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Abstract: Localization is an apparent aspect of a wireless sensor network, which is the focus of
much interesting research. One of the severe conditions that needs to be taken into consideration
is localizing a mobile target through a dispersed sensor network in the presence of physical
barrier attacks. These attacks confuse the localization process and cause location estimation errors.
Range-based methods, like the received signal strength indication (RSSI), face the major influence
of this kind of attack. This paper proposes a solution based on a combination of multi-frequency
multi-power localization (C-MFMPL) and step function multi-frequency multi-power localization
(SF-MFMPL), including the fingerprint matching technique and lateration, to provide a robust and
accurate localization technique. In addition, this paper proposes a grid coloring algorithm to detect
the signal hole map in the network, which refers to the attack-prone regions, in order to carry out
corrective actions. The simulation results show the enhancement and robustness of RSS localization
performance in the face of log normal shadow fading effects, besides the presence of physical barrier
attacks, through detecting, filtering and eliminating the effect of these attacks.

Keywords: average localization error; range-based received signal strength indicator (RSSI);
log-normal shadow fading; physical barrier attacks
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1. Introduction

Wireless sensor networks serve as the link between the digital and the physical worlds.
Forthcoming wireless network sensors are expected to be deployed in almost every sphere of the
human activity system and used in a manner not yet envisaged. Thus, the need to mass produce
low-cost integrated sensor nodes that will enhance the use of technology for bridging a myriad
of domains cannot be overemphasized. Some of the few areas where future sensor networks can
be deployed include earthquake monitoring, environmental monitoring, factory automation, home
and office controls, inventory monitoring, medicine, etc. The increasing prevalence of wireless
networks has not only increased the possibilities of information integration into applications, but
has also influenced our interactions with others, in study and work. A typical example of such an
information source is location information, which is of great importance in many applications. The
term localization is the ability to determine the physical position of a static or mobile sensor node or
wireless device. The use of a wireless device for tracking locations is a growing trend that holds great
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prospects for a wide range of applications, particularly for those employed in physical security, asset
tracking, geographic routing and workflow management [1].

The increase in the use of these wireless devices by both people and objects has brought to light
the importance of precision in node positioning in sensor and wireless networks. This is because
of the important input role played by sensor location in various high-level networking tasks and
applications. For example, nowadays, received signal strength (RSS) measurement hardware is
included in all modern radio chip sets, so as to determine the transmitted packets. This comes
at a very high cost and deployment benefit when the existing communication network’s RSS
infrastructure is re-used for localization. The typical pattern for most RSS-based localization strategies
is a transmitter or receiver that takes measurements of the RSS of a number of landmarks at known
positions, also known as the device. The device is then positioned using a fingerprint method or the
resulting RSS values [2].

Despite the wide variety of algorithmic strategies, such as machine learning approaches and
minimization of least squares methods, proposed by different studies, the issue of multipath effects
still remains a key challenge in the domain of wireless localization based on RSS. Some of the
challenges range from signal blocking or shadowing, waves bouncing off an object or reflection,
waves spreading as a result of obstacles or diffraction and waves bending as they pass through
different mediums or refraction. All of these impact negatively on the RSS, thereby making it a tedious
task to accurately determine their effects in complex indoor environments. The typical localization
error averages between 10 ft to 30 ft or more for maximum errors. Furthermore, there is a tendency
for the frequency and power level to negatively influence the localization performance as a result
of the wireless signal propagation. The distance at which the signal can travel is dependent on the
power level of the signal propagation, while the frequency of the signal transmission determines how
the environment can influence the mode of the propagated signal [3].

Sensor nodes, unlike traditional networks, usually operate in attack-prone areas, thus increasing
physical attack risks, which may lead to the modification of their underlying code or cryptographic
material exposure. The complexity of this problem is evidenced by the inability to produce
tamper-resistant sensor nodes because of the marginal cost effect of the hardware. This makes sensor
nodes more vulnerable to physical attack under such environments compared to a typical personal
computer located in a secure place and subjected to individual attacks from its network.

As localization is becoming popular, numerous attacks on the localization process are also on the
rise. These attacks confuse the localization process and cause location estimation errors. Therefore,
the ability to have efficient wireless sensor network localization accuracy in the presence of physical
signal strength attacks is a challenging and extreme undertaking.

Several recent researchers were unable to accomplish a highly secured localization performance
without utilizing the cryptographic technique, which requires a complex hardware design. While
the main important task of the new proposed solution based on the multi-frequency multi-power
localization (MFMPL) algorithm is to detect, eliminate and overcome the influence of these
physical attacks (barrier attacks) under the shadow fading propagation system model without
using cryptographic techniques, the new proposed solution is expected to achieve an accurate and
effective performance.

2. Background

There are two basic ways of calculating the distance between the transmitter and the receiver
in order to obtain the RSS information. One way is to convert the signal strength (SS) to a distance
measurement based on the signal propagation model and then to use geometry to calculate the target
nodes’ locations based on prior knowledge of the locations of the beacon nodes. This method is
referred to as triangulation localization. The other way converts the RSS values based on the signal
propagation behavior and the building geometry information into distance values; a method referred
to as fingerprinting localization [4].
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There are two basic categories of RSS-based localization methods, namely fingerprint-based
methods and model-based methods. For fingerprint-based methods, the device-carrying individual
needs to build a radio map at every possible location before the localization of the real-time operation,
a method known as RSS profiling. The time of map building, when the links between all anchor nodes
and the radio device in a network are recorded, is referred to as the offline training period. The new
RSS obtained from the measurements from all of the links is then compared against the radio map,
so as to select the RSS location with the closest matching as the localization result, a process referred
to as the online localization period. The major limitation of the fingerprint-based method is that an
extensive effort is expended in the radio map building during the training period [4].

Model-based algorithms [5] utilize a channel model with a statistical standard to produce a
purposeful relationship among the RSS and distance; exploiting this purposeful relationship, the
position of the sensor node is calculable from the RSS measurement from each anchor through the
in-range anchor distance estimation and, after that, utilizing the lateration techniques in order to
determine the sensor node position coordinates. Some relevant studies applied statistical models to
produce a complete radio map for the performance of the localization, during which the position of
the sensor node is evaluated straightforwardly from the RSS measurement.

