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Abstract. Secretory granules of sheep thyroid parafol- 
licular cells contain serotonin, a serotonin-binding pro- 
tein, and calcitonin. Parafollicular cells, isolated by 
affinity chromatography, were found to secrete seroto- 
nin when activated by thyrotropin (TSH) or elevated 
[Ca2÷]~. TSH also induced a rise in [Ca2÷]~. We studied 
the effect of these secretogogues on the pH difference 
(ApH) across the membranes of the secretory granules 
of isolated parafollicular cells. The trapping of the 
weak bases, acridine orange or 3-(2,4 dinitro anilino)- 
Y-amino-N-methyl dipropylamine (DAMP), within the 
granules was used to evaluate ApH. In contrast to 
lysosomes, which served as an internal control, the 
secretory granules of resting parafollicular cells dis- 
played a limited and variable ability to trap either acri- 
dine orange or 3-(2,4 dinitro anilino)-3'-amino- 
N-methyldipropylamine; however, when parafollicular 
cells were stimulated with TSH or elevated [Ca2+],, the 
granules acidified. Weak base trapping was also 

used to evaluate the ATP-driven H ÷ translocation into 
isolated parafollicular granules. The isolated parafollic- 
ular granules did not acidify in response to addition of 
ATP unless their transmembrane potential was col- 
lapsed by the K ÷ ionophore, valinomycin. Secretory 
granules isolated from TSH-treated parafollicular cells 
had a high chloride conductance than did granules iso- 
lated similarly from untreated cells. Furthermore, 
ATP-driven H + translocation into parafollicular gran- 
ules isolated from TSH-stimulated parafollicular cells 
occurred even in the absence of valinomycin. These 
results demonstrate that secretogogues can regulate the 
internal pH of the serotonin-storing secretory granules 
of parafollicular cells by opening a chloride channel 
associated with the granule membrane. This is the first 
demonstration that the pH of secretory vesicles may be 
modified by altering the conductance of a counterion 
for the H ÷ translocating ATPase. 

T 
HE parafollicular cell of the mammalian thyroid gland 
is a neural crest derivative (Le Douarin et al., 1974; 
Polak et al., 1974) that remains capable of expressing 

neural characteristics when exposed to nerve growth factor 
(Barasch et al., 1987a). Parafollicular cells also produce the 
neurotransmitter, 5-hydroxytryptamine (5-HT) I , which they 
costore in granules with the peptide hormone calcitonin 
(Pearse, 1966; Bussolati and Pearse, 1967; Falck and Ow- 
man, 1968; Jaim-Etchevery and Zeiher, 1968; Gershon and 
Nunez, 1973; Nunez and Gershon, 1978a; Barasch et al., 
1987b). The secretion of these hormones is stimulated by 
elevated [Ca+2]e (Hirsch and Munson, 1969; Gershon et al., 
1978). In addition to calcitonin and 5-HT, parafollicular cell 
granules contain a serotonin-binding protein (SBP) specific 
to 5-HT-storing cells of neurectodermal origin (Barasch et 
al., 1987b). Although the function of SBP in the granules of 

1. Abbreviations used in this paper: DAMP, 3-(2,4 dinitro anilino)-3"amino- 
N-methyl dipropylamine; 5-HT, 5-hydroxytryptamine; SBP, serotonin-bind- 
ing protein; TSH, thyrotropin. 

parafollicular cells or in the synaptic vesicles of serotonergic 
neurons has yet to be established, SBP binds 5-HT best at 
neutral or alkaline pH (Tamir et al., 1976). Since many 
secretory granules are known to maintain an acid pH interior 
(Johnson et al., 1982; Catty et al., 1980; Russell and Holz, 
1981; Orci et al., 1986), we investigated the mechanisms that 
control the internal pH of the secretory granules of parafol- 
licular cells. 

The interior of lysosomes (Ohkuma et al., 1982) as well as 
that of secretory granules is acidified by a H + translocat- 
ing ATPase that can generate a transmembrane H + gradient 
(ApH) and a membrane potential (AW). The extent to which 
the H + translocating ATPase generates either gradient is 
dependent on the conductance of the organelle membrane to 
counterions, which permit charge compensation. In fact, the 
fractional contribution that ApH and A¥ make to the proton 
gradient can be experimentally manipulated by altering the 
concentration of permeant ions in suspensions of isolated 
vesicles (Johnson et al., 1979; Johnson and Scarpa, 1979; 
Glickman et al., 1983). Chromaffin granule (Pazoles et al., 
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1980; Johnson et al. ,  1979; Njus, 1983) and lysosomal 
(Schneider, 1981; Dell' Antone, 1979) membranes are suffi- 
ciently permeable to CI- that they rapidly acidify when 
treated with ATP in a C1--containing buffer. When C1- is 
absent, however, these vesicles fail to generate a ApH and 
instead form a A~. 

In intact cells, a variation has been found in the internal 
pH of endocytic and secretory vesicles. This has been dem- 
onstrated for organelles of the endocytic pathway with fluo- 
rescein-labeled macromolccules (Yamashiro and Maxfield, 
1984) and for organelles of the secretory pathway by weak 
base trapping (Anderson et al., 1984). The cause of the het- 
erogeneity in intravesicular pH is unkown. Mechanisms ac- 
counting for variations in ApH may include differing con- 
ductances of the membranes of different vesicles to ions, 
including H +, or the presence of electrogenic ion trans- 
locating ATPases, in addition to the H ÷ ATPase (Fuchs et 
al., 1988). The current study was done to test the hypothesis 
that the differences in the pH inside different granules result 
from a physiological regulation of the conductance of in- 
dividual granules for counterions. In this paper, we demon- 
strate that granules of thyroid parafoUicular cells can acidify 
in response to stimulation by secretagogues. Furthermore, 
sccretagogues increase the granule membrane conductance 
to CI-, which would be expected to collapse the potential 
across the granular membrane, thereby allowing acidifi- 
cation of the granule interior. In this way, these cells can 
maximize the granule ApH by reducing the granule A~; 
therefore, individual granules containing a H + translocating 
ATPase can vary in internal pH by varying the chloride con- 
ductance of their limiting membrane. 

