min) resulted in rapid

ERK1/2 phosphorylation, which was blocked by the MEK/

ERK inhibitor PD98059 (20 mM) (Figure 5B). Perforated

patch clamp recordings were then performed in the control

INS-1 cells and INS-1 cells that were pretreated with PD98059

(20 mM, 10 min). We found that application of zinc-free insulin

to the cells failed to inhibit IGABA in the presence of PD98059

(Figures 5C, 5D; p,0.05, n = 6). This result suggests that

insulin suppresses GABAAR function via activation of the

MEK/ERK pathway.

Insulin inhibits GABA-induced INS-1 cell secretion
We next conducted C-peptide radioimmunoassays (RIA) to

determine whether or not the effect of insulin on the modulation of

GABA-GABAAR system has an impact on GABAAR-mediated

secretory function in INS-1 cells. As shown, consistent with our

previous findings [15], GABA (30 mM) significantly increased C-

peptide secretion in INS-1 cells, which was diminished by the

GABAAR antagonist picrotoxin (50 mM) (Figure 6, p,0.01,

n = 3), suggesting that GABA-induced insulin secretion in the b-

cells is mediated by GABAAR. Furthermore, pre-treatment of the

INS-1 cells with insulin (1 mM) resulted in a statistically-significant

decrease in GABA-induced C-peptide secretion (Figure 6,
p,0.01, n = 3). These results suggest that insulin-mediated

inhibition of IGABA is related to down-regulation in GABA-

induced insulin secretion in INS-1 cells.

Discussion

Pancreatic b-cells produce a large amount of GABA [27],

whereas GABAARs are expressed in both b-cells [6,15] and a-cells

[7,12]. In a-cells, GABA hyperpolarizes the membrane potential

and suppresses glucagon secretion [7,12], via a mechanism

involving PI3-K/Akt signaling dependent GABAAR plasma

membrane translocation [12]. In contrast, we and others

demonstrated that GABA depolarizes b-cells and stimulates

insulin secretion from these cells [6,15]. These observations

suggest that GABA, as a paracrine or autocrine factor plays an

important role within pancreatic islets in the regulation of islet cell

secretion and function. In the present study, we sought to

Figure 2. GABA-evoked currents (IGABA) is inhibited by insulin in INS-1 cells. GABA-evoked inward current was measured by means of a
computer-controlled multi-barrelled perfusion system, in two-minute intervals, under voltage-clamp conditions. Representative traces of GABA-
evoked currents in the absence and presence of insulin (100 nM, (A), 1 mM, (B)) in the same INS-1 cell. A’ and B’ represents the average of IGABA from
separated experiments. (C) Normalized average IGABA during the course of experiment (control = average of first 4 IGABA, insulin = average of IGABA in
the presence insulin at indicated concentrations). Data were mean 6 SE. *p,0.05 ** p,0.01, n = 6.
doi:10.1371/journal.pone.0026225.g002
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investigate how insulin affects GABA-GABAAR system in the b-

cells and thereby modulates its secretory pathways.

In INS-1 cells, glucose induces a gradual and sustained

depolarization, whereas GABA produces rapid and bicuculline-

or picrotoxin-sensitive membrane depolarization, associated with

remarkable increases in intracellular Ca2+ concentration and

insulin secretion. A recent study by Braun et al. suggested that

glucose stimulates feed-forward release of GABA from the b-cells

[6]. Furthermore, the GABA-stimulated insulin release appears to

be glucose concentration-dependent [6,15]. Of note, our results

showed that GABAAR antagonist picrotoxin attenuated about

50% of the GABA-induced C-peptide release. This is likely due to

the fact that GABA-stimulated insulin secretion in the b-cells is

partially contributed by activation of B-type GABA receptor

(GABABR) [28]. These observations suggest that the autocrine

GABA-GABAAR system in b-cells constitutes an effective

signaling component of the glucose-sensing machinery.

The opposite effects of GABA in the two types of islet endocrine

cells are likely because b-cells and a-cells have different Cl-

reversal potential (ECl). The direction of Cl- flow upon opening of

the GABAAR channel is dependent on the electrochemical driving

force which is determined by the resting membrane potential and

the ECl [29]. For example, in the early developing brain, GABA

induces depolarizing effects in immature neurons [30], while it

exerts inhibitory effects by hyperpolarizing the membrane

potential in mature neurons of the adult brain [31]. The switch

from excitation to inhibition of GABAAR activation is due to a

shift of ECl which is controlled by increased activity of K+-Cl- co-

transporter-2 (KCC2) in the brain during development [32]. In

this regard, functional KCC has been identified in pancreatic a-

cells, but not in the b-cells [33,34].