In most cases of the statistical models, the relationship between the outdoor localized
environment and the RSS is extremely complicated to handle, and the shadow fading has been
assumed to be mutually independent, despite that environmental obstacles cause similar shadowing
impacts on numerous links that pass through these obstacles. On the other side, RSS fingerprint
strategies do not quite work out for the assumptions of any previous relationship between the location
and RSS; however, the training stage extends important time and effort. To some degree, the training
phase can be reduced by means of spatial smoothing. Yet, this is possible only for the distances of
the correlated RSS. Other researchers have additionally recommended supplementing some of the
estimation utilizing anticipated RSS by utilizing the channel models [6].

In summary, model-based approaches necessitate minimum training effort; however, these
techniques depend vigorously on the previous information of the connection between location and
RSS. On the other hand, fingerprinting approaches are not awareof any previous information about
the connection between the location and RSS, yet necessitate significant time and training effort.

2.1. Analysis of the Range-Based Received Signal Strength Indicator Technique

The basic concepts of the RSSI ranging depict the relationship among the transmitted and
received power for the wireless signals with respect to the distance of the sensor nodes. The
mathematical Equation (1) indicates this relationship.

Pr = Pt ∗ (
1
d
)α (1)

where: Pr: the wireless signal received power. Pt: the wireless signal transmitted power. d: the
distance between the sending and receiving nodes. α: the transmission parameter value depends on
the propagation environment.

By taking 10-times the logarithm of the two sides of Equation (1), then Equation (1) is changed
to Equation (2).

10 log Pr = 10 log Pt − 10α log d (2)

Thus, 10 log p is the power expression converted to dBm. Equation (2) can be expressed
according to Equation (3).

Pr(dB) = A− 10α log d (3)

From Equation (3), the values of parameter A and α describe the relationship between the
received signal strength and the distance of the signal transmission [7,8].
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The RSSI propagation models currently used in wireless sensor networks include log-normal
shadow models and free-space models. Log-normal shadow models are common propagation
models appropriate for both indoor and outdoor environments and best suited for wireless sensor
network applications, due to their adaptability to different environmental configurations. Free-space
models, on the other hand, have the following advantages: (1) they have a much wider transmission
distance than their carrier wavelength α and antenna size; (2) they do not have the problem of
obstacles between their receivers and transmitters.

Assume the wireless transmission signal power is the sensor node received signal power situated
at a distance of d; this can be dictated according to Equations (4) and (5).

Pr(d) =
PtGtGrλ2

(4π)2d2L
(4)

PL(dB) = 10 log
Pt

Pr
= −10 log[

λ2

(4π)2d2 ] (5)

In Equation (4), Gt and Gr are the antenna gain, and L is the system loss parameter, which has
nothing to do with the transmission. Gr = 1, Gt = 1 and L = 1 are usually taken. Equation (5) is the
signal attenuation formula using a logarithmic expression. Received power and the distance are twice
the power attenuation in Equation (5). Log-normal shadow fading is the most general propagation
model. It is suitable for indoor and outdoor environments. The model gives various parameters,
which can be designed for different environments, as described in Equation (6).

PL(d)(dB) = PL(d) + Xσ = PL(do) + 10 log α(
d
do

) + Xσ (6)

The parameter do in Equation (6) is the near-Earth reference distance, which depends on the
experiential value; the parameter α is a path loss index, which depends on a specific propagation
environment, and its value will become larger when there are obstacles; the parameter Xσ is a
zero-mean Gaussian random variable. The parameters do, α and σ describe the path loss model,
which has a specific receiving and sending distance. The model can be used for general wireless
systems design and analysis [9,10]. Synthesizing the above two kinds of propagation models, the
log-normal shadow model is most suitable for wireless sensor network applications, because of its
universal nature and the ability to be configured according to the environments.

2.2. Frequency and Power Subjected Path Loss Propagation Model

The propagation model that describes the path loss can be shown as Equation (7) [10]:

P(d) = P(do)− 10α log
d
do

+ Xσ (7)

where P(d) refers to the received power of the wireless sensor at an exact location d to the landmark,
P(do) is the power loss in a free space and is usually considered as one meter, α refers to the path loss
exponent, while Xσ refers to the effect of the shadowing parameter with a variance of Xσ, as can be
found in Equation (8).

Xσ ∼ N(0, σ2) (8)

The transmission power P(do) more often relies on the frequency utilized transmitting packets.
Along these lines, P(do) can be considered as a transmission frequency-dependent parameter [11].
Furthermore, the path loss exponent portrays the rate of RSS changing with the distance, which has a

30548



Sensors 2015, 15, 30545–30570

tendency to proliferate when the device works on a higher transmission frequency. This demonstrates
that the path loss exponent is relative to the transmission frequency, as shown in Equation (9) [3].

α ∝ f(MHz) (9)

At last, the shadowing Xσ is the impact that causes the received signal power changes because
of the obstructions in the propagation paths. It has been indicated experimentally that the shadowing
is subject to the transmitted frequency and power level [12].

In most cases of the RSSI-related ranging schemes, the signal parameters of the propagation
model are usually computed by the online or offline RSSI estimations between the reference nodes
(beacons). Obviously, the online RSSI measurements expend computation and communication
resources. Nonetheless, in practical environments, the signal propagation model is quite difficult
to determine [13]. If the standard deviation and the path loss exponent are determined precisely in
the network environment, at that point, the RSSI ranging is quite perfect [14].

Moreover, the RSS readings (fingerprints) are created at different locations according to the
random sensor node deployment; ((xj, yj,) sj) with (xj,yj) refers to the location j where the RSS reading
has been gathered as in Equation (10).

Sj = (SL1
1j , ....., S

Lq
1j , SL1

ij , ....., S
Lq
ij , .....SL1

nj , ....., S
Lq
nj ) (10)

This example indicates the RSS reading for n landmark and lq dimension. At each landmark, the
frequency and power level combination has been defined as a dimension. We take note that certain
localization schemes need preparation information (training data) to create signal maps at the offline
phase, which is utilized later for the online localization process. We utilize the fingerprints gathered
from the random sensor node deployment to frame the training data. In view of the propagation
model of the path loss, the RSS measurements’ probability density function gathered from
(N = 1,2, . . . N) landmarks autonomously can be composed as shown in Equation (11).

f(x,y)(P) =
N

∏
i=1

10
log 10

√
2πσiPi

exp

[
−Pi

8
(log

d2
i

d̂2
i

)2

]
(11)

where Pi = [ p1. . . pN] is the received power vectors for N landmark. Additionally:

Pi =

(
10αi

σi log 10

)2
(12)

d̂i = do

(
P(do)

Pi

) 1
αi

(13)

(x,y) is the estimated position of the unknown wireless sensor node that can be determined from the
RSS measurements. Therefore, the parameter Pi consists of the path loss exponent and the variety of
the shadowing, which is subject to and dependent on the frequency and power level transmission at
each landmark.

