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Introduction

RNA interference (RNAi) screening allows researchers to 
perform large-scale, whole-genome loss-of-function exper-
iments. These types of screens have demonstrated utility in 
identifying gene targets that play a role in specific biologi-
cal pathways and diseases.1–12 Pooled short hairpin RNA 
(shRNA) screens are particularly convenient because they 
do not require the automation necessary for individual-well 
screening. Furthermore, virally expressed shRNAs can be 
transduced into most cell types, and stable expression of the 
shRNAs allows analysis of phenotypes that require pro-
longed times to develop.

Although the utility of pooled shRNA screens has been 
demonstrated, not all requirements for screening parame-
ters have been clearly established. To date, pooled shRNA 
screening protocols have been refined by specifically 
enriching and depleting defined sets of shRNA to gain an 
understanding of the parameters that affect screen repro-
ducibility and power.13 In addition, it has been demonstrated 
that shRNA fold representation at all steps of a pooled 
screening protocol affects the reproducibility of screen rep-
licates.14 The drawback to these approaches is that they 

require a tremendous amount of laboratory work, which 
becomes cost prohibitive when comprehensively testing 
screening parameters.

Statistical power (also known as sensitivity) is the chance 
of avoiding a type II error for an effect of a given strength; 
for example, an experiment with a power of 60% for an 
effect size with a standardized mean difference of 0.50 
(generally considered a medium-sized effect) will have a 
60% chance of correctly detecting that a difference of this 
size between two tested groups is indeed statistically sig-
nificant.15 In general, 80% is considered the threshold for 
adequate power for the chosen effect size.16 Here we 
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performed a limited number of pooled screens in which we 
engineered populations of shRNAs such that the magnitude 
of depletion and enrichment was known. We used this set of 
known data to develop an in silico model for estimating the 
statistical power of each screen. This type of model pro-
vides a rich set of information about a screen’s expected 
performance. For instance, the model can be used to charac-
terize the ability of a screen to identify hits at a given fold 
change, to estimate an appropriate number of replicates, to 
determine the minimum necessary depth of sequencing 
coverage, and to provide some insight as to the reproduc-
ibility of the screen. It can also be used to gauge how effec-
tive a past screen was at detecting true hits as well as 
providing a way to estimate the performance of a future 
screen with similar experimental parameters. Furthermore, 
having a purely in silico model allows researchers to explore 
experimental parameters that may be prohibitively expen-
sive to investigate in the lab.

Materials and Methods

Cell Culture

The human embryonic kidney cell line HEK293T (Dharmacon, 
part of GE Healthcare, Cat. No. HCL4517, Lafayette, CO) 
was propagated and maintained in growth media contain-
ing DMEM high glucose, with sodium pyruvate (GE 
Healthcare, Cat. No. SH3028502, Logan, UT) supple-
mented with 10% fetal bovine serum (Fisher Scientific 
Cat. No. SH30070.03), 100 U/mL penicillin and 100 µg/
mL streptomycin (Fisher Scientific Cat. No. SH30010), 
and 200 mM L-glutamine (GE Healthcare, Cat. No. 
SH30034.01)

Pooled Lentiviral shRNA Screen with Engineered 
Depletion and Enrichment of Subsets of shRNAs

The pooled screen was performed using high-titer lentiviral 
particles from a lentiviral pool consisting of three different 
shRNA pool subsets: the Decode Pooled Human GIPZ 
Kinase Library (Dharmacon, part of GE Healthcare, Cat. 
No. RHS6078), an enrichment set, and a depletion set (with 
titers of 5.8 × 108, 3.6 × 108, and 2.4 × 108 TU/mL, respec-
tively). The kinase library is composed of 4675 shRNA tar-
geting 709 human protein kinases. The enrichment and 
depletion sets are each composed of distinct sets of 480 
shRNAs targeting human genes (see Suppl. Table S1). The 
reference (T0) sample was obtained by transducing 
HEK293T cells with the combined pool in which each 
shRNA from all three subsets was represented equally on 
average by either 100 independent integrations per shRNA 
(Screen 100) or 500 independent integrations per shRNA 
(Screen 500). Low multiplicity of infection (MOI) was used 
(MOI = 0.3) to achieve median single-copy integration of 

each shRNA, and the titer of each pool was used to calcu-
late the amount of particles from each pool to combine such 
that the desired fold representation was achieved. For the 
experimental (T1) sample, HEK293T cells were transduced 
with lentiviral particles from the combined pool in which 
the kinase library was kept unchanged compared with the 
T0 sample (100 or 500 independent integrations per shRNA 
for Screen 100 and Screen 500, respectively), but the 
enriched set was increased and the depleted set was 
decreased compared with the T0 sample by 1.5-, 2-, or 
4-fold, leading to enriched and depleted sets of shRNAs in 
the T1 samples compared with the T0 sample.