Materials and Methods 

Isolation of ParafoUicular Cells 
Parafollicular cells were isolated by an affinity chromatographic method 
(Bernd et al., 1981) as modified by Barasch et al. (1987a,b). Essentially, 
sheep throid glands were dissociated with trypsin. The resultant suspension 
of thyroid cells (consisting of 85 % red blood cells, 13.5 % follicular cells, 
and 1.5 % parafollicular cells) was treated with thyroid stimulating hormone 
(thyrotropin [TSH]; 5 mU/ml; Armour Pharmaceutical Co., Tarrytown, 
NY) and then loaded onto a column of Sepharose 6-MB beads (Pharmacia 
Fine Chemicals, Piscataway, NJ) at 37°C to which thyroglobnlin (Sigma 
Chemical Co., St. Louis, MO) had been coupled. Follicular cells become 
phagocytic in the presence of TSH and "attempt" to phagocytize the beads; 
thus, they are retained on the column while parafollicular cells pass through. 
Parafollicular cells eluting from the columns were further purified by cen- 
trifugation (10 rain at 800 g) on a 10% Ficoll (Pharmacia Fine Chemicals) 
cushion made in MEM. This step allowed separation of smaller particles 
such as red blood cells, bacteria, and yeast, from parafollicular cells. The 
purified parafollicular cells were washed and then plated onto plastic dishes 
and cultured for 2-3 d (Barasch et al., 1987a); 97% of the cells in the final 
suspension were parafollicular cells. In most experiments, parafollicular 
cells were resuspended in Hepes-buffered MEM (10 ram, pH 7.4) contain- 
ing neither bicarbonate nor phosphate. 

Electron Microscopic Immunocytochernical 
Demonstration of the Trapping of 
DAMP in ParafoUicular Cell Granules 
Aliquots of dissociated thyroid cells suspended in Hepes-buffered MEM, 
were incubated with 30 ~M 3-(2,4 dinitro anilino)-Y-amino-N-methyl 
dipropylamine (DAMP), a weak base derived from dinitrophenol (Ander- 
son et al., 1984; Anderson and Pathak, 1985) for 30 min at 37°C. The fol- 
lowing substances were added to the suspending medium and their effects 

on the intracellular distribution of DAMP were analyzed: (a) Ca +: (5-20 
mM); (b) TSH (30 mU/ml); (c) valinomycin (1.0-2.5 ~tM); (d) nigericin (1.5 
ttM). When the concentration of Ca +2 was raised above 2.5 mM, CaCI2 
replaced NaC1. 

Cells were fixed at 37oc for 3 h with a mixture of 4 % formaldehyde (from 
paraformaldehyde), 0.5% glutaraldehyde, 3% sucrose in 0.1 M KPO4 
buffer (pH 7.4). Fixed tissues were washed and excess aldehydes were 
quenched with 50 mM NI-hC1 in buffer for 15 min. The cells were again 
washed, dehydrated, and then embedded in a hydrophilic resin (type LR 
White; Ernest E Fullam, Inc., Schenectady, NY). Thin sections of DAMP- 
treated cells were picked up on Formvar-coated nickel grids and treated with 
10% horse serum in a solution containing 0.1 M Tris-HCI, 0.9% NaCI, and 
0.125 % Triton X-I00 (TBS-X) for 30 min. The sections were then incubated 
overnight at 4°C with a mouse monoclonal antibody to dinitrophenol (50 
ttg/ml) that cross reacts with DAMP (clone HDP-1, No. 15, generously sup- 
plied by Dr. Anderson, University of Texas, Health Science Center, Dallas, 
TX) diluted in TBS-X with 4% horse serum. The sites where DAMP was 
concentrated were visualized with an anti-mouse secondary antibody cou- 
pled to colloidal gold (Janssen Pharmaceutica, Bcarse, Belgium). Sections 
were post fixed in 2.5 % glutaraldebyde after immunocytochemical process- 
ing and examined in a JEOLCO JEM 1200 EX electron microscope. 

Analysis of Acridine Orange Trapping in 
Parafollicular Cells 
Chromatographically purified parafollicular cells were incubated with acri- 
dine orange (6 tiM) for 5 rain and were either examined by fluorescence 
microscopy or loaded into a fluorescence-activated cell sorter (FACS/Id, 
Becton Dickinson & Co., Mountain View, CA). For fluorescence micros- 
copy, cells were excited by light at 488 um and emitted light was passed 
through a 520-nm-long band pass filter. For analyses with the FACS (Con- 
sort 400 Program) a single population of cells was selected by forward, nar- 
row angle light scatter (a reflection of particle size), and was excited with 
light at 488 nm from an argon gas laser at 300--400 mwatts. The red fluores- 
cence emission intensity (a function of the concentration of acridine orange) 
was coUcctcd through a 650 + 50-urn-wide band pass filter) and plotted as 
a function of cell number. Parafollicular cells, suspended in Hepes-buffered 
MEM, were treated with TSH (5-30 mU/ml), CaCl2 (5-15 raM), valino- 
mycin (1.0-2.5 tiM) or with nigericin 0.5 I~M) for 0.5-30.0 rain at 37°C, 
incubated with acridine orange (6 tiM) for 5 rain, and then introduced into 
the FACS. When the effects of brief exposures to these substances were stud- 
led, cells were incubated with acridine orange for 5 rain before addition of 
the experimental substance and analyzed in the FACS immediately there- 
after. To confirm the homogeneity of the selected cells and to obtain ultra- 
structural evidence that the analyzed cells remained viable in the FACS, the 
cells were sorted, collected in a fixative containing 4% glutaraldehyde in 
0.1 M KPO4 buffer, and then processed for examination by transmission 
electron microscopy. Cells were sorted at 1-2,000 cells/s and coincident 
fluorescent events were not allowed to exceed 15%. 