3. Attacks Affecting Localization

Although traditional methods of cryptography, e.g., authentication, can be used to protect
against conventional attacks from adversaries, like false message injections, non-cryptographic
attacks are, however, completely orthogonal and have the ability to corrupt even the measurement
processes. Unfortunately, traditional security services are incapable of militating against
non-cryptographic attacks, thus the need to investigate the impact of these attacks on localization
algorithms with the aim of proposing methods that can be effectively used to detect and
eliminate such threats from the network. Despite recent advances in this domain of securing
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localization [15–18], there is yet to be any study in the area of robustness of RSS-based localization
algorithm generation against physical attacks. This evaluative study is therefore significant in its
contribution to wireless sensor network designs, particularly in the area of protocol decisions drivers,
which will enable engineers to make better informed decisions about whether there is a need for a
more complicated security localization algorithm.

The first step in addressing these security concerns is to look at this from the adversary’s
perspective, so as to better preempt the attacks. Before a localization system’s signal strength can
be attacked, the RSS readings must first be amplified or attenuated. This is achievable by attacking
the transmitting device, such as using foil to cover the 802.11 card or by attacking the landmarks.
Most attenuation attacks are carried out by simply placing a material between the sensors and the
landmarks [19]. An adversary can also attack by amplifying or attenuating the signal strength of the
RSS readings at the transmitter or receiver. A powerful attenuation loss can be achieved through the
use of advanced materials, like RF-absorptive carbon fabric. The work in [20,21] presents a detailed
study of propagation loss through common materials. Finally, based on the findings of this study,
the removal of a barrier, such as a door, can be used to increase amplification through antenna-based
methods of the corresponding material.

4. Related Work

A localization scheme for wireless sensor networks has been presented in [22]. This approach
requires sensors to identify their location based on beacon information transmitted by locators. Each
transmitted beacon contains the locator’s coordinates and the angles of the antenna boundary lines
with respect to a common global axis. The communication between locators of sensors is encrypted
and secure. This approach needs specialized antennae and will increase the cost of localization.

A related range-independent localization scheme, HiRLoc, has been proposed [23]. Beacon
transmission is secured by using computationally-efficient cryptographic primitives in tandem with
the physical medium constraints to provide localization. HiRLoc requires a directional antenna for
localization, increasing the cost for localization.

The secure verification of device position scheme [24], which is based on verifiable
multilateration and the measurement of radio propagation time, enhances conventional
multilateration with distance estimation by verifying node positions using a set of base stations. This
method requires complex time synchronization logic and extra hardware for its implementation.

The detection of malicious nodes has also received some attention, with the TSSLproposed as
a solution [25]. Malicious nodes are detected in a step-wise fashion, beginning with anchor nodes
collaborating by checking their coordinates, identities and time of sending information. In this
proposed solution, the WSN is partitioned into sub-areas of different trust grades by using a mesh
generation algorithm to segregate malicious nodes; besides, if signal strength attacks are launched,
the distance estimation will be erroneous, and the error is cascaded to all successive stages.

A novel ratio-based signal strength metric (RSM) [26] has been proposed as a new solution
for wireless sensor network localization. This metric directly maps information about distance to
a set of landmarks with the goal to achieve robust localization in spite of attacks. However this
method assumes that attacks on all of the landmarks are uniform; with variation in the attacks on the
landmarks, their method performs poorly.

The improvement of localization accuracy has been proposed in [27] through applying multiple
frequencies and power transmissions. By using deviations of RSS readings and residuals, the
algorithm forms high quality RSS fingerprints. Although this method improved the localization
accuracy, it, however, did not consider the effect of the attacks.

A scheme to ensure secure localization in the presence of cheating beacon nodes has been
proposed in [28]. This method is based on known error bounds. Unfortunately, the problem with
this solution is that it is built on fixing the location of beacons based on the distribution of nodes.
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A proposed approach concerned with a secure location verification in [29] has been reported
to be well suited to a service-restricted region. This algorithm works by considering nodes whose
signal strength is incompatible with the in-region as adversaries. However, this requires deployment
knowledge of all sensors, and this approach cannot be scaled to bigger networks.

5. Proposed Solution

We propose a solution based on multi-frequency multi-power transmission through using two
techniques: a step function multi-frequency multi-power localization (SF-MFMPL) and a combination
of multi-frequency multi-power localization (C-MFMPL). In order to mitigate the influence of shadow
fading, the averaging of all RSS over all of the transmitted frequencies will be performed. In our
solution, the anchor or access point (AP) nodes will transmit signals in multi-frequencies at multiple
power levels. Sensor nodes receive these signals and construct the average RSS fingerprint from them.
All of the sensors are already coded with the knowledge of the expected frequencies and the power
level from the AP. By observing the RSS fingerprint that is expected, the sensor will be able to find
if there is a barrier attenuating or degrading the signal. The sensor will reject the RSS fingerprints
that it doubts as attenuation or degradation. Leaving those corrupted RSS fingerprints, the sensor
nodes will choose the remaining RSS fingerprints from the uncorrupted RSS and utilize lateration
with non-linear least squares to get the location of the sensor node.

The sensor and the AP are strictly time synchronized. This can be done by running a quartz
crystal clock in all of the sensors and the AP. With the help of the quartz crystal, all of them are time
synchronized. Quartz crystal-based time synchronization is easy to implement, and it is inexpensive.
More information about other time synchronization methods in wireless sensor networks can be
found in [30,31].

In order to avoid the estimation being affected by interference and reflection, we propose a
technique to filter those signals by estimating the approximate angle of arrival of the signal. In
addition, we also propose a method to get the estimation of the attack area in the network. By
estimating the attack area and alerting the network administrator, those barriers can be removed
and the localization accuracy improved.