We performed the T0 and T1 transductions for both screens 
in biological triplicates using the appropriate amount of 
seeded cells at an optimal density (~180 cells/mm2) in either 
one 100 mm dish (Screen 100) or two 150 mm dishes (Screen 
500). For Screen 100, the lentiviral particles for the T0 and T1 
samples were diluted in 3 mL each of transduction media 
(DMEM media with no serum or antibiotics) and were added 
to HEK293T cells seeded on the previous day at a density of 
1.425 × 106 cells per 100 mm plate. For Screen 500, the len-
tiviral particles for the T0 and T1 samples were diluted in 7.5 
mL of transduction media (DMEM media with no serum or 
antibiotics) and were added to HEK293T cells seeded on the 
previous day at a density of 3.125 × 106 cells per 150 mm 
plate. Both Screen 100 and 500 were then incubated for 4 h at 
37 °C. Growth media were added to the cells, followed by 
additional incubation at 37 °C for 48 h, at which point growth 
media were supplemented with 2.5 µg/mL of puromycin for 
selection. After 96 h of growth under selection, cells were 
lifted using 1 mL of 0.25% Trypsin (GE Healthcare, Cat. No. 
SH3004201). Nuclei were isolated from T0 and T1 samples 
following the manufacturer’s protocols for the DNeasy Blood 
and Tissue kit (Qiagen, Cat. No. 13362, Hilden, Germany) 
and then frozen until ready for genomic DNA (gDNA) 
isolation.

gDNA Isolation

gDNA was isolated from transduced cells using the DNeasy 
Blood and Tissue kit (Qiagen, Cat. No. 13362, Hilden, 
Germany) following the manufacturer’s protocol. Purified 
gDNA was evaluated for quality and yield by spectropho-
tometry using a Nanodrop 1000 (Thermo Scientific, 
Wilmington, DE).

The viral transduction was performed so that there was 
one integration of shRNA per cell and therefore per cell 
genome. The mass of one genome was therefore needed to 
calculate the amount of gDNA required in the PCR reaction 
to maintain the shRNA representation. To calculate the 
mass of the HEK293T cell’s genome, we used the number 
of base pairs (bp) present in the human genome adjusted for 
triploid cells, the average mass of a single base pair, and 
Avogadro’s constant.
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Depending on how many copies of each shRNA were to be 
represented in the purified gDNA, we used the result above 
and the total number of desired shRNA integrations (assum-
ing a single integration per genome) to calculate the amount 
of gDNA PCR input. Multiple PCR reactions were per-
formed such that only 0.825 µg of gDNA was used per 50 
µL of PCR reaction.

For Screen 100, approximately 6000 shRNAs per pool at 
100 copies each is equivalent to 6 × 105 shRNA integra-
tions: (9.9 × 10–12 g/genome) × (6 × 105 genomes) = 5.9 × 
10–6 g or 5.9 µg of gDNA, seven PCR reactions.

For Screen 500, approximately 6000 shRNA per pool at 
500 copies each is equivalent to 3 × 106 shRNA integra-
tions: (9.9 × 10–12 g/genome) × (3 × 106 genomes) = 2.97 × 
10–5 g or 29.7 µg of gDNA, 36 PCR reactions.

Sample Preparation for Next-Generation 
Sequencing

gDNA isolated from biological replicates of T0 and T1 sam-
ples of Screens 100 or 500 was amplified using Decode 
Indexing, PCR, and Sequencing primer kit (Dharmacon, 
part of GE Healthcare, Cat. No. PRM6178) following the 
manufacturer’s instructions. Briefly, multiple PCR reac-
tions were carried out for each T0 and T1 sample (7 and 36 
for Screen 100 and Screen 500, respectively). PCR product 
purification was performed using the GeneJET PCR purifi-
cation kit (Thermo Scientific, Cat. No. K0701). Decode 
PCR-purified products are Illumina sequencing ready but 
were size verified using agarose gel electrophoresis prior to 
sequencing. Decode next-generation sequencing libraries 
were run on the Illumina HiSeq 2000 (Illumina, San Diego, 
CA) at the Biofrontiers Institute (University of Colorado at 
Boulder). Eighteen samples were multiplexed and run in 
two 1 × 50-base read lanes using the Decode Indexing, 
PCR, and Sequencing primer kit (Dharmacon, part of GE 
Healthcare, Cat. No. PRM6178). An average of 54 million 
50-base reads per lane was obtained from the sequencing 
lanes, with sequences provided in FASTQ format.

Next-Generation Sequencing Data Analysis

Next-generation sequencing (NGS) reads were aligned 
according to the DECODE Pooled Bioinformatic Analysis 
Protocol (http://dharmacon.gelifesciences.com/uploaded-
Files/Resources/decode-pooled-bioinfomatic-analysis-pro-
tocol.pdf). The -v 1 option was used when running Bowtie 
(v0.12.7)17 to reduce the number of allowed mismatches. A 

Bowtie reference was created using the 5635 clones 
expected to be in the pool. Any shRNA with more than 50 
perfect alignments was considered present in the NGS 
experiment.