Proton Transport Assay: Uptake of Acridine Orange 
by Isolated Parafollicular Cell Granules 
ATP-dependent transport of H + into isolated parafollicular cell granules 
was evaluated by measuring granular accumulation of acridine orange in re- 
sponse to the addition of ATE Acridine orange trapping in parafollicular 
cell granules was measured by dual wavelength absorbance spectroscopy 
(492-540 nm; Glickman et al., 1983; (}luck and AI-Awqati, 1984). Parafol- 
licular cell granules were isolated on two sequential discontinuous metri- 
zamide gradients as described by Barasch et al. (1987b), except with the 
addition of 1 mM dithiothreitol (DTT) to all solutions. Aliquots of the 
granular fractions of each gradient (0.2-0.4 mg protein) were diluted in 150 
mM KCI, 6 mM MgCI2, 2 mM Tris, 2 mM morpholino ethane sulfonic 
acid, and 1 mM DTT, 1.5 ml (transport buffer) incubated with 6 l~M acri- 
dine orange and placed in a stirred cuvette at room temperature. H* trans- 
port was initiated by adding Tris-ATP (0.33 raM, fitrated to pH 7.0) after 
a steady baseline had been achieved, when the granules were equilibrated 
with acridine orange. 

ATP-dcpondent transport of H + into parafollicular cell granules isolated 
from TSH-treated cells was evaluated by measuring the granular accumula- 
tion of acridine orange. Thyroid glands were dissociated with trypsin in 
MEM (see above) and aliquots of suspended cells were treated with TSH 
(30 mU/ml) for 30 rain. Treated and unstimulated cells were diluted into 
3 vol of 0.33 M sucrose (4°C) and granules were then rapidly isolated on 
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the first metrizamide gradient (see above). The trapping of acridine orange 
in granules treated with ATP was measured by fluorometry (490 excitation, 
520 emission) in a stirred cuvette at room temperature, as described above. 

5-HT Secretion by Isolated ParafoUicular Cells 
Plated, chromatographically purified parafollicular cells were treated with 
the monoamine oxidase inhibitor, nialamide (10 lxM), for 3 h. The ceils (1.3 
× 106 cells/ml) were then suspended in Hepes-butfered MEM without 
glutamine and aliquots were incubated at T/°C for 1-35 rain with the 
secretogogues, TSH (30 mU/ml), or CaCI2 (7.5 mM). The incubation was 
terminated by rapidly chilling the cells to 4°C and gentle centrifugation 
(800 g, 15 min). The supernatant was acidified to 0.1 N HCI and then ana- 
lyzed by reverse phase HPLC (Reinhard et al., 1980; Barasch et al., 1987b) 
for 5-HT release. Secretogogue-stimulated release was reported as the 
difference in the 5-HT concentration in supernatants of control and treated 
cells. 

Measurement of Intracellular Ca ÷z in 
Isolated ParafoUicular Cells 
The intracellular concentration of free Ca +2 and the effect of TSH on this 
concentration was estimated from the fluorescence of the dye, Fura-2 
(Grynkiewicz et al., 1985). Chromatographically purified parafollicular 
cells (Bernd et al., 1981) were loaded with Fura-2 by incubation at 3"/*C 
with 20 I~M Fura-2 AM (the permeant ester derivative of the dye; Molecular 
Probes, Inc., Junction City, OR) for 30 rain. Fura-2 AM is hydrolyzed by 
cytoplasmic esterases to yield free Fura-2, which is trapped intracellularly. 
The Fura-2-1oaded cells were washed, suspended in Hepes-buffered MEM 
solution, and loaded into a stirred cuvette. Cells were excited alternately 
with light at 380 and 340 nm and the intensity oftbe emitted light was mea- 
sured at 505 am. A calibration curve was constructed with 2.5 IxM Fura-2 
acid in a solution containing 150 mM KCI, 1.0 mM MgCI2, 1.0 mM EGTA, 
and Ca +2 titrated with a calcium electrode in a range of 0.1 laM to 10.0 
mM. Highly purified bovine TSH (25 U/mg protein) was obtained from Dr. 
B. Erlanger at Columbia University (New York). 

Measurement of Cytoplasmic pH in 
Isolated Parafollicular Cells 
The pH of the cytosol of parafollicular cells was estimated from the fluores- 
cence of the pH-sensitive dye, BCECF (Thomas et al., 1979). Chromato- 
graphically purified parafoilicular cells were loaded with the permeant es- 
ter BCECF-AM (12.1 laM; Molecular Probes, Inc., Junction City, OR) for 
30 win at 37°C. BCECF-AM is hydrolyzed by cytosolic esterases to yield 
free BCECE which is trapped in the cytosol. BCECF-loaded cells were 
washed, resuspended in Hepes-buffered MEM and loaded into a stirred 
cuvette (2 × 10 ~ cellstml). Cells were excited alternately with light at 460 
and 490 nun and the intensity of emitted light was measured at 530 nm. A 
calibration curve was constructed by cleaving the BCECF ester (1.2 raM) 
with porcine liver esterase (Sigma Chemical Co.; 2 ~tl/ml) for 2 h in a solu- 
tion consisting of 140 mM KCI, 5 mM NaCI, 1 mM MgCI2, 10 m Hepes, 
at pH 7.95. 