5.1. Modified Robust Localization Based on the Multi-Frequency Multi-Power Approach

Location is achieved by utilizing a multi-frequency multi-power transmission. The knowledge
of the frequency and power level from the expected antenna is known a priori by the sensor. We vary
the frequency by three levels, 400 MHz, 600 MHz and 800 MHz, as well as synchronously vary the
power level by three levels, 4 dB, 6 dB and 8 dB. After averaging each received power level that has
been transmitted by the three frequency levels, three dimensions of the RSS between the sensor and
each landmark result. The use of three levels of frequency and power transmission will be suitable
enough to accomplish an accurate performance without any extra computational cost and complexity,
as well as reducing the fingerprint database memory size.

The receiver at the sensor node will try to synchronize and check the expected power level and
frequency to check if there is any signal degradation or attenuation in the path of the signal. The
lateration technique is applied on the position of the sensor and the distance measurement to get the
location of the sensors. In addition, based on the signal irregularities at all sensors, the map of the
region of attack is found. By cooperating with all sensors, the sensor is able to identify the area of the
physical barrier attack.

The functional block diagram of our previous work (SF-MFMPL) can be found in [32]. Figure 1
illustrates the functional block diagram of the (C-MFMPL) scheme.
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Figure 1. Block diagram of the proposed localization solution.

The fingerprint of the proposed solution consists of two phases, offline and online. In the offline
phase, the beacon signal will be checked first through various stages until the final stage, which
creates the RSS fingerprint for each landmark. The sensor device is assumed to have knowledge about
the AP’s position and the approximate angle of the AP’s location. Knowing the approximate angle
range in which the AP is located helps to avoid any faulty measurements due to signal interference
or reflection by the barriers. Since sensor nodes are placed randomly in the network, the angle of
arrival of the signal from the AP is found by sensor tuning in each direction till the maximal power
is received. This process has to be done for each AP at the initial deployment time. The threshold is
the amount of tolerance between that estimated and the actual one. It can be measured by placing a
small obstacle for signal degradation at different points in the network and measuring the error. The
size of the obstacle will be the maximum obstacle size that our network can tolerate. This is done to
accommodate certain infrastructure provisions made by the administrator of the network. The stage
of averaging each received power level that has been transmitted by the three frequency levels is very
important to overcome the effect of the log-normal shadow fading effects. Finally, the last stage in the
offline phase is the cooperation of the sensor nodes to create the RSS fingerprint database of the whole
network, while in the online phase, the sensor node receives the beacon signal, then averages the RSS
and matches it to the fingerprint database, besides using the lateration and trilateration techniques to
pin-point the sensor node position.

1. Offline Phase:

The fingerprints are produced and stored in a database during this phase containing the average
RSS readings of the anchor nodes’ positions. Actually, the location of the anchor nodes ought not to
change during the online phase. Figure 2 shows the block diagram of the offline phase.

Figure 2. Offline phase of the proposed solution.
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The representation of the fingerprint database for the (C-MFMPL) solution can be utilized by a
set of RSS with the coordinates of the anchor nodes gathered by each sensor in the network, as shown
in Equation (14).

F = { f1(P1, P2, P3), f2(P1, P2, P3), f3(P1, P2, P3)} (14)

where: f1, f2, f3 are the transmitted frequencies; P1, P2, P3 are the decided power levels.
The average RSS all over the transmitted frequencies that are stored in the fingerprint database

can be defined in Equations (15) and (16), respectively.

So f f line = {averageRSS1( f1, f2, f3), averageRSS2( f1, f2, f3), averageRSS3( f1, f2, f3)} (15)

So f f line =
{

rj=1
i , rj=2

i , ......, rj=m
i

}
(16)

rj
i represents the average RSS readings estimated from anchor j, and m represents the number of

anchors utilized in the network.
Moreover, Equation (17) shows the Ro f f line set that is gathered and stored in the fingerprint

database during the offline phase.

Ro f f line =
{

Po f f line, So f f line

}
(17)

The Po f f line and So f f line sets represent the anchor nodes’ coordinates and the average RSS
measurements, respectively.

While in the (SF-MFMPL) solution, each anchor (AP) sends beacons according to a step function,
each decided power level will be sent with a decided frequency [32]. In order to mitigate the effect of
the log-normal shadow fading, the averaging of N (RSS) values collected from each anchor (AP) has
been performed in this solution according to Equation (18).

averageRSSIi =
1
N

N

∑
j=1

RSSIij (18)

The value of (N = 3) will be taken for this solution to maintain the same system model conditions
that are used for the (C-MFMPL) technique.

2. Online Phase:

During the online phase, the sensor nodes receive the transmitted beacons from the anchors with
the same combinations of the frequency and power levels. Figure 3 illustrates the online phase of the
proposed solution.

Figure 3. Online phase of the proposed solution.

Therefore, another measurement set of the RSS, called Sonline, is produced, which will be utilized
for seeking the right fingerprints according to the fingerprint matching database, as shown in
Equations (19) and (20), respectively.

Sonline = {Ronline} (19)
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Ronline =
{

rj=1
i , rj=2

i , ......, rj=m
i

}
(20)

Ronline denotes the average RSS readings received from each anchor node.
Eventually, the online phase depends on the RSS fingerprints generated by the offline phase to

find the best matching RSS values for the estimation of the sensor node location. The RSS fingerprint
machine learning database plays the most important key role in the proposed algorithm, first through
filtering the physical barrier attack effects with the help of the proposed grid coloring algorithm,
which depends on the angle of arrivals of the beacon signals received from each anchor (AP), and,
second, participating in the process of mitigating the harsh shadow fading environment.

5.2. RSS Measurement

As an aspect of sensor network communication and sensing subsystems, various sensor
designs have been supported by the angle of arrival (AOA) mechanism, such as tracking and
other applications, which accord improved monitoring in the orientation of the target by means
of beamforming [33]. Sensors might also be supported by directional antenna arrays, so that the
communication transmission can be directed toward the required destination and lessening the
neighbor sensor interference. With the antenna beam pattern information, a single radio receiver
with a multiple antennae system might also be utilized for the efficient angle of arrival determination
of the RF signal.