After performing the shRNA screening experiment, it 
was observed that, in the T0 data, mean counts for the two 
480-shRNA sets were higher than that for the 4675-shRNA 
set, presumably because of slight differences in viral titer. 
To correct this artifact, the counts for each shRNA in the 
two 480-shRNA sets were divided by the total number of 
counts for the relevant set and used to create a probability 
distribution of getting a count for any given shRNA in the 
set. The expected total number of counts for the set was 
then scaled by the ratio of the mean counts in the 4675-
shRNA set divided by the mean counts for the relevant set. 
A random subsampling was performed to select this scaled 
number of total counts from the probability distribution. 
This procedure creates counts for the relevant set that have 
the same mean as the 4675-shRNA set and the observed 
experimental relative distribution, which was then appended 
to the unaltered counts from the 4675-shRNA set to create 
the normalized T0 data. Thirty separate normalizations via 
this process were performed to ensure that all reported 
results are typical.

The differential abundance analysis was performed 
using DESeq (v1.10.1), which is an R (v2.15.3) package, 
part of the Bioconductor (v2.11.0) framework.18 DESeq 
uses a model based on the negative binomial distribution to 
estimate the significance of fold change. It also applies the 
Benjamini-Hochberg multiple test correction to the reported 
p values. All shRNAs with multiple-test corrected p values 
of 0.05 or lower were classified as hits.

Screen Power

Screen power is a straightforward metric that assesses a 
screen’s performance, but because true-positives are gener-
ally not known in advance, it usually cannot be computed 
from primary screening results. However, in our engineered 
screens, where enrichment and depletion were manually 
specified for a known set of shRNAs, the exact power was 
easily calculated as

Power
number of enriched or depleted shRNAs with p

number of en
=

≤* .05

rriched or depleted shRNAs
×100.

We were able to perform the same calculation for simulated 
screens, where known enrichments and depletions were 
applied in silico.

Software

The Power Decoder simulator is made up of five primary 
scripts that allow for reproduction of this work as well as 

(1)
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novel user-directed analyses. Normalization of the sequence 
counts was performed with the normalize_counts.py script; 
power analysis of the normalized experimental screen was 
performed with the experiment_power_analysis.py script; 
simulation of the power of a screen, as described above in 
the “Performance” subsection, was performed with the sim-
ulate_power_analysis.py script; work for the “Power as a 
Function of Biological Replicates” subsection was per-
formed with the vary_replicates_pipeline.py script; and 
work for the “Power as a Function of Depth of Sequencing 
Coverage” subsection was performed with the sequence_
sampler_pipeline.py script. These scripts and their support-
ing libraries, as well as sample inputs and outputs with 
precise content specifications, are available through the 
Power Decoder simulator sourceforge.net site. The Power 
Decoder simulator is also distributed with a set of rigorous 
unit tests that help to ensure computational accuracy.

Scripts are written in Python and R and rely on the instal-
lation of Python 2.7.3, Numpy 1.7.1, PyCogent 1.5.3, R 
2.15.3, Bioconductor 2.11.0, and DESeq 1.10.1. The Power 
Decoder simulator simulates the T1 values from the T0 sam-
ple using the negative binomial distribution. When calculat-
ing the negative binomial distribution for T0, one must first 
estimate the size factors and the dispersion. DESeq allows 
for the estimation of these values by allowing the user to 
load counts that correspond to only a single condition (T0), 
whereas DESeq2 requires a minimum of 2 conditions as 
input (T0 and T1); therefore, the authors chose to use DESeq. 
For installation of the Power Decoder simulator on an 
Ubuntu OS (32-bit/64-bit), refer to the INSTALL document 
on the project’s sourceforge.net Web site.

Results

Pooled Screening Experiments with Engineered 
Depletion and Enrichment of shRNAs

We performed pooled screens with known and experimen-
tally relevant magnitudes of shRNA enrichment and deple-
tion to provide data for developing and testing a simulator. 
For screening, the viral particles from three different shRNA 
sets were combined into one lentiviral pool, made up of a 
4675-shRNA set representing the unchanged shRNA popula-
tion, a 480-shRNA set for enrichment, and another distinct 
480-shRNA set for depletion. The reference (T0) sample was 
obtained by transducing HEK293T cells with this lentiviral 
pool (total of 5635 shRNAs) in which the three subsets were 
present at equivalent viral titer such that each shRNA was 
represented equally, on average. For the experimental (T1) 
sample, HEK293T cells were transduced with the lentiviral 
pool in which the unchanged set (4675 shRNAs) was kept at 
the same concentration as the T0 sample, and the enrichment 
set (480 shRNAs) and the depletion set (480 shRNAs) were 
varied by a known magnitude (1.5-fold, 2-fold, or 4-fold). 

The pooled screen was performed in biological triplicates at 
two different shRNA fold representations, corresponding to 
100 or 500 independent integrations per shRNA at the trans-
duction step (termed Screen 100 or Screen 500, respectively). 
The fold enrichment and depletion examined was 2- and 
4-fold for Screen 100 and 1.5- and 2-fold for Screen 500, and 
these different data sets were denoted as Screen 100_2x, 
Screen 100_4x, and so forth (Suppl. Table S2).