Measurement of Chloride EJ~ux from Isolated 
ParafoUicular Cell Granules 
ParafoUicular cell granules were isolated on metrizamide gradients (Bar- 
asch et al., 1987b) and were loaded with 36CI- by freezing overnight in a 
buffer containing 130 mM KCI, 6 mM MgCi2, 10 mM imidazole (pH 7) with 
36C1- (16 mCi/g CI-; New England Nuclear, Boston, MA). Granules were 
then thawed and diluted 63-fold into the same salt solution at 4°C, with 2.5 
~tM valinomycin. Valinomycin was added to abolish a membrane potential. 
Aliquots were rapidly collected on Fiberglas GFC filters (Whatman Interna- 
tional, Ltd., Maidstone, England) under a vacuum, and the filters washed 
with 2 ml of 250 mM sucrose (Landry et al., 1987). The effect of extra- 
granular CI- on 36C1- efflux was analyzed by diluting aliquots of granules 
63-fold in Cl--free, gluconate salts (130 mM K gluconate, 6 mM Mg 
gluconate, 10 mM imidazole, pH 7) with 2.5 ~tM valinomycin, and collect- 
ing granules on filters. In both sets of experiments, the amount of 36CI- re- 
maining associated with granules over time was expressed as a fraction of 
the retained radioactivity, 30 s after resuspension. 

Results 

ATP-dependent Transport of H ÷ by Isolated 
Parafollicular Cell Granules 
We assayed ATP-driven acidification of parafollicular cell 
granules by measuring the accumulation of the weak base 
acridine orange in purified granules. Using a previously 
characterized technique (Barasch et al., 1987b) with two se- 
quential discontinuous metrizamide gradients, we isolated a 
granule fraction that is enriched 20-fold over the homogenate 
in the granule marker, 5-HT, but depleted in rnitochondrial 
and lysosomal markers. In this fraction the granules, 
identified by electron microscopy, occupy '~63 % of the par- 
ticulate volume (Barasch et al., 1987b). When we added 
ATP (0.33 mM) to granules suspended in a KC1 containing 
"transport buffer" there was no trapping of acridine orange. 
However, when we preincubated the granules with 2 I~M 
valinomycin, a K+-selective ionophore, the addition of ATP 
stimulated the initial rate of acridine orange trapping (from 
0 to 8 + 2.5 x 10 -3 A absorbancz/min per mg protein; Fig. 
1). Proton-conducting ionophores such as 2 lxM nigericin (a 
H/K exchanger) or 5 I~M CCCP (a H + carrier) released the 
trapped acridine orange, implying that the uptake of acri- 
dine orange was due to the development of a transmembrane 
pH difference (Fig. 1). Furthermore, N-ethylmaleimide (10 
IxM), which inhibits many nonmitochondrial ATPases, abol- 
ished the valinomycin/ATP-induced trapping of acridine 
orange. 

Since the induction of a K + conductance in the granule 
membrane by valinomycin should collapse a membrane po- 
tential and thereby stimulate H ÷ transport, these data sug- 
gest that H + transport, and thus acridine orange trapping, 
in isolated granules is limited by a membrane potential gen- 
erated by electrogenic H ÷ translocation. Such a transmem- 

¢" 
ATP 
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Figure 1. Uptake of acridine orange into purified parafollicular cell 
granules measured by dual wavelength spectroscopy. In the control 
trace little inward movement of acridine orange is initiated by the 
addition of ATP; however, subsequent addition of nigericin drives 
acridine orange out o f  the granules (upward deflection). In the su- 
per imposed tracing ( +  valinomycin), the addition of  ATP induces 
inward movement  of  acridine orange (downward deflection). The 
addit ion of  nigericin causes rapid effiux of  acridine orange f rom the 
granules. 
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Figure 2, Electron microscopic immunoeytochemical demonstration of subcellular sites of accumulation of DAMP in cells from the sheep 
thyroid. Thyroid cells were incubated with DAMP for 15 min 0ow exposure). (A) No accumulation of DAMP is seen in pamfoUicular 
cell granules. (B) DAMP accumulation can be detected in the lysosomes of three different follicular cells. (C) DAMP accumulation can 
be detected in a subset of the granules of a neutrophil (arrowheads). The labeling pattern is consistent with the trapping of DAMP in the 
less numerous primary (lysosomes) but not secondary (specific) granules. Bars: (.4 and B) 0.5 Ixm; (C) 0.25 Ixm; (inset) 0.1 0m. 

brahe potential difference could only arise if the granule 
membrane had little or no conductance to counterions such 
as K + or C1 +. 

Acidification of ParafoUicular Cell 
Granules in Intact Cells 

To examine whether granule acidification in intact parafollic- 
ular cells is limited in a manner analogous to that encoun- 
tered in isolated granules, we compared the ApH of in- 
dividual granules with that of follicular cell and neutrophil 
lysosomes by visualizing the subeelhlar distribution of the 
weak base DAMP with an electron microscopic immunogold 
technique (Anderson et al., 1984; Anderson and Pathak, 
1985). When dissociated thyroid cells were incubated with 
DAMP for 15 rain and fixed without pelleting, <1% of para- 
follicular cell granules showed concentration of the tracer 
(Fig. 2 A). In contrast, we found labeling of almost all lyso- 
somes of follicular cells and of a subset of granules in neutro- 
phils (Fig. 2, B and C). When we incubated thyroid cells for 
30 min with higher concentrations of DAMP (by washing the 
ceils free of albumin, to which DAMP binds) we found a 
variable concentration of DAMP immunoreactivity in gran- 

ules (Fig. 3 A). Follicular cell lysosomes, however, were uni- 
formly and more intensely labeled than parafollicular gran- 
ules. These labeling patterns suggest that ApH varies from 
granule to granule in parafollicular cells and is generally less 
than that across lysosomal membranes; however, when we 
treated thyroid cells with valinomycin (10 gM) for 1 min be- 
fore fixation of DAMP, we found an increased percentage of 
parafollicular cell granules labeled per cell (Fig. 4) and in- 
creased numbers of immunogold particles over granules (Fig. 
3 B). Valinomycin treatment therefore maximized the ApH 
across the membranes of parafollicular cell granules in intact 
cells, just as it did in isolated granules. This observation sug- 
gests that in contrast to lysosomes, H + transport by parafol- 
licular cell granules in situ is limited by a membrane poten- 
tial. The addition of nigericin (7.5 lxM) virtually eliminated 
all DAMP immunoreactivity from the granules (Fig. 3 C), 
indicating that accumulation of DAMP in granules reflects 
the ApH across the granular membrane. The effect of nigeri- 
cin was apparent after brief exposure of cells to the iono- 
phore (0.5 min). 