A multiple beam pattern of the directional antenna array can be used to determine the received
signal strength RSS ratio. This solution establishes a low complexity and cost for the sensor network
design. Each anchor (AP) is assigned a combination of the frequency and power level transmission.
Before starting localization, each sensor node tunes in to the approximate angle in which an AP is
located to capture the signal and measure the RSS. By tuning in to the approximate angle, we are
able to filter out the RSS measurement errors due to reflection and interference signals from other
directions. Each sensor calculates the estimated signal frequency and power according to the defined
frequency and power level combination. Depending on Equations (21) and (22), the tuning is done in
a way to minimize the error between the actual transmitted frequency and power level.

E f = abs(y f − ya f ) (21)

Ep = abs(yp − yap) (22)

If the deviation in the error within the approximate angle is greater than the threshold, the RSS
value from that AP must be rejected, as it is an indication of signal attenuation or degradation by the
attacker; the deviation in error can be calculated from Equations (23) and (24), respectively.

D f = min(E f ) θmin < θ < θmax (23)

Dp = min(Ep) θmin < θ < θmax (24)

Df and Dp must be less than threshold T for the RSS value in order to be accepted. Every sensor
must measure the average RSS value all over the transmitted frequencies for the same anchor (AP).
The best value of the RSS with the lower values of Df and Dp must be taken. The AP’s location (x, y)
together with its measured average RSS value constitutes the RSS fingerprint for that AP. Each sensor
node must calculate the average RSS fingerprint for all of the APs whose Df and Dp is less than the
threshold T.

In this paper, The RSS error between the original measurements and the reconstructed
measurements at a certain threshold, which presents the least amount of error for an individual
network to be localized, is identified by the RSS error threshold value. Intuitively, as the discard
threshold increases, the error increases (that is, the ability to reconstruct a true representation of the
original signal degrades), for which the RSS error from each anchor (AP) increasing by more than
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15% of the nominal RSS will be neglected, while RSS error less than 15% will be accepted. In order to
select an appropriate RSS threshold, the use of an exhaustive search based on computer simulations is
mandatory, due to the complexity involved in the problem at hand. Meanwhile, finding the optimum
threshold value is difficult and needs extensive training for the simulation procedure. Hence, based
on the relevant empirical and experimental studies related to the threshold value selection, we
consider the RSS error up to 15% of the nominal RSS as the acceptable approximate threshold.

5.3. Localization

Localization involves two stages: ranging and lateration. Ranging estimates the distance d
from the position of the sensor node to the anchor (AP). The RSS can be expressed according to
Equation (25).

RSS = Po − 10α log d (25)

Therefore, the distance can be determined from Equation (26) as follows:

d = 10(
Po−RSS

10α ) (26)

where: Po is the power received in dBm at a 1-m distance; d is the distance between the node and the
AP; α is the path loss component.

Lateration gets the position of the sensor node from the distance measurement for different
anchors (AP) and their locations. There are two popular methods to get the location estimate:
non-linear least squares (NLS) and linear least squares (LLS). In NLS, from the estimated distance
di and known positions Li = (xi,yi) of the landmarks, the position (x,y) of the target device can be
estimated by finding (x̂, ŷ) satisfying Equation (27).

(x̂, ŷ) = arg minx,y

n

∑
i=1

[√
(xi− x)2 + (yi− y)2 − d̂i

]2
(27)

where i = 1. . . n for n total landmarks.
Since solving this equation is computationally complex, we can approximate this relation as

shown in Equation (28) [34].
AP̂ = b (28)

where:

A =

(
x1− 1

n ∑n
i=1 xi xn− 1

n ∑n
i=1 xi

y1− 1
n ∑n

i=1 yi yn− 1
n ∑n

i=1 yi

)
(29)

and:

b =
1
2

(
(x2

1 −
1
n ∑n

i=1 x2
i ) + (y2

1 −
1
n ∑n

i=1 y2
i )

(x2
n − 1

n ∑n
i=1 x2

i ) + (y2
1 −

1
n ∑n

i=1 y2
i )− (d̂2

n − 1
n ∑n

i=1 d̂2
i )

)
(30)

A is described by the coordinates of landmarks, and b is composed of the estimated distance to
landmarks. The position estimation is solved by Equation (31).

P̂ = (AT A)−1 ATb (31)

Moreover, for the localization based on a trilateration technique, the anchor nodes’ coordinates
defined by the i-th beacon Bi are (xBi, yBi); the coordinates of the unknown sensor node are (x,y);
RSSIi refers to the signal strength measurements between the sensor node and each anchor node;
and di is the distance estimation among the sensor node and the i-th beacon node Bi. Assume three
beacons (b1, b2, b3) with three distance estimations (d1, d2, d3), then the sensor node coordinates can
be obtained as follows [14]:
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(x− xB1)
2 + (y− yB1)

2 = d2
1

(x− xB2)
2 + (y− yB2)

2 = d2
2

(x− xB3)
2 + (y− yB3)

2 = d2
3

(32)

By utilizing the earlier two equation minus the third one, respectively, we can determine the
following equations:

2(xB3 − xB1)x + 2(yB3 − yB1)y = x2
B3 − x2

B1 + y2
B3 − y2

B1 + d2
1 − d2

3

2(xB3 − xB2)x + 2(yB3 − yB2)y = x2
B3 − x2

B2 + y2
B3 − y2

B2 + d2
2 − d2

3
(33)

By expressing Equation (33) in matrix form, we get:[
x
y

]
=

[
2(xB3 − xB1) 2(yB3 − yB1)

2(xB3 − xB2) 2(yB3 − yB2)

]−1

·
[

x2
B3 − x2

B1 + y2
B3 − y2

B1 + d2
1 − d2

3
x2

B3 − x2
B2 + y2

B3 − y2
B2 + d2

2 − d2
3

]
(34)

Along these lines, rather than using the real distance di, it is sensible to utilize the noisy
estimations d̂i, then Equation (34) can be denoted as follows:

(x̂− xB1)
2 + (ŷ− yB1)

2 = d̂2
1

(x̂− xB2)
2 + (ŷ− yB2)

2 = d̂2
2

(x̂− xB3)
2 + (ŷ− yB3)

2 = d̂2
3

(35)

[
x̂
ŷ

]
=

[
2(xB3 − xB1) 2(yB3 − yB1)

2(xB3 − xB2) 2(yB3 − yB2)