Genomic DNA from the pooled screening experiments 
was isolated, amplified, and examined for relative shRNA 
abundance by NGS. The correlation between T0 replicates 
was high, with Pearson correlation coefficients for Screen 
100 and Screen 500 of 0.90 and 0.96, respectively. Although 
every effort was made to transduce all shRNAs at equiva-
lent viral titers in the T0 experiment, data demonstrate that 
there were systematic differences between the counts for 
shRNAs in the two 480-shRNA sets and those in the 4675-
shRNA set (see Suppl. Fig. S1), presumably due to slight 
differences in viral titer. As described in the Methods sec-
tion, we therefore normalized all experimental counts by 
subsampling from the T0 counts of the two 480-shRNA sets 
in such a way as to make the means of their counts the same 
as that for the 4675-shRNA set. Because this normalization 
process is stochastic, all experimental count values pro-
vided throughout are the average of 30 normalizations and 
are presented with accompanying standard deviations (σ).

Using DESeq,19 primary hits were identified from the 
three replicate NGS data as shRNAs that appeared differen-
tially expressed with p* < 0.05 after Benjamini-Hochberg 
multiple test correction.20 These hits were compared to the 
list of 960 manually enriched and depleted shRNAs to iden-
tify true-positive, false-positive, and false-negative shR-
NAs (Suppl. Table S3). False-positives are shRNAs whose 
abundance was not experimentally altered in T1 samples but 
were nonetheless selected as hits in the differential expres-
sion analysis. False-negatives are shRNAs that were experi-
mentally altered but were not identified as hits by the 
analysis.

More true hits were identified in Screen 500_2x than in 
Screen 100_2x, and Screen 500_2x shows a better separa-
tion of the identified depletion and enrichment hits (Fig. 1). 
Of the 960 shRNAs that were manually varied in T1 by two-
fold, only an average of 259 (σ = 4.13) were identified as 
hits in the Screen 100_2x, whereas an average of 877 (σ = 
3.71) were identified as hits in Screen 500_2x (Suppl. 
Table S3). Although the false-positive rate was less than 
1.5% in both screens due to the multiple test correction, the 
false-negative rate decreased substantially from 72.40% (σ 
= 0.45) to 6.74% (σ = 0.39) as shRNA fold representation 
increased, giving a concomitant increase in screen power 
from 27.60% (σ = 0.45) to 93.26% (σ = 0.39) from Screen 
100_2x to Screen 500_2x. Manually increasing the shRNA 
enrichment and depletion magnitude from 2- to 4-fold in 
Screen 100 improved the power from 27.60% (σ = 0.45) to 
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76.10% (σ = 0.55), and manually decreasing the shRNA 
enrichment and depletion from 2- to 1.5-fold in Screen 500 
led to a drop in power from 93.26% (σ = 0.39) to 58.35%  
(σ = 0.92; Suppl. Table S3). This substantiates previous 
findings that strong hits can be identified at a range of 
shRNA fold representations whereas moderate hits may be 
lost at lower shRNA fold representations13,14 and provides 
confidence that these data sets are realistic as the basis of a 
simulator.

It is generally thought that it is easier to detect enriched, 
rather than depleted, hits in pooled shRNA screens because 
the signal-to-noise ratio is higher for enriched hits. To test 
this hypothesis, enriched and depleted hits using three repli-
cates were examined separately, and their screen powers 
were compared (Suppl. Table S4). For screens with high 
overall power (Screen 100_4x and Screen 500_2x), we 
observe a slight trend toward higher power in detecting 
enriched hits than in detecting depleted hits. Screen 100_4x 
had powers of 80.74% (σ = 0.55) and 72.83% (σ = 0.59) for 
enrichment and depletion, respectively, whereas Screen 
500_2x had powers of 96.50% (σ = 0.49) and 90.51% (σ = 
0.42), respectively. However, this trend is not consistent in 
the experiments for the screens in which overall power is 
lower: for example, Screen 100_2x had powers of 21.83% (σ 
= 0.68) for enrichment and 31.59% (σ = 0.35) for depletion.

We have previously shown that maintaining the shRNA 
representation during PCR amplification is important for 
increasing screen data reproducibility.14 We reexamined the 
effect of maintaining the shRNA fold representation during 
PCR amplification on screen power by performing PCR 
amplification of gDNA from Screen 500 such that the 
shRNA representation was reduced to 100-fold at PCR. 
When performing the PCR at suboptimal fold coverage, the 
screen power dropped from 93.26% (σ = 0.39) to 34.79% (σ 
= 0.69) for Screen 500_2x and from 58.35% (σ = 0.92) to 
3.34% (σ = 0.38) for Screen 500_1.5x (Suppl. Table S3). 
These data confirm the importance of maintaining shRNA 
representation during PCR amplification and provide a real-
istic noisy data set for eventual testing of the simulator.