To examine weak base trapping in a large population of 
cells, we incubated chromatographically purified parafol- 
licular cells with acridine orange and examined them by 
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Figure 3. Electron microscopic immunocytochemical demonstration of subcellular sites of accumulation of DAMP in parafollicular cells 
from the sheep thyroid. Dissociated cells were incubated with DAMP under high exposure conditions in the absence (A) or presence of 
valinomycin (B) or nigericin (C). Valinomycin increases and nigericin abolishes labeling by DAMP of parafollicular cell granules. Bars: 
(A and B) 0.5 ~tm; (C) 0.25 ~tm. 

fluorescence microscopy (Allison and Young, 1964). We 
estimated the transmembrane H ÷ gradient of intracellular 
granules by observing red shifts in the wavelengths of emit- 
ted light that parallel the intragranular concentration of the 
dye. The cells were heterogeneous in their ability to trap 
acridine orange; some cells showed a punctate orange-red 
fluorescence while others did not trap acridine orange at all 

% Cells ~ 

O-lO 

| = .  
10-20 20-30 30-40 40-50 

% Granules Labeled 
>50 

Figure 4. Histogram showing the effect of valinomycin on the ac- 
cumulation of DAMP in parafoUicular cell granules. Dissociated 
cells were incubated with DAMP (low exposure, as in Fig. 2) + 
valinomycin (1.0 ~tM). Granules were defined as labeled if two or 
more immunogold particles were found over them. The percentage 
of granules labeled per parafollicular cell was determined. Valino- 
mycin increased the proportion of labeled granules per cell. [], 
control; ~,  valinomycin. 

(Fig. 5). To evaluate this range in concentration of the dye 
quantitatively, we incubated purified parafollicular cells with 
acridine orange (6 ~tM, 5 min) and analyzed the intensity of 
red fluorescence of individual cells with a FACS. Cells were 
selected for analysis by size using forward angle light scatter. 
In one experiment these cells were collected by cell sorting 
and processed for electron microscopy. This population of 
cells was entirely composed of parafollicular cells (,x,97 %; 
Fig. 6), indicating that the sorted cells were viable and that 
the intracellular distribution of acridine orange probably re- 
fleets its accumulation in granules. The ceils varied over a 
3.5-fold range in the intensity of red fluorescence of acridine 
orange with a large standard deviation equal to 84 + 8 % of 
the mean red fluorescence. When we added valinomycin (2.5 
I~M, 1 min), the mean intensity of red fluorescence increased 
to 122.4 + 6.8% of control (p < 0.01; Fig. 7). 

These results suggest that the membrane conductance of 
granules must be low in intact cells as it is in isolated gran- 
ules thereby preventing the granules from maximally acid- 
ifying. The heterogeneity of the internal pH of granules may 
result from physiological regulation of the conductance of in- 
dividual granules for counterions. 

Secretagogue Induced 5-HT Secretion from 
ParafoUicular Cells 

We incubated chromatographically purified parafoUicular 
cells with TSH or Ca +2 for varying periods of time. The 
concentration of 5-HT in the supernatant was analyzed to de- 
tect the release of endogenous 5-HT (Fig. 8). The maximum 
rate of 5-HT secretion induced by increased [Ca+2]e (5.2 + 
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Figure 5. Chromatographically purified parafollicular ceils 
were incubated with acridine orange (6.0 ItM) and exam- 
ined by fluorescence microscopy. Cells were initially 
photographed in color and then rephotographed on pan- 
chromatic black and white film through a red filter. The 
brightness of the image reflects the intensity of red fluo- 
rescence. Note the heterogeneity between cells in ac- 
cumulation of acridine orange. Bars, 10.0 lam. 

2.1 x |0  -19 mol/ceU per min) was faster than that induced 
by TSH (0.4 + 0.2 x 10 -19 mol/cell per rain; p < 0.05). 
Moreover, the effect of increased [Ca+2]e peaked within 5 
min while the amount of 5-HT released by TSH continued 
to increase for up to 20 rain. 

We investigated whether TSH affects the intracellular con- 
centration of free Ca +2 ([Ca+t]0 in parafollicular ceils by 
measuring the fluorescence of the calcium-sensitive probe, 
Fura-2. To validate the Fura-2 technique in parafollicular 
cells we added the calcium ionophore, ionomycin (2 lxM; ex- 
tracellular Ca +2 = 1.8 mM) to cells loaded with Fura-2. 
Ionomycin increased the fluorescence signal of the cells 
identified in a fluorescence microscope (Fig. 9 A). Subse- 
quent chelation of [Ca+2]¢ with EGTA reduced the fluores- 

cence ratio, suggesting that this method can measure changes 
in [Ca+2]i in parafollicular ceils. We found that the [Ca+2]i 
was 176 + 6 nM (n = 13) in isolated cells analyzed in a spec- 
trofluorometer. The addition of a purified preparation (0.75 
U/ml) or of a commercial preparation (30 mU/ml; Armour 
Pharmaceutical Co.) of TSH caused an immediate increase 
in [Ca+2]i to 211 + 7 nM (Fig. 9 B; p < 0.001; n = 8). The 
effect of TSH on Fura-2 fluorescence lasted 7 + 1 rain (n = 8). 