Regular human insulin is a complex of insulin and zinc [35].

The finding that zinc-free insulin suppressed IGABA to a degree

similar to that of regular insulin suggests that the inhibitory effects

of insulin on IGABA is dependent on the insulin peptide. It is

interesting to note that application of zinc-free insulin together

with GABA did not inhibit IGABA, whereas pre-treating the cell for

at least 30 seconds with zinc-free insulin inhibited IGABA. These

Figure 3. Zinc-free insulin inhibits GABA-evoked currents in INS-1 cells. (A) Representative traces of GABA-evoked currents in the absence
and presence of zinc-free insulin and regular insulin in the same INS-1 cell. (B) The average of IGABA from separated experiments. (C) Normalized
average IGABA was separately recorded during the course of experiment (control = average of first 4 IGABA, ZFI = average of IGABA in the presence zinc-
free insulin, insulin = average of IGABA in the presence of insulin after washing out). (D) Representative traces of IGABA obtained from when GABA was
applied simultaneously with insulin or 30 seconds after insulin pre-treatment. (E) Normalized average IGABA of separated experiments as described in
(C). Data were mean 6 SE. *p,0.05, n = 5.
doi:10.1371/journal.pone.0026225.g003
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results suggest that insulin-induced inhibition of IGABA in INS-1

cells requires insulin signaling processes. Such inhibitory effects of

insulin on GABA-induced current was also observed in the non-

islet b-cells [36] The potentiating effect of insulin on IGABA in

neurons and a-cells is attributed to GABAAR insertion into the

plasma membrane, which occurred about 10-15 min after insulin

treatment [12,25]. Under similar experimental conditions, how-

ever, we did not observe increased GABAAR localization at the

plasma membrane upon insulin treatment in INS-1 cells.

Furthermore, unlike in the a-cells, where the insulin-enhanced

IGABA is PI3-K/Akt dependent, our data does not suggest the

involvement of PI3-K/Akt signaling in the inhibition of IGABA by

insulin in the b-cells. In contrast, MEK/ERK inhibitor PD98059

blocked the inhibitory effect of insulin on GABA-induced current,

suggesting that insulin regulates GABAAR function in INS-1 cells

via activation of the MEK/ERK signaling pathway.

The explanation for the opposite effects of insulin on GABAAR

in a- and b-cells is largely unknown, although it may be due to the

different subunit composition of GABAAR in the two types of islet

cells [12,15]. It is interesting to note that in neurons, activation of

the insulin-PI3-K signaling pathway enhances IGABA due to the

increase in cell surface-localized GABAAR, whereas activation of

insulin receptor with ERK kinase causes inhibition of IGABA

through phosphorylation of a specific subunit of GABAAR

[36,37]. Particularly, a-subunits of the GABAAR have a putative

phosphorylation site for ERK [37]. Presumably, such phosphor-

ylation occurs on an intracellular site allowing immediate allosteric

modifications of GABAAR.

Given the relatively rapid inhibitory effect of insulin on IGABA, it

is possible that insulin may also act as a non-competitive inhibitor

of the GABAAR in the b-cells, as has been observed in non-b-cells

[36]. In relation to this notion, it has been reported that a direct

receptor-receptor interaction occurs between GABAAR and

dopamine D5 receptor, which affects the GABAAR activation

[38]. Further study is warranted to test if there is an interaction

between insulin receptor and GABAAR, and to determine the

molecular mechanism by which insulin modulates GABA-

GABAAR signaling in the b-cells.