Benefits of Modeling

Performing a controlled hit enrichment and depletion 
experiment in the laboratory to determine the power of a 
particular screen can be prohibitively expensive and time-
consuming. Also, the analysis may not generalize to other 
cell types, assays, and experimental conditions that have 
more or less noise between biological replicates. Instead, a 
preferable approach is to simulate these types of experi-
ments in silico using statistical models. In such simulations, 
different parameters of a screen can easily be varied to 
determine what level of power to expect in future biological 
screens, as well as in screens that have already been 
performed.

To simulate pooled screening NGS data, it is necessary 
to model (1) the true number of shRNA counts in T0 and T1 
and (2) the biological noise between replicates.

Model of T0 Counts

Several options were considered for modeling shRNA 
counts. A normal distribution describes continuous data 
(such as fluorescence intensity data from microarrays) and 
is therefore inappropriate for modeling discretely distrib-
uted NGS measurements. A Poisson distribution describes a 
discrete random variable (such as sequencing counts) and 
may be adequate for modeling NGS technical replicates, 
but it has been shown to be insufficient for modeling bio-
logical replicates as the Poisson model’s single parameter 
(which determines both mean and variance) cannot account 
for the additional biological noise.19

The negative binomial distribution (NBD) has been suc-
cessfully used to model RNA sequencing data,19 which, like 
pooled screening NGS abundance data, are discrete and have 
biological noise. Although this distribution is often thought 
of as describing the number of failures before the rth success 
in a sequence of independent binomial trials, it can equally 
validly be defined as a Poisson-Gamma mixture model. In 
this conceptualization, the negative binomial distribution is 

Figure 1. Differential enrichment and 
depletion of short hairpin RNAs (shRNAs) 
in engineered screens. MA plots of 
representative examples of normalized data 
from experimental shRNA pooled screens 
with engineered twofold enrichment and 
depletion of shRNAs in which transductions 
were performed at (A) 100 and (B) 500 
independent shRNA integrations on 
average. The shRNAs with significantly (p* 
≤ 0.05) higher and lower abundance in T1 in 
the next-generation sequencing count data 
are in red and blue, respectively. Power 
values listed are mean ± standard deviation 
over 30 normalizations.
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in fact a Poisson distribution whose mean parameter is itself 
a random variable drawn from a Gamma distribution, creat-
ing a distribution whose variance is greater than its mean and 
thus overcoming the primary limitation of the canonical 
Poisson distribution for NGS data. Under this interpretation, 
the NBD may be described in terms of its mean µ and vari-
ance σ2, which can be interconverted from the r (number of 
successes) and p (probability of success) parameters used 
under the more common definition.21 The variance equals  
µ + (1/r)* µ2, where r is now interpreted as a dispersion mea-
sure that may take on noninteger values. A negative binomial 
distribution can therefore be uniquely defined by its mean 
and dispersion parameters.

To determine whether a negative binomial distribution 
can accurately model shRNA counts, we used data from T0, 
in which all 5635 shRNAs are represented equally on aver-
age. For both Screen 100_2x and Screen 500_2x, mean and 
dispersion parameters for a negative binomial distribution 
were obtained from the normalized means of the experi-
mentally determined counts for each shRNA, and simulated 
shRNA count data were then generated by sampling from 
the NBD with these experimentally determined parameters. 
We generated Gaussian kernel density estimates (Fig. 2A, 
C), which can be used to estimate continuous probability 
density functions of discrete random variables such as 

count, as well as the related cumulative distributions (Fig. 
2B, D), which show the cumulative probability that a ran-
dom variable such as count will have a value less than or 
equal to any particular amount. Comparisons of these visu-
alizations demonstrate the similarity between actual and 
estimated distributions for Screen 100_2x and Screen 
500_2x experiments, respectively. The negative binomial 
models capture the shape of the actual data, although, as 
expected with simulations, they are not perfect mimics of 
the experimental data sets (being more smoothly distributed 
and slightly more leftward-skewed). Given the extremely 
large sample sizes in each data set (from ~3,000,000 up to 
~9,000,000 reads), statistical evaluations of whether two 
distributions are similar will be able to detect even very 
small (and possibly inconsequential) differences as statisti-
cally significant.22 We performed a Kolmogorov-Smirnov 
test on each screen/model pair, and, as anticipated, received 
highly significant p values for both Screen 100_2x and 
Screen 500_2x, indicating that the modeled and experimen-
tal distributions are perceptibly different. However, the D 
statistic, which measures the actual magnitude of the differ-
ence between the distributions and ranges from 0 when dis-
tributions are the same to 1 when they are completely 
dissimilar, averaged less than 0.09 for both screens, with 
standard deviations for both of less than 0.007 over 900 

Figure 2. Modeled next-generation 
sequencing (NGS) screen data 
compared with actual experimental 
NGS screen data. Kernel density 
estimate plots for the distributions 
of NGS counts for representative 
examples of normalized actual 
(red) and simulated (blue) T0 data 
generated by fitting parameters to 
the negative binomial distribution for 
(A) Screen 100_2x and (C) Screen 
500_2x. Cumulative distributions 
of the same actual and simulated T0 
count distributions for (B) Screen 
100_2x and (D) Screen 500_2x.
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separate simulations. This demonstrates that the difference 
between the models and experimental data, although detect-
able, is small; for comparison, the most closely correlated 
replicate pairs had average D statistics (across 30 normal-
izations) of 0.0363 and 0.0692 for Screen 100_2x and 
Screen 500_2x. Simulated counts can therefore reasonably 
be used to represent “true” shRNA counts and employed as 
the basis on which to simulate the biological noise of 
replicates.