]−1

·
[

x2
B3 − x2

B1 + y2
B3 − y2

B1 + d̂2
1 − d̂2

3
x2

B3 − x2
B2 + y2

B3 − y2
B2 + d̂2

2 − d̂2
3

]
(36)

where (x̂, ŷ) is the unknown node coordinate estimation. By subtracting Equation (36) from
Equation (34), we can get the localization error of the unknown sensor node as below:[

x̂− x
ŷ− y

]
=

[
2(xB3 − xB1) 2(yB3 − yB1)

2(xB3 − xB2) 2(yB3 − yB2)

]−1

·
[
(d̂2

1 − d2
1)− (d̂2

3 − d2
3)

(d̂2
2 − d2

2)− (d̂2
3 − d2

3)

]
(37)

In view of Equation (37), it demonstrates the localization error for utilizing the trilateration
method, which is identified with both the RSSI ranging errors and the anchor node coordinates,
as it is known a priori that the anchor nodes are fixed nodes with known coordinates, so that the
localization error is resolved in terms of the RSSI ranging error only, besides the anchor nodes having
to be deployed legitimately. Along these lines, the error in the localization accuracy can be determined
by the equation below:

Localization Error (E) =

[
(d̂2

1 − d2
1)− (d̂2

3 − d2
3)

(d̂2
2 − d2

2)− (d̂2
3 − d2

3)

]
(38)

5.4. Detecting Attack-Prone Regions

One of the important advantages of our solution is that we can detect the region of attack and
take some corrective action. In our solution, each sensor node can identify the AP that has barriers in
the path of the sensor node. Each sensor node sends data to a signal fusion center, which marks the
boundary of the attack region and handles it by eliminating barriers effect.

Figure 4 shows a network with APs, sensors and barriers. With the accepted AP (whose
error deviation is less than the threshold) and the rejected AP (whose error deviation is above the
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threshold), the sensor node location estimated is provided to the signal fusion center. The signal
fusion center is also aware of the direction of the propagation of the signal from the anchor (AP) to
the sensor nodes.

Figure 4. Wireless sensor network system model with APs, sensors and the barriers.

Based on this information, the signal fusion center constructs a signal map. The signal map is
the representation of points where the signals from the APs are able to traverse the network. Signal
map holes are places where the signal from the AP is not accepted at the sensor node due to a larger
error deviation in the signal power, as shown in Figure 5.

Figure 5. Signal map holes at the fusion center.

Actually, sensor nodes have the flexibility to communicate with the anchor node, so as to build
the radio signal map by means of the wireless channel. As a rule, a fusion center at each sensor node
is jointly processing the signal in order to make accurate situational estimations. For the detection
part, the fusion center necessitate making a decision concerning the presence of an attenuation of the
received signal strength due to a barrier attack. Typically, a threshold value should be utilized to
make a proper decision, and it is a significant parameter for the detection procedure.

Based on the whole network signal map defined by the RSS fingerprint database, which is
created by the cooperating sensor nodes, actually, the valid RSS readings will be utilized for the
estimation of the sensor node location, while the neglected RSS values refer to the signal holes in the
fingerprint to be taken into consideration for detecting the area of attack. This mechanism introduces
the basis of the fusion center at each sensor node to make the proper decision for identifying the
signal holes in the network.
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Through construction of the signal map, we are able to identify the signal holes in the network.
Signal holes are the regions of attack in the network and must be corrected. The usual corrective
action is to remove the barrier manually.

To detect the signal hole, we propose a grid coloring algorithm. The algorithm splits the entire
network into small equally-sized grids. Initially, all of the grids are white. The sensor locations are
marked in the grids. When a sensor accepts the AP’s RSS value (since the error deviation in the signal
power is less than the threshold), the grids in the direction from the AP to the sensor node along the
direction of the signal are colored gray. This process is performed for all sensors for all of the accepted
AP. Once the process is complete, all of the grids still in white are the signal holes.

The algorithm code is given below:

Algorithm 1 Signal hole detection.

Require: GM[][]← SplitnetworkintosmallgridsN ∗ N
for i=1: N do

for j=1: N do
GM[i][j] = White

end for
end for
for i=1: NoofSensor do

for j=1:NoofAP do
if error_deviation(AP) < threshold then

for X=1: N do
for Y=1: N do

if Grid(X, Y)isindirectiono f AP, sensor(i) then
GM(X, Y)← gray

end if
end for

end for
end if

end for
end for

Error in the estimated attack area is calculated by Equation (40).

E = nGAct − nGF (39)

Error in the estimated attack area is calculated by Equation (40).

E = nGAct − nGF (40)

where: nGAct is the No. of gray squares actually in the attack area; nGF is the No. of gray squares
estimated in the attack area.

6. Performance Analysis

We simulate the proposed solution by using MATLAB. The simulation area consists of a
1000 × 1000 m two-dimensional terrain. The optimal number and placement of the anchor
(AP) is important. We assume a small, but reasonable beacon node population of 20 beacon
nodes (approximately five beacons in each direction), which are scattered uniformly over the
1000 m × 1000 m areas. We place a maximum of 10 barriers of a length of 1 m and a width of 1 m
randomly in the network. The barriers can cause signal strength degradation and have a severe effect
on the RSS. This section presents the performance evaluation of the localization accuracy for both
of the proposed solutions SF-MFMPL and C-MFMPL in the face of the log-normal shadow fading
environment. Table 1 shows the system model specification.
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Table 1. System model specifications.

System Model Simulation Specifications

Network Area 1000 × 1000 m
Frequency Used by AP 400, 600, 800 MHz

Power Used by AP 4, 6, 8 dB
Barrier dimension 1 × 1 m

Sensor Node Placement Random
AP Placement Around Perimeter

Propagation Model Log-Normal Shadow Fading Model

It is essential for an examination to assess all outline and advancement works with respect to
the research goals. In this way, the performance evaluation is given with respect to this issue. The
performance evaluation is performed according to two main parts: first, the localization accuracy,
which is defined by the average localization error for different parameters of the network system
model, as well as different shadow fading propagation models, and the second part is the detection
efficiency of the physical signal strength attacks, which is performed according to the detected area
of attacks error.

The average localization error has been achieved according to two cases:

Case I: path loss exponent α = 3, standard deviation of the log-normal shadow fading σ = 5 dB;
Case II: path loss exponent α = 4, standard deviation of the log-normal shadow fading σ = 6 dB.