Effect of  Secretagogues on the Transmembrane 
A pH of ParafoUicular Cell Granules 

DAMP-loaded thyroid cells were treated with TSH (30 mU/ 
ml for 30 min), elevated [Ca+2]o (15 mM for 5 min) or [K+]e 

Figure 6. An electron micrograph 
of two typical parafollicular cells 
from the population of chroma- 
tographically purified cells incu- 
bated with acridine orange and 
selected by forward angle light 
scatter by the FACS. Bar, 1.0 gm. 
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Red Fluorescence 

Figure 7. Distribution of the intensity of red acridine orange fluores- 
cence of purified parafollicular cells in the absence (solid lines) and 
presence (dashed lines) of valinomycin. Fluorescence was analyzed 
by flow eytometry. (The accumulation [at the far right of each 
graph] of cells in the channel of brightest red fluorescence rep- 
resents off-scale fluorescence intensity.) Incubation with valinomy- 
cin increased the average red intensity of the parafollicular cell 
population. 

(56 mM for 5 min), and were examined by electron micro- 
scopic immunocytochemistry (as described above)• With 
each of these treatments, the percentage of granules per cell 
labeled by DAMP increased (Fig. 10), as did the number of 
immunogold particles over granules (Fig. 11). In a similar 
manner, when we incubated isolated, acridine orange-loaded 
parafollicular cells with these same agents and analyzed the 
fluorescence with a FACS, we found an increased intensity 
of fluorescence emission. Elevation of the [Ca+2]o (>5 mM; 
Fig. 12 A) was maximally effective when cells were incu- 
bated for ,x,1 min (113 + 4% of control; p < 0.005), and 
longer incubations failed to further change the intensity of 
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Figure 8. Secretion of 5-HT induced by Ca +2 or TSH. Chromato- 
graphically purified parafollicular cells were exposed to elevated 
extracellular Ca ÷2 (7.5 mM) or TSH (30 mU/ml) and the 5-HT 
concentration in the suspending medium was measured. Both agents 
stimulated the cells to release 5-HT, but Ca ÷2 did so more rapidly. 
==, calcium; n, TSH. 

the red fluorescence. TSH (30 mU/ml; Fig. 12 B) was max- 
imally effective after 10 rain of treatment (134 + 10 % of con- 
trol; p < 0.025), an effect that persisted with continued incu- 
bation with TSH to 35 min. Finally, elevation of [K÷]o (56 
mM; 1 min) rapidly increased the red fluorescence (Fig 12 
C), approximately to the same extent as did TSH. The in- 
creased labeling of individual granules with DAMP or of 
populations of cells with acridine orange, therefore, dem- 
onstrates that secretogogues increase the transmembrane pH 
gradient of granules as does valinomycin. 

An increase in the ApH across granular membranes must 
result from either acidification of the parafoUicular cell gran- 
ules or alkalinization of its cytoplasm. To ascertain whether 
secretogogues and valinomycin stimulate alkalinization of the 
cell cytosol, we loaded purified cells with the pH sensitive 
dye, BCECF, and measured the pH of the cytosol. The addi- 
tion of NI-hCI to BCECF-loaded cells increased the cell pH 
while nigericin caused a rapid acidification (probably by ex- 
changing K ÷ for H ÷ at the plasma membrane) validating the 
use of BCECF as a probe of intracellular pH in parafollicular 
ceils (Fig. 13 B). We found that the initial cytoplasmic pH 
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Figure 9. Intracellular-free Ca +2 lev- 
els ([Ca+2]i) estimated with Fura-2 
fluorescence. (A) The [Ca+2]i of a 
single cell is plotted as a function of 
time. Fluorescence was analyzed by 
fluorescence microscopy (cells were 
excited alternately at 350 and 380 
am, and emitted light was measured 
at 505 nm). Ca +2 (1.8 m]V[) is pres- 
ent in the suspending medium. The 
calcium ionophore, ionomycin, causes 
a rapid rise in [Ca+2]ithat is reversed 
when EGTA (1.0 mM) is added to the 
preparation. (B) Chromatographi- 
cally purified parafollicular cells were 
loaded with Fura-2 and the fluores- 
cence of the population was analyzed. 
Addition of TSH induced a rise in 
[Ca+2]i. 
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Figure 10. Histogram showing the effect of secretogogues on the ac- 
cumulation of DAMP in parafollicular cell granules. Dissociated 
ceils were incubated with DAMP (low exposure, as in Fig. 2) in the 
presence-or absence of TSH (30 mU/ml) and elevated extracellular 
Ca +2 (10.0 raM) or K + (56 raM). Granules were defined as labeled 
if two or more immunogold particles were found over them. The 
percentage of granules labeled per parafollicular cell was deter- 
mined. Each agent increased the proportion of labeled granules per 
cell. ~, control; i ,  TSH; m, calcium; B, KCI. 

waS 6.81 + 0.26 (n = 24 experiments) 2. The addition of 
TSH caused an immediate acidification by 0.13 + 0.02 pH 
units (p < 0.001; n = 13 experiments) that persisted with fur- 
ther incubation (Fig. 13, A and B). In contrast to TSH, nei- 
ther the addition of Ca 2+ (n = 5 experiments), nor 
valinomycin (n = 5 experiments) induced a change in the 
cytosolic pH. These results indicate that secretogogues, as 
well as valinomycin, stimulate the trapping of weak bases in 
granules by inducing granular acidification rather than by in- 
ducing cytoplasmic alkalinization. 

2. Calibration of BCECF was done by measuring the fluorescence of the 
dye in buffered solutions of different pH in a cuvette. Intracellular calibra- 
tions of fluorescein dyes show an alkaline shift in the pK, of the dye by 
0.3-0.4 pH U (van Adeisberg and AI-Awqati, 1986). The recorded intracel- 
lular pH of parafollicular cells therefore is a minimum value. 