Model of Biological Replicates

A negative binomial distribution can also be used to gener-
ate, for each shRNA, a model of the distribution of noisy 
count measurements associated with it. This is achieved 
using a strategy similar to that employed for RNA sequenc-
ing data,19 which leverages the mean-variance relationship 
(or mean-dispersion relationship, in the case of the negative 
binomial distribution) by performing a local regression on 
the empirical data from several replicates (Suppl. Fig. S2). 
This regression produces a function f iµ( ) , which gives 
the dispersion parameter of an NBD based on that NBD’s 
mean, mi.

For each shRNA i, we then create an NBD whose mean 
is the true number of counts for that shRNA given by the 
NBD modeling T0 data, as developed above, and whose dis-
persion parameter is given by f iµ( ) . This distribution 
models the spread in measured replicate count values for an 
shRNA with a given true count value. By sampling once 
from the NBD distribution for each shRNA in the screen, 
we can create one realistically “noisy” set of count data; we 
can sample additional times to produce additional repli-
cates. Comparing the noise between experimental replicates 
and modeled replicates of Screen 100_2x and Screen 
500_2x results in identical Pearson correlation coefficients 
(r), demonstrating that the models closely mimic actual data 
(Suppl. Fig. S3).

Model of T1 Counts

The experimental condition, T1, shows a difference in the 
relative abundance of shRNA constructs in a sample that 
have undergone a change, either due to the passage of time 
or to treatment. As in our engineered experimental screen, 
we here apply a strategy of enriching and depleting 20% of 
the shRNAs in modeled T0 data to generate known T1 true 
counts.

Twenty percent of the shRNAs from our modeled T0 data 
were randomly selected, and a fold change of 1.5, 2, or 4 
was applied to them. As in the actual pooled shRNA screen 
described above, 10% of the modeled shRNA was depleted 
and 10% was enriched by exactly the chosen fold change. 
This process produced simulated data representing the true 
T1 counts for each shRNA.

Noisy replicate T1 count data can be created for each 
shRNA from an NBD defined as

NB T fold change dispersion ftµ µ= ( ) = ( )( )0 * _ , ,

where T0
t is the shRNA’s simulated true counts at time zero 

and fold change is 1.5, 2, or 4 for the 10% of the shRNAs 
that are enriched, 2/3, 

1/2, or 1/4 for the 10% that are depleted, 
and 1 for the remainder. As in T0, we sample once from the 
NBD distribution for each shRNA in the screen to create a 
simulated data set, repeating this process as many times as 
we like to create noisy count data for the desired number of 
replicates.

Software Development

We developed these techniques into a software tool called 
the Power Decoder simulator. The Power Decoder simula-
tor is a suite of scripts written in Python and R and is avail-
able under the GNU General Public License v3.0 at https://
sourceforge.net/projects/powerdecoder/. These command-
line tools take user inputs specifying parameters such as 
experimental T0 or pilot data on which to base simulation 
models and the number of simulations to perform. 
Automatically generated outputs include plots such as those 
shown in Figures 2 and 3 (including Suppl. Figs. S1–S3) 
as well as comma-separated text files containing the data on 
which these figures are based.

Performance

Knowing which shRNAs were enriched or depleted by a 
certain fold change, we are able to compute the exact power 
of each simulated screen after using DESeq19 to identify 
differentially expressed shRNAs. To determine whether 
these powers correlated well with actual powers calculated 
for the engineered screen, we applied the Monte Carlo 
method: for each screen, we used the Power Decoder simu-
lator to generate 900 simulated screens by performing 30 
normalizations on each experimental data set and then 30 
simulations based on each normalization. Each simulated 
screen included three replicates. Plots of log2 fold change in 
counts versus average counts (commonly referred to as MA 
plots) for representative simulations of Screen 100_2x and 
Screen 500_2x are shown in Figure 3; they exhibit the same 
trends as the experimental data (Fig. 1), with lower noise 
and higher power as the shRNA fold representation 
increases, again demonstrating this approach’s ability to 
model experimental data. A comparison of the actual and 
modeled data for all experiments (Fig. 4; Table 1) shows 
that the simulated powers correlate closely with the true, 
experimentally determined powers. Because the simulated 
percentage powers are slightly larger than the true powers, 

(2)
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with the overestimates having a mean of 6.16 and standard 
deviation of 4.12 presumably due to the slight differences 
between the modeled and true count distributions discussed 
above, they can usefully be treated as a realistic upper limit 
on possible sensitivity. Notably, the simulator predictions 
are equally reliable for Screen 500_1.5xPCR_100 and 
Screen 500_2xPCR_100, which have higher noise and 
lower power than the analogous screens with optimal PCR 
amplification; this demonstrates that the simulator is rele-
vant even for screens that are very noisy.