(a) (b)

Figure 6. Average localization error versus the number of barriers for the step function multi-frequency
multi-power localization (SF-MFMPL) algorithm. (a) Lateration technique Case I; (b) Lateration
technique Case II.

The average localization error is calculated between the actual and the estimated locations for
all sensor nodes. The performance is measured in terms of average localization error by varying the
number of barriers in the network for different numbers of APs and for both propagation system
model cases. Figures 6 and 7 show the average localization error for the (SF-MFMPL) specified by the
lateration and trilateration method, respectively.
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(a) (b)

Figure 7. Average localization error versus the number of barriers for the SF-MFMPL algorithm.
(a) Trilateration technique Case I; (b) Trilateration technique Case II.

It is surely understood that expanding the density of anchor nodes accordingly improves
localization. However, increasing the number of anchor nodes may not be a feasible solution due
to the extra hardware requirements, which may be more expensive.

The simulation results in Figures 6 and 7 show an efficient localization accuracy with respect to
the few and reasonable number of anchor nodes that have been applied.

Moreover, Figures 8 and 9 show the average localization error for the (C-MFMPL) specified by
the lateration and trilateration methods, respectively.

(a) (b)

Figure 8. Average localization error versus the number of barriers for the combination of
multi-frequency multi-power localization (C-MFMPL) algorithm. (a) Lateration technique Case I;
(b) Lateration technique Case II.

From the simulation results, we observe that the number of anchors (APs) is a significant factor
and plays a key role affecting the localization accuracy. Hence, in our approach, the increasing of
the number of the anchors (APs) for the system model will lead to reducing the localization error
very rapidly, because the number of variables used in non-linear regression increases, as well. On the
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other hand, utilizing the trilateration technique enhances the performance of the localization clearly,
as compared to the performance based on lateration.

A comparison of the average localization error for both the (SF-MFMPL) and (C-MFMPL)
algorithms according to 20 anchors (APs) and two propagation model cases is shown in Figure 10.

With regards to the simulation results above, we observe that for the localization accuracy
identified by the average localization error for both proposed solutions, C-MFMPL is better than
the proposed solution based on SF-MFMPL in both cases of the shadow fading propagation model,
as well as the lateration and trilateration techniques. This is due to different strategies of using
multi-frequency and multi-power for the two algorithms. Meanwhile, the propagation parameters
α and σ are clearly subject to and depend on the transmission frequency and power level. In
(SF-MFMPL), each power level is indicated by a specific transmitted frequency, while in (C-MFMPL),
a combination of multiple frequencies and power levels has been indicated. Hence, the difference
in the two algorithms’ strategies will lead to different results in the face of the impact of shadow
fading. In addition, simulation results of the trilateration technique showed the best performance for
both proposed solutions and under various simulation conditions. Table 2 illustrates a comparison
summary of the average localization error for the two proposed solutions according to 20 anchors
(APs) and two propagation model cases.

(a)

(b)

Figure 9. Average localization error versus the number of barriers for the C-MFMPL algorithm.
(a) Trilateration technique Case I; (b) Trilateration technique Case II.
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(a) (b)

Figure 10. A comparison of the average localization error for both algorithms, (SF-MFMPL) and
(C-MFMPL), respectively. (a) Case I; (b) Case II.

Table 2. Average localization error comparison of the two proposed solutions according to 20 anchors
(APs) and two propagation model cases.

Propagation Model Case
Average Localization Error (m)

SF-MFMPL
Average Localization Error (m)

C-MFMPL
Lateration Trilateration Lateration Trilateration

Case I 4.34 3.86 3.77 3.20
Case II 4.67 4.19 4.01 3.41

The effect of changing the path loss exponent (α) on the average localization error with respect
to different values of the log-normal shadow fading standard deviation (σ) has been taken into
consideration of the simulation analysis for both proposed algorithms, (SF-MFMPL) and (C-MFMPL),
as shown in Figures 11 and 12, respectively.

(a) (b)

Figure 11. Average localization error versus different path loss exponent values for the SF-MFMPL
algorithm (No. of barriers = 10, APs = 20). (a) Lateration technique based; (b) Trilateration
technique based.
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(a)

(b)

Figure 12. Average localization error versus different path loss exponent values for the C-MFMPL
algorithm (No. of barriers = 10, APs 20). (a) Lateration technique based; (b) Trilateration
technique based.

In practice, the shadow fading propagation model parameters are unpredictable; therefore, it
will be susceptible to errors; therefore, we considered the influence of changing the propagation
model parameters identified by the path loss exponent and the standard deviation on the localization
accuracy for both of our proposed solutions. As illustrated in the figures above, our proposed
algorithms showed an efficient and accurate performance for the estimation of the sensor nodes’
positions with an acceptable localization error. In addition, the proposed solution based on
(C-MFMPL) has a better performance than the (SF-MFMPL) solution in both cases of lateration and
trilateration. Tables 3 and 4 indicate a comparison of the performance evaluation for our proposed
solutions with respect to the changing of the shadow fading propagation parameters based on the
lateration and trilateration techniques, respectively.
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Table 3. Average localization error comparison of the two proposed solutions according to changing
the shadow fading propagation parameters (lateration based).

Path Loss
Exponent

(α)

Average Localization Error (m)
SF-MFMPL Lateration Based C-MFMPL Lateration Based
σ = 4 σ = 5 σ = 6 σ = 7 σ = 4 σ = 5 σ = 6 σ = 7

α = 3 4.08 4.34 4.42 4.51 3.64 3.77 3.86 3.93
α = 4 4.25 4.49 4.68 4.73 3.88 3.91 4.19 4.29
α = 5 4.47 4.68 4.84 4.97 4.16 4.20 4.30 4.44
α = 6 4.61 4.83 5.01 5.31 4.37 4.54 4.61 4.72

Table 4. Average localization error comparison of the two proposed solutions according to changing
the shadow fading propagation parameters (trilateration based).