Effect of TSH on the Chloride Permeability of 
ParafoUicular Cell Granule Membranes 

Many intraceUular vesicles such as Golgi and clathrin-coated 
vesicles, whose contents are acidified by a H + translocating 
ATPase, have a chloride channel in parallel to the ATPase 
(Glickman et al., 1983). Removal of CI- (or closure of the 
C1- channel) reduces the pH gradient of these vesicles in 
vitro. Since valinomycin, an electrogenic ionophore, stimu- 
lated granule acidification, secretogogues might similarly 
change the internal pH of granules by altering the conduc- 
tance of the granular membrane. We investigated the C1- 
conductance of granules purified from dissociated thyroid 
cells that had been treated with TSH, by loading the isolated 
granules with 36C1- in a KCl-buffered solution (pH 7). We 
then measured tracer efttux from granules at 4°C upon dilu- 
tion into 63 vol of the same buffer by collecting aliquots of 
granules on filters over time after resuspension. We found 
that granules isolated from cells treated with TSH showed a 
rapid efllux of 36C1- (reaching background in 3 min), while 
the 36C1- efflux from granules of untreated cells was very 
slow (Fig. 14). To test whether 36Cl-efflux was due to a 
36C1-/C1- exchanger, we resuspended 36Cl--loaded granules 
in a buffered gluconate salt solution and collected aliquots 
over time. Again, we found that granules from TSH- 
stimulated cells showed 36C1- efl]ux while control granules 
did not. This suggests that external CI- does not drive 36C1- 
etttux and suggests that the tracer diffuses from the granules 
through a channel rather than by C1/CI exchange. These 
results demonstrate that TSH induces the opening of a CI- 
channel, a modification that is stable during the period of 
granule isolation, 

Granules Isolated from TSH-treated 
Cells Acidify Their Contents 

To investigate whether the increased chloride conductance of 
granules from TSH-treated cells results in increased granule 
acidification, we measured ATP-dependent proton transport 
in granules from TSH-stimulated cells. Thyroid cells were 

Figure 11. Electron microscopic immunocytochemical demonstration of subcellular sites of accumulation of DAMP in parafollicular cells 
from the sheep thyroid. Dissociated cells were incubated with DAMP (high exposure, as in Fig. 3) (A) in the presence of TSH (30 mU/ml) 
or (B) elevated concentrations of extracellular Ca +2. Both of these secretogogues increase DAMP labeling of parafollicular cell granules 
over the level seen in control cells (C) incubated similarly (extracellular Ca "L = 1.8 mM). l~ars, 0.25 gm. 
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Figure 12. Graphs showing the 
distribution of the intensity of red 
acridine orange fluorescence of 
chromatographically purified pa- 
rafollicular cells in the absence 
(solid lines in A, B, and C) and 
presence of secretogogues. Flu- 
orescence of cells was analyzed 
by flow cytometry. (The accumu- 
lation of cells in the channel of 
brightest red fluorescence [at the 
far right of each graph] is due to 
the presence of cells the fluores- 

cence intensity of which is off-scale.) Incubation with Ca +2 (10.0 mM; A, dashed line), with TSH (30 mU/ml; B, dashed line), or with 
an elevated concentration of K + (56 mM; C, dashed line) increases the average red intensity of the parafollicular cell population. 

dissociated and aliquots were stimulated with TSH for 30 
min. Granules were then rapidly prepared on the first met- 
rizamide gradient. We found that the addition of ATP to 
these granules resulted in a rapid uptake of acridine orange. 
Addition of valinomycin did not enhance the rate of uptake. 
Granules isolated from untreated cells of the same prepara- 
tion, however, showed little trapping of acridine orange. Un- 
like the granules from TSH-stimulated cells, valinomycin in- 
creased the rate of H + transport by the control granules at 
least threefold (Fig. 15; cf. Fig. 1). Since these results were 
obtained with a partially purified fraction, we can not ex- 
clude the possibility that other organelles, in addition to the 
granules, increased their proton pumping after TSH stimula- 
tion. The acidification of granules (and perhaps other or- 
ganelles) from TSH-treated cells was due to the opening of 
a chloride channel since these granules failed to acidify in 
C1--free, gluconate media (not shown). Granules from TSH- 
treated cells, unlike granules from unstimulated cells, can 
therefore maximally acidify their contents in the absence of 
an electrogenic ionophore. This result implies that the gran- 
ule membrane conductance no longer limits H- transport. 
TSH-induced CI- channel opening (as demonstrated above) 
would collapse a membrane potential and enhance granule 
acidification. 

Discussion 

In this paper we demonstrate that TSH has multiple effects 
on parafollicular cells, including the induction of secretion 
of 5-HT (see also Nunez and Gershon, 1983). This is the first 

direct demonstration that TSH is a parafollicular cell secreto- 
gogue. 5-HT is taken up by follicular ceils (Gershon and Nu- 
nez, 1976) where it stimulates follicular hormone secretion 
(Nunez and Gershon, 1978b; Melander and Sundler, 1972), 
while calcitonin has distant effects on osteoclasts. Thus, two 
cells of distinct embryological lineage both respond to TSH. 
It is possible that parafollicular cells regulate follicular cell 
activity through the release of 5-HT (Nunez and Gershon, 
1978b). Whether follicular cell hormones influence parafol- 
licular cell metabolism remains to be determined. 