We used the simulator to determine whether subtle bio-
logical effects can be observed at smaller fold changes 
because we observed that shRNA fold change has a strong 
effect on experimental power. Supplemental Figure S4 
shows the power as a function of fold change ranging from 
1.2 to 2.5 for Screen 500 with three replicates. From this 
simulation based on actual T0 data, it shows that for this 
specific biological screen and experimental parameters, the 
fold changes of less than 1.5 contain fewer true-positive 
hits; therefore, experiments must be planned accordingly.

Power as a Function of Biological Replicates

In the analysis discussed above, the Power Decoder simula-
tor was used to create two or three replicates, in order to 
parallel what was done in the laboratory. Because the soft-
ware can generate any number of replicates without mean-
ingful cost or time considerations, we next used it to explore 
how the number of replicates affects the power of a screen.

Monte Carlo simulations were generated using the Power 
Decoder simulator for Screen 100_2x over a range of 2 to 10 
replicates, and the power for each model was compared with 
actual data acquired using only two replicates for Screen 
500_2x (Fig. 5A). Surprisingly, even 10 replicates of Screen 
100_2x give a power that is still lower (~82%) than that from 
two replicates of Screen 500_2x (~83%). This strongly dem-
onstrates the importance of adequate shRNA fold coverage to 
decrease noise and increase screening power. As it is more 

labor intensive to perform more replicates than to increase fold 
coverage, it is clear that increasing shRNA fold coverage is the 
preferred method to reduce experimental noise. Drawing this 
conclusion from laboratory data would have been costly and 
time-consuming, further illustrating the usefulness of the 
Power Decoder simulator software.

Power as a Function of Depth of Sequencing 
Coverage

Another important experimental factor is the sequencing cov-
erage (defined as total number of read counts divided by the 
size of the pool) required to obtain maximum power. Even an 
experiment with very low biological noise can have poor 
power if the number of sequencing reads obtained is too low. 
Enriched and depleted shRNAs in the Screen 500_1.5x experi-
ment had only a moderate 1.5-fold modulation, which might 
easily be masked by inadequate sequence coverage. We there-
fore modeled this experiment by dividing the actual number of 
counts for each shRNA by the total number of counts in order 
to derive a multinomial distribution for a single trial (otherwise 
known as a categorical distribution) giving the probabilities 
that a single read will find each individual shRNA. We then 
sampled this distribution to produce Monte Carlo–simulated 
per-shRNA counts at varying total counts: a single sampling 
from this distribution represents a single read, so to simulate, 
for example, 1 million total reads, 1 million samplings would 
be taken. Simulations of the total number of reads were per-
formed 900 times for each investigated coverage level, and 
then differential expression analyses were performed on the 
simulated reads to determine the power of the screen at these 
coverage levels. Figure 5B demonstrates that power for the 
Screen 500_1.5x experiment increases rapidly as a function of 
sequencing coverage at low coverage levels but begins to pla-
teau at about 75% at approximately 200 sequences per shRNA. 
This suggests that adequate coverage is both critical for achiev-
ing acceptable power in detecting moderate hits and also not 
difficult to achieve.

Figure 3. Differential enrichment 
and depletion of short hairpin RNAs 
(shRNAs) in simulated screens. MA 
plots for two representative examples 
of simulated data from shRNA 
pooled screens with in silico twofold 
enrichment and depletion of shRNAs 
based on (A) Screen 100_2x and (B) 
Screen 500_2x. The shRNAs with 
significantly (p* ≤ 0.05) higher and 
lower abundance in T1 in the simulated 
next-generation sequencing count data 
are in red and blue, respectively. Power 
values listed are mean ± standard 
deviation over 900 simulations.
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Discussion

The ability to determine statistically significant changes 
between relative quantities of a particular RNA/DNA 
sequence in a sample is an important tool in molecular biol-
ogy and in pooled shRNA screening experiments in particu-
lar. In previous work,14 we showed that optimizing PCR 

conditions and having a high shRNA fold representation are 
crucial in obtaining highly reproducible data from pooled 
shRNA screening experiments. In that work, the reproduc-
ibility of the data was used to estimate the relative power of a 
screen. Here, we engineered an experiment that gave us a 
better estimate of the screen’s power because we knew which 
shRNAs were truly enriched, depleted, or had no change. The 
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Table 1. Comparison of Actual and Simulated Screen Data Analysis.