Path Loss
Exponent

(α)

Average Localization Error (m)
SF-MFMPL Trilateration Based C-MFMPL Trilateration Based
σ = 4 σ = 5 σ = 6 σ = 7 σ = 4 σ = 5 σ = 6 σ = 7

α = 3 3.64 3.86 4.02 4.10 3.14 3.20 3.32 3.65
α = 4 3.77 4.11 4.28 4.28 3.32 3.51 3.55 3.85
α = 5 3.99 4.27 4.41 4.48 3.47 3.73 3.81 4.19
α = 6 4.20 4.43 4.65 4.71 3.87 3.97 4.18 4.44

The other cause of localization error arises due to the anchor node’s position. We considered the
effect of the anchor node’s positions on localization accuracy. Hence, the anchor node’s placement and
geometry have a crucial role to play with respect to localization performance. The average localization
error for the random anchor placement configuration is measured for both the (SF-MFMPL) and
(C-MFMPL) algorithms, respectively, as illustrated in Figure 13.

(a) (b)

Figure 13. Localization error versus the number of barriers for a random placement configuration of
APs. (a) SF-MFMPL; (b) C-MFMPL.

According to the simulation results above, it is clearly observed that the localization accuracy
in the case of the random deployment of the anchor nodes (APs) drops slightly with respect to the
increase of the number of barriers in the network. However, the average localization error for this
case is still within the acceptable error range regarding the RSSI-based localization technique.
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Proper positioning of anchor nodes is necessary for the effective localization accuracy of wireless
sensor networks. Since the performance of the localization accuracy depends on the placement of the
anchors (APs) in the network. The performance analysis in such an environment has been compared
among various anchor (AP) deployment mechanisms; Figures 14 and 15 illustrate the performance
evaluation for a uniform, around the perimeter and random deployment mechanism and for both
algorithms, (SF-MFMPL) and (C-MFMPL), respectively.

(a) (b)

Figure 14. Localization error versus the number of barriers for SF-MFMPL with a random, around the
perimeter placement configuration of APs. (a) Case I; (b) Case II.

(a) (b)

Figure 15. Localization error versus the number of barriers for C-MFMPL with a random, around the
perimeter placement configuration of APs. (a) Case I; (b) Case II.

In accordance with the simulation results above, we have indicated the impact of the anchor
node deployment, and it is clearly affected by the localization performance. A comparison of the
performance evaluation for both proposed solutions, SF-MFMPL and C-MFMPL, under the two cases
of the anchor node (AP) deployment mechanisms has been summarized in Tables 5 and 6.
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Table 5. Average localization error comparison of the SF-MFMPL proposed solution according to the
anchor node deployment configuration.

Propagation Model Case

Average Localization Error (m)
SF-MFMPL

Random Deployment
SF-MFMPL

Perimeter Deployment
Lateration Trilateration Lateration Trilateration

Case I 7.86 6.76 4.34 3.86
Case II 8.25 6.91 4.67 4.19

Table 6. Average localization error comparison of the C-MFMPL proposed solution according to the
anchor node deployment configuration.

Propagation Model Case

Average Localization Error (m)
C-MFMPL

Random Deployment
C-MFMPL

Perimeter Deployment
Lateration Trilateration Lateration Trilateration

Case I 6.98 6.01 3.77 3.20
Case II 7.30 6.50 4.01 3.41

According to the simulation results stated in Tables 5 and 6, the localization performance of
the uniform, around the perimeter deployment of the anchor nodes is better than the random
deployment, as well as being the optimal placement configuration for an effective localization
accuracy. In addition, the proposed algorithm C-MFMPL showed a better performance than the
SF-MFMPL algorithm for both the lateration and the trilateration technique.

Figure 16. Invalid beacon drop ratio vs. No. of barriers.

Another important metric that indicates the effect of the barrier attack on the localization
performance is the percentage of the invalid beacon drop ration due to the barrier attenuation of
the signal with respect of the total percentage of available beacons for the proposed system, as shown
in Figure 16.

We observe from the figure above that as the number of barriers increases, a greater number of
invalid beacons will appear in the network, and drop ratio is increased, as well. In spite of the 40%
invalid beacon drop rate from the case of 10 barriers, the performance of our proposed approach is
still accurate and contributes to a lesser localization error.
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One of the most significant performance evaluation criteria is the accuracy of the detected area
of attack. This accuracy is measured in terms of the difference between the actual area occupied by
the barrier and the detected area of the signal holes. We varied the number of anchors (APs), as
well as the deployment configuration in order to determine the optimum placement positions for the
detection mechanism. The accuracy of the detected area of attack is illustrated in Figure 17.

Figure 17. Detected area error vs. No. of APs.

Based on the simulation results above, we observe that as the number of anchors (APs) increases,
the detected area error reduces greatly, as well as the optimum placement configuration of anchors
(APs) around the perimeter showed more accurate performance through identifying the attack area
with great precision.

The accuracy of detecting the area of attack also depends on the shape and dimension of the
barrier attack that is introduced into the network. We introduced a rectangular barrier of various
dimensions and measured the accuracy of the detected area of attack, as shown in Figure 18.

Figure 18. Detected area error for different barrier dimensions.

In accordance with the simulation results above, initially, when the barrier size increases, the
error in the detected area of attack is decreased gradually with respect to the increasing of the
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anchors (APs); this is due to more beacon signals being affected by these barriers with more RSS
error deviations having been neglected, so that there is more information available for detecting the
area of attack. On the other hand, increasing the barrier size will lead to increasing the localization
error slightly.

7. Conclusions

This paper presents the robust range-based RSSI localization algorithm in the presence of
barrier attacks and under the log-normal shadow fading model. These attacks affect the localization
process, making it erroneous. The proposed algorithm has been achieved by two techniques of
multiple frequencies and power levels identified by (SF-MFMPL) and (C-MFMPL), respectively, with
averaging the received power levels all over the transmitted frequencies in order to mitigate the
shadowing effects in the wireless channel propagation; besides, our solution includes lateration- and
trilateration-based techniques and fingerprint matching, which were demonstrated to be efficient
and accurate localization techniques for wireless sensor networks. Furthermore, in this paper, the
detection and identification of the attack area have been achieved through applying a grid coloring
algorithm with the aid of the approximate angle of arrival estimation of the received signal from
each anchor (AP). Moreover, a suitable choice of the threshold error value between the actual and the
estimated received signal strength was made. By identifying the attack area, the network operators
take action to clear this attack and improve the localization accuracy. Moreover, the important key role
of this paper is the trade-off between the localization enhancement and the utilization of a minimum
number of anchor nodes with the best deployment. Through simulation results, we have proven
the effectiveness of our approach. Future work directions for a real implementation and experiment
design will be taken into consideration for testing the proposed algorithms.
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