In INS-1 cells, insulin suppresses IGABA and decreases GABA-

mediated insulin secretion in the b-cells which suggests that

insulin may utilize the GABA-GABAAR system to constitute a

feedback mechanism for the b-cell secretion. Our findings are in

a good agreement with previous observations suggesting that

activation of insulin receptor inhibits insulin secretion in the b-

cells [39]. Conversely, inhibition of PI3-K signaling pathways

enhances insulin secretion in the b-cells [40,41]. A study by

Khan et al suggested that insulin inhibits insulin secretion

through activation of KATP channels in the b-cells [42]. A study

by Jimenez-Feltstrom and colleagues [43] suggested that the

effect of insulin on IGABA is insulin-dose dependent, exemplified

by the observation that, insulin, at low concentrations (i.e., from

0.05 to 0.1 nM) stimulated insulin release, while at concentra-

Figure 4. Insulin-induced inhibition of IGABA in INS-1 cells is PI3-K/Akt independent. (A) Representative traces of GABA-evoked currents in
the absence and presence of zinc-free insulin (1 mM) along with PI3-K inhibitor wortmannin (100 nM). (B) Normalized average of IGABA from separated
experiments. (C) Akt activity determined by Western Blotting using anti-phospho Akt (S473) in cells treated without or with wortmannin (Wort), or in
the cells transfected with dominant-negative Akt (DN-Akt). (D) Representative traces of GABA-evoked currents in cells expressing DN-Akt in the
absence and presence of zinc-free insulin (ZFI,1 mM). (E) Average IGABA from separated time-course experiments. Data were mean 6 SE. *p,0.05,
** p,0.01, n = 5.
doi:10.1371/journal.pone.0026225.g004
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tions higher than 250 nM, insulin inhibited insulin secretion

from the b-cells.

It should be noted that under certain circumstance, effects of

insulin on IGABA are excitatory [16]. These previous reports that

describe the stimulatory effects of insulin on b-cell secretory

process were mostly supported by experiments involving b-cells

from organisms with genetic knockout or overexpression of the

insulin receptor [44–48], The different outcomes imply that the

modulation of insulin on the GABA-GABAAR system in the b-

cells may be dependent on their metabolic status.

The physiological relevance of GABA signaling in the

regulation of islet b-cell function has yet to be fully identified.

We demonstrated recently that the depolarizing effects of GABA

may lead to activation of PI3-K/Akt dependent cell growth and

survival pathways in the b-cells [18]. Insulin is an important

positive autocrine regulator of b-cell growth and survival [17,49].

GABA, when co-released with insulin [6], synergistically enhances

insulin-stimulated cell growth and survival pathways in the b-cells

[18]. In support of previous findings that insulin is a negative

regulator of insulin secretion [39–42,50], our data suggest that

insulin utilizes the autocrine GABA-GABAAR pathway to operate

its negative feedback suppression in the b-cells.

Such a negative feedback modulator appears to be important

for maintaining islet hormones at appropriate levels [51]. It is

Figure 5. Insulin suppresses IGABA which is not associated with GABAAR membrane relocalization and is ERK-dependent. (A) Confocal
microscopic image of INS-1 cells immunostained for GABAARs using anti-GABAAR b2/3 mouse IgG and Cy3-conjugated secondary antibody (red) with
DAPI-nuclear staining (blue). Cells were treated with or without insulin, in the presence or absence of PI3-K inhibitor wortmannin. (B) Insulin (100 nM,
5 min) stimulated ERK phosphorylation in INS-1 cells, which was blocked by pre-treatment of the cells with PD98059 (20 mM, 10 min). (C)
Representative traces of GABA-evoked currents in the absence and presence of zinc-free insulin (0.6 mM) with or without PD98059 (20 mM). (D)
Normalized average of IGABA from separated experiments. Data were mean 6 SE. *p,0.05, ** p,0.01, n = 5–6.
doi:10.1371/journal.pone.0026225.g005

Figure 6. GABA enhances insulin secretion which is attenuated
by insulin in INS-1 cells. Insulin secretion was evaluated by C-peptide
RIA. Cells were serum-starved in KRB buffer containing 1.4 mM glucose
for 60 min prior to the RIA. The RIA was conducted using cells which had
their culture medium replaced with fresh KRB buffer containing 1.4 mM
glucose (or 11.1 mM glucose as positive control, PC), in the presence of
GABA (30 mM), with or without either picrotoxin (Pic, 50 mM) or insulin
(Ins, 1 mM) for 120 min. Data were mean 6 SE, from three independent
experiments with each sample counted in triplication. ** p,0.01 (Ctrl vs
GABA), ## p,0.01 (GABA vs GABA+Bic or GABA+Ins).
doi:10.1371/journal.pone.0026225.g006
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conceivable that basal insulin may serve as a maintenance signal

that primes the b-cell to respond to subsequent glucose stimulus,

insulin may utilize GABA-GABAAR system to inhibit further

release at the peak of the exocytotic event, particularly, at very

high local insulin concentration. Previous euglycemic hyperinsu-

linemic clamp studies in humans suggest that this negative short-

loop insulin-b-cell feedback is an important mechanism in

maintaining appropriate b-cell secretion, since inadequate feed-

back suppression is found in obese patients, and may partly

account for their prevailing hyperinsulinemia [52]. Given that

autocrine insulin action is critical in maintaining normal b-cell

function [16,17], and that b-cell insulin resistance can deteriorate

b-cell function that accelerates the progression of diabetes [53,54],

future studies are required to determine whether the impairment

of the autocrine insulin-GABA-GABAAR signaling contributes to

b-cell insulin resistance in type 2 diabetes.
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