Actual  
Power (%)

Actual  
Specificity (%)

Simulated  
Power (%)

Simulated  
Specificity (%)

Experiment
Number of 
Replicates Average σ Average σ Average σ Average σ

Screen 100_2x 2 12.93 0.34 99.22 0.03 15.24 1.72 99.82 0.07
Screen 100_2x 3 27.60 0.45 98.95 0.01 30.43 1.97 99.66 0.10
Screen 100_4x 2 65.49 0.60 98.50 0.03 71.77 1.67 99.27 0.14
Screen 100_4x 3 76.10 0.55 98.68 0.01 84.37 1.25 99.15 0.15
Screen 500_1.5xPCR_100 2  0.94 0.17 99.62 0.03  4.21 1.16 99.95 0.04
Screen 500_1.5xPCR_100 3  3.34 0.38 99.78 0.02 11.19 1.60 99.87 0.06
Screen 500_2xPCR_100 2 33.73 0.46 98.82 0.02 38.43 2.15 99.58 0.11
Screen 500_2xPCR_100 3 34.79 0.69 99.16 0.02 50.10 1.93 99.46 0.12
Screen 500_1.5x 2 28.96 0.83 99.31 0.03 41.18 2.16 99.58 0.11
Screen 500_1.5x 3 58.35 0.92 98.95 0.02 63.19 1.75 99.33 0.14
Screen 500_2x 2 83.45 0.60 98.73 0.02 87.24 1.09 99.13 0.15
Screen 500_2x 3 93.26 0.39 98.60 0.01 95.52 0.67 99.00 0.16

Figure 4. Simulated and actual 
powers for both high- and low-
noise screens. The power of each 
experiment with (A) two and (B) 
three replicates for actual (red) and 
simulated (blue) data. Error bars 
are the standard deviations of 30 
normalizations for actual experiments 
and 900 simulations for simulated 
experiments. (C) The correlation 
between simulated and actual power 
for three-replicate experiments.
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engineered experiment further demonstrated the importance 
of shRNA fold coverage and PCR optimization in obtaining 
high power.

However, engineered experiments are an impractical 
approach for regularly estimating screen power because of 
the significant effort required to perform them. Such limita-
tions have previously been addressed for arrayed screens 
through the use of simulated data.1 We therefore developed 
the Power Decoder simulator, an open-source software tool 
for simulating shRNA pooled screening experiments in 
silico. This tool uses an initial data set, such as a pilot or T0 
experiment, to derive negative binomial distribution models 
of both true mean counts across all shRNAs in a single rep-
licate and actual, noisy counts for each single shRNA across 
replicates. The Power Decoder simulator applies these 
models to simulate realistic screening data under user-spec-
ified true hit and noise assumptions; the simulated data can 
then be analyzed for “differential expression” with existing 
tools such as DESeq19 to estimate the actual statistical 
power for real screens with similar hit and noise profiles.

This strategy is similar to previous work23 wherein a nega-
tive binomial distribution was used to model RNA-sequencing 
data for differential expression. Although estimating the power 
of pooled shRNA screens has been attempted before,13 previ-
ous efforts have employed Gaussian distributions. Gaussians 
are suboptimal for modeling discrete data such as NGS align-
ments because they are fairly accurate at high count means but 
not at the low count means involved in differential expression 
analysis, in which negative binomial distributions have been 
shown to be much more realistic.19

We applied the Power Decoder simulator to simulate 
screens with various hit fold changes, PCR conditions, and 
shRNA fold coverages. The simulated data sets, although 
not perfect models of the experimental ones, showed simi-
lar distributions to the actual data (Fig. 2; Suppl. Fig. S3) 
and led to power estimates that were realistic upper limits 
on those calculated from laboratory experiments (Fig. 4), 
thus validating their usefulness. We then extended our sim-
ulations to predict the power of a pooled shRNA screen at 
various numbers of biological replicates and sequencing 
coverages. We showed that shRNA fold coverage is much 
more influential than the number of replicates in obtaining 
a high power and that power increases with sequencing cov-
erage until plateauing at approximately 200 sequences per 
shRNA for even modest 1.5-fold change hits.

These investigations demonstrate how the Power Decoder 
simulator can help scientists plan future screens and easily 
investigate the likely effects of various experimental factors in 
silico, saving both time and money. Data from existing screens 
can also be analyzed retrospectively to evaluate their power 
and thus estimate the completeness of their resulting hit lists. In 
addition, the Power Decoder simulator can be used to stream-
line optimization of novel pooled screening technologies such 
as gene knockout screens employing the new clustered regu-
larly interspaced short palindrome repeats (CRISPR)–
associated nuclease Cas9.24–26 The ability to do fast, easy, 
accurate power analyses before screening will enable research-
ers to perform adequately powered experiments, thereby deliv-
ering reliable answers to crucial biological questions.
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Figure 5. (A) Power as a function of replicate number. Box 
plots represent powers derived from DESeq analysis of 900 
simulated next-generation sequencing (NGS) experiments of 
Screen 100_2x per replicate level. For comparison, the actual 
power of the Screen 500_2x using two biological replicates is 
also plotted. (B) Power as a function of sequencing coverage. 
Box plots represent powers derived from DESeq analysis of 900 
simulated NGS experiments per coverage. This was done at 
increments of 100,000 counts per simulation or ~18 sequences 
per shRNA.
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