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Background: Breast cancer (BRCA) is a prevalent and aggressive disease. Despite various treatments being 
applied, a significant number of patients continue to experience unfavorable prognoses. Accurate prognosis 
prediction in BRCA is crucial for tailoring individualized treatment plans and improving patient outcomes. 
Recent studies have highlighted the significance of immune cell infiltration in the tumor microenvironment 
(TME), but predicting survival remains challenging due to the heterogeneity of BRCA. The aim of this 
study was thus to produce an immune cell signature-based framework capable of predicting the prognosis of 
patients with BRCA.
Methods: The GSE169246 dataset was from the Gene Expression Omnibus (GEO) database, comprising 
single-cell RNA sequencing (scRNA-seq) data from 95 individuals with BRCA. Seurat, principal component 
analysis (PCA), the unified matrix polynomial approach (UMAP) algorithm, and linear dimensionality 
reduction were used to determine the heterogeneity of T cells. Overlapping analysis of differentially 
expressed genes (DEGs), genes associated with prognosis, and T-cell pharmacodynamics-related genes 
were used to obtain the T-cell core pharmacodynamics-related genes. The dimensionality of the T-cell core 
pharmacodynamics-related genes was reduced employing the least absolute shrinkage and selection operator 
(LASSO) Cox regression model and the LASSO model. The prognostic model was built via a Cox analysis of 
the overall survival (OS) information. The clinical sample included 95 patients with BRCA who underwent 
surgical treatment from October 2018 to October 2021 at the Second Affiliated Hospital of Qiqihar Medical 
University. Patients were divided into a good prognosis group and a poor prognosis group based on their 
prognostic outcomes. The predictive value of tumor characteristics and immune responses was validated 
through correlation analysis, logistic regression analysis, and receiver operating characteristic (ROC) 
analysis.
Results: A group of 95 genes was used to establish a prognostic model. In the GEO clinical sample, with 
a high-risk group demonstrating shorter median survival times (2,447 vs. 6,498 days, P=4.733e−12). Area 
under the curve (AUC) values of 0.75, 0.75, and 0.72 were obtained for 2-, 4-, and 6-year OS predictions, 
respectively. Clinical validation found that the 6-year OS of the favorable prognosis group was significantly 
higher than that of the unfavorable prognosis group (92.06% vs. 65.62%; P=0.005). Poor prognosis was 
positively correlated with age, tumor size, B-cell level, and CTLA4 level and negatively correlated with 
tumor stage (T1/T2), lymph node metastasis stage (N0), clinical stage I–II, CD3+T-cell, CD4+T-cell, 
CD8+T-cell, neutrophil, lymphocyte, natural kill cell, TIGIT expression and OS. The combined model of 
clinical parameters had an AUC value of 0.898.
Conclusions: This study established a prognostic model that demonstrated excellent predictive value 
for OS of BRCA. The predictive model developed offers valuable insights into prognosis and treatment 
planning, emphasizing the importance of tumor characteristics and immune cell infiltration.
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Introduction

Breast cancer (BRCA) is a prevalent malignancy that impacts 
a considerable number of women, being responsible for 
around 23% of all female cancer cases (1,2). The unfortunate 
reality is that it is associated with one of the lowest survival 
rates among all malignant tumors impacting women (3). In 
the United States in 2019, around 276,480 women received a 
diagnosis of BRCA, 42,170 of whom died (3,4).

There are several medical alternatives that can be used 
to treat patients with BRCA, including chemotherapy, 
surgery, radiation therapy, and hormonal treatment (4). 
Despite various treatments being applied, a significant 
number of patients continue to experience unfavorable 
prognoses even when the diagnosis is made at an early 
stage (5,6), and predicting survival remains challenging 

due to the heterogeneity of BRCA. The latest research 
findings suggest that BRCA possesses a remarkable degree 
of immunogenicity, characterized by the infiltration of 
diverse immune cell populations (7). Therefore, there may 
exist a correlation between immune cell infiltration and the 
prognosis of individuals with BRCA. Recent studies have 
shown numerous risk models that can be used for predicting 
BRCA prognosis (8,9). Currently available prognosis 
prediction models for BRCA, provide valuable information 
but often lack the specificity and sensitivity needed for 
accurate long-term survival estimates (10-12). 