We found that parafollicular cell secretogogues (TSH and 
elevated [Ca+2]o) induce the acidification of 5-HT storage 
granules. Secretogogues have been found to induce acid- 
ification of other organelles. For example, glucose acidifies 
13 cell granules of pancreatic islets (Pace and Sachs, 1982). 
Moreover, the intracellular canaliculi of parietal cells also 
acidify in response to histamine (DiBona et al., 1979; Berg- 
lindh et al., 1980) and microsomes from histamine-treated 
parietal cells have an increased membrane conductance for 
K- and for C1- (Cuppoletti and Sachs, 1984). We demon- 
strated that TSH induces granule acidification by opening a 
C1- channel in the membranes of secretory granules. Open- 
ing of a C1- channel would allow charge compensation for 
electrogenic H- pumping, thereby stimulating the H- trans- 
locating ATPase and inducing granule acidification. Further- 
more, we found that substitution of K ÷ gluconate for KCI 
reduced the rate of acidification of granules isolated from 
TSH-treated cells, suggesting that CI-, but not K-, acts as 
the primary counterion. 

TSH increases [Ca+2]i of parafollicular cells; however, 
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I~gure 13. Intracellular pH estimated with 
BCECF fluorescence. (A) TSH induces 
cytoplasmic acidification in a population 
of chromatographically purified parafol- 
licular cells. Cell pH is expressed as a 
fraction of the initial pH and plotted as 
a function of time. (B) Intracellular pH 
of a population of purified parafollicular 
cells. Addition of TSH induced a fall in 
cell pH. Addition of nigericin causes 
acidification, while ammonium chloride 
induces alkalinization. 
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Figure 14. The effect of TSH on the granule membrane conductance 
for CI-, measured by 36C1- elilux from purified granules. Dis- 
sociated thyroid cells were treated with TSH and granules isolated 
by density gradient centrifugation. Isolated granules were loaded 
with 36C1-, then diluted and rapidly collected on filters. Data are 
expressed as a fraction of the initial content of 36C1-. Granules iso- 
lated from TSH-treated ceils show rapid efflux of the tracer, while 
control granules show little loss of the tracer over time. 
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since increased membrane conductance for chloride was 
present in the isolated granules hours after the cells were 
stimulated by TSH, modification of the channel was proba- 
bly covalent rather than by direct Ca ~÷ activation. TSH is 
known to increase the cAMP concentration in follicular cells 
(Bastomsky and McKenzie, 1967) and thus a cAMP-de- 
pendent kinase may be involved in the opening of the chlo- 
ride channel in granular membranes. In fact, Schoumacher 
et al. (1987) has demonstrated that epithelial chloride chan- 
nels are opened by cAMP-dependent protein kinases. Alter- 
natively, the increased [Ca+2]i that follows stimulation by 
TSH, may trigger Ca÷Lactivated kinases to induce the cova- 
lent modification. Although we have not examined the chlo- 
ride conductance of granules isolated from KCl-depolarized 

-TSH ÷TSH A ~ ~  " 
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Figure 15. Acridine orange uptake into parafollicular cell granules 
isolated from TStt-treated cells and from unstimulated thyroid cells 
measured by fluorometry. In the control vesicles there is little ATP 
driven uptake of acridine orange; however, pretreatment with 
valinomycin stimulates the inward movement of acridine orange 
(downward deflection). In contrast, the addition of ATP to granules 
isolated from TSH-treated cells causes the rapid uptake of acri- 
dine orange, which is not further enhanced by treatment with 
valinomycin. 

cells or from cells stimulated by elevated [Ca÷2]e, a similar 
mechanism might also occur in these cells. 

Variation in chloride conductance can also explain the het- 
erogeneity in the internal pH of different organdies. Endo- 
somes are less acidic than lysosomes (Murphy et al., 1984; 
Yamashiro et al., 1984) and differences in pH distinguish at 
least two types of endocytic vesicles involved in the recycling 
of receptors (Yamashiro et al., 1984; Yamashiro and Max- 
field, 1984). Moreover, individual members of a single class 
of organelle can vary in pH, as occurs with maturing beta 
cell granules (Orci et al., 1986). Vesicles that generate a 
large ApH such as lysosomes (Schneider, 1981; Dell' An- 
tone, 1979; Okuma et al., 1982) and chromaffin granules 
(Johnson et al., 1979; Njus, 1983) are highly permeable to 
C1-. In contrast, Golgi vesicles that maintain a small trans- 
membrane pH gradient must conduct C1- poorly, since va- 
linomycin increases proton pumping in these vesicles, even 
in the presence of 150 mM CI- (Glickman et al., 1983). 
This suggests that Golgi vesicles and lysosomes maintain 
their CI- conductances at different levels. Variation in con- 
ductance may be regulated by membrane-associated kinases 
and phosphatases that can produce stable modifications in 
CI- channels. Indeed, recent studies by Landry et al. (1987) 
demonstrated that the chloride conductance of vesicles en- 
riched in Golgi membranes was reduced by treatment with 
ATP or ATP-y-S, but not by nonhydrolysable ATP analogues. 
This suggests that these vesicles contain a membrane-associ- 
ated kinase that can close the channel. Heterogeneity of or- 
ganellar pH can not result from the regulation of the number 
or activity of the vesicular H ÷ ATPase, since a single H ÷ 
ATPase molecule with a turnover number of 50-100 ions/s 
would maximally acidify a granule (radius = 0.2 ltm) within 
1 min. 

The role that the proton electrochemical gradient plays in 
the function of these granules remains to be determined. The 
electrical potential generated by the H ÷ ATPase in the rest- 
ing cell might act as a driving force for 5-HT accumulation 
in parafollicular granules. It is not clear, at present, what the 
function of secretogogue-induced granule acidification is in 
the physiology of parafollicular cells; however, it is possible 
that granule acidification may facilitate secretion of 5-HT by 
enhancing the dissociation of 5-HT from SBP before exocy- 
tosis. Upon fusion of granules with the plasma membrane 
and exposure of SBP to alkaline extracellular pH, rebinding 
of 5-HT would be prevented since SBP has a reduced binding 
capacity for 5-HT in the relatively high [Na÷]o and [Ca÷2]e 
(Tamir and Gershon, 1981). 
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