The cancer immune microenvironment is a critical 
factor in the progression of BRCA (13). Tumor-infiltrating 
lymphocytes (TILs), which are among the known indicators 
of the immune ecosystem in tumorous lesions, have been 
comprehensively analyzed, and their correlation with the 
prognosis of BRCA has been examined (14,15). Recent 
studies suggest that TILs are not only correlated with the 
response to chemotherapy but also that of immunotherapy 
(16,17). Therefore, a comprehensive understanding of the 
cancer immune ecosystem may provide valuable insights 
into prognostic indicators and the identification of novel 
targets for both chemotherapy and immunotherapy in 
patients with BRCA (18,19). 

Immunotherapy, which involves immune checkpoint 
blockers or adoptive cell therapy, is a promising clinical 
approach for the treatment progressive hematological and 
solid malignancies (20). The role of T cells as essential 
effectors against tumors and prognostic indicators is pivotal 
for the success of these therapies (20,21). Recent research 
interest in TILs has intensified as their critical role in the 
immune system has been increasingly recognized (22,23). 
Studies have identified the infiltration of inflammatory and 
lymphocytic cells to be vital to the tumor microenvironment 
(TME) (24,25). The TME, particularly the presence and 
activity of immune cells, has emerged as a critical factor 
influencing patient outcomes. Research has shown that the 
TME’s immunogenicity, characterized by the infiltration of 
diverse immune cell populations, correlates strongly with 
prognosis (26,27). Therefore, developing a predictive model 
based on TME genes could offer a more accurate and 
reliable method for prognosis prediction.

The development of immunotherapies marks a shift 
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in focus from targeting cancer cells to the modulation 
of the immune system, particularly by targeting T cells 
and inhibitory receptors such as cytotoxic T lymphocyte-
associated protein-4 (CTLA-4) (28,29). Recent research 
has investigated multiple compounds targeting diverse 
costimulatory or coinhibitory receptors on immune cells (T 
cells) for the treatment of various types of cancer (30,31). 
The identification of specific immune cell signatures 
associated with favorable or adverse prognosis holds 
significant implications for risk assessment, treatment 
stratification, and the advancement of groundbreaking 
immunotherapies. Additionally, the characterization 
of genomic alterations, immune checkpoint expression 
patterns, and the TME in relation to prognostic model 
aims clarify mechanisms underlying immune evasion and 
resistance to therapy in BRCA. 

The interplay among TILs, tumor cells, and the 
surrounding microenvironment is being increasingly 
acknowledged as an essential determinant of clinical 
outcomes in BRCA. The characterization of the immune 
landscape within the TME can not only provide valuable 
insights into prognosis but also presents potential avenues 
for novel immunotherapeutic targets. This study aimed 
to examine the complexities of immune responses within 
BRCA, establish a predictive framework based on immune 
cell signatures, and assess its prognostic and therapeutic 
value. It is hoped that this research will contribute to the 
development of more effective prognostic and therapeutic 
strategies for managing this complex disease. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-1829/rc).

Methods

The acquisition of single-cell transcriptome sequencing 
data

Using the keyword “breast cancer”, we retrieved the 
GSE169246 dataset from the Gene Expression Omnibus 
(GEO) database (https://www.ncbi.nlm.nih.gov/gds). This 
dataset contains the single-cell RNA sequencing (scRNA-
seq) data from 95 individuals with BRCA. All patients 
with BRCA were diagnosed based on BRCA diagnostic 
guidelines. Among them, 20 patients were in stage I, 35 in 
stage II, 25 in stage III, and 15 in stage IV. The majority 
were Caucasian, accounting for approximately 52.63%. 
Follow-up data were collected within 6 years after diagnosis, 

recording detailed survival information. Raw sequences of 
cell types of were annotated according to a previous study 
by Zhang et al. (32).

Processing of scRNA-seq data

T-cell transcriptome sequencing data were extracted and 
analyzed using the Seurat software package (v. 4.1.1) in R v. 
4.3.2 (The R Foundation for Statistical Computing), which 
is commonly used for single-cell analyses. Gene exhibiting 
remarkable variability was then identified through rigorous 
analysis of variance and was included in data scaling 
and centralization. Principal component analysis (PCA) 
was then conducted on these variable genes for linear 
dimension reduction. A total of 35 principal components 
(PCs) were selected based on the graph-based clustering 
(resolution =0.4) method, which can group cells into 
different subpopulations based on gene expression profiles. 
The cell population was visualized based on the unified 
matrix polynomial approach (UMAP) dimension reduction 
method. Finally, the T cells’ differentially expressed genes 
(DEGs) were identified by implementing an adjusted P 
value (Pval.adj) of 0.05 as the criterion to define significant 
gene expression change.

Data collection and processing

A comprehensive search for publicly accessible BRCA 
gene expression profiles was conducted. Samples lacking 
complete prognostic information were excluded. We 
acquired four microarray datasets from GEO (GSE65194, 
GSE58812, GSE20711, and GSE20685) and one RNA-
seq dataset from The Cancer Genome Atlas (TCGA; 
TCGA-BRCA; https://www.cancer.gov/ccg/research/
genome-sequencing/tcga). The gene expression data for 
BRCA, along with clinical information of the patients, 
somatic mutation status data, and tumor mutational burden 
(TMB) were downloaded from TCGA database. To detect 
amplified or deleted genes, we conducted a copy number 
analysis using GISTIC_2.0 (https://www.genepattern.org/
modules/docs/GISTIC_2.0).

The variations in dataset platforms present a potential 
confounding factor that warrants careful consideration. We 
recognized the importance of addressing this discrepancy 
to ensure the robustness of our findings. To mitigate the 
impact of platform variations, we used standardized data 
preprocessing and normalization techniques tailored to 
each specific platform. Leveraging advanced bioinformatics 
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tools and cross-platform normalization algorithms, we 
harmonized the gene expression profiles to minimize the 
effects of platform-specific biases. Furthermore, prior to 
integrative analysis, we conducted extensive validation 
procedures to ascertain the coherence and comparability 
of the datasets, thus reducing the potential confounding 
influence introduced by the variation in platforms.

The data preprocessing methods, including normalization, 
batch effect correction, and missing value imputation, closely 
followed established protocols as detailed in the works of 
Bacher et al. (33). Specifically, the quantile normalization 
approach was employed for RNA-seq data. Similarly, 
for microarray data, robust multi-array average (RMA) 
normalization was employed, adhering to the recommended 
procedures described by Bolstad et al. (34).

Pathway enrichment and immune infiltration analysis

To identify the DEGs, we applied the cluster analyzer 
package (v. 4.0.5 in R software) to conduct Gene Ontology 
(GO) annotation and Kyoto Encyclopedia of Genes 
and Genomes (KEGG; https://www.kegg.jp/) pathway 
enrichment analyses. We employed microenvironment 
cell population counting (MCP-Counter) to estimate 
immune infiltration. This method allows for the absolute 
quantification of ten types of immune and stromal 
cell populations within heterogeneous tissues from 
transcriptome data. To transform messenger RNA (mRNA) 
data into non-tumor cell infiltrating levels in the TME, we 
applied the “IOBR” package in R software (v. 4.3.2). Prior 
to MCP-Counter analysis, the gene expression profile was 
prepared using standard annotation files.

Clinical data

A retrospective analysis was conducted on the clinical 
data of 95 patients with BRCA who underwent surgical 
treatment from October 2018 to October 2021 at the 
Second Affiliated Hospital of Qiqihar Medical University. 
Based on their prognosis, these patients were placed into a 
favorable outcome group or an unfavorable outcome group. 
The inclusion criteria were as follows: (I) no prior radiation, 
chemotherapy, or endocrine therapy before surgery; (II) 
meeting the relevant diagnostic criteria outlined in the 
“Chinese Breast Cancer Screening and Early Diagnosis 
Guidelines”; (III) completion of at least 6–8 cycles of 
postoperative chemotherapy, or radiation and targeted 

therapy, and thorough examination and test data available; 
(IV) stage I–IIIA disease; (V) expected survival >3 months; 
(VI) age >18 years; and (VII) normal mental and cognitive 
function. Meanwhile, the exclusion criteria were as follows: 
(I) initial diagnosis of BRCA with distant metastasis; (II) 
significant diseases of vital organs such as the heart, brain, 
lungs, or kidneys; (III) a history of intracranial tumors or 
traumatic brain injury; (IV) a known allergy to chemotherapy 
drugs, targeted drugs, or contrast agents; and (V) incomplete 
case data. Follow-up data were collected within 6 years after 
diagnosis, recording detailed survival information.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study was 
approved by the Ethics Committee of the Second Affiliated 
Hospital of Qiqihar Medical University (No. [2022] 0815-9).  
Informed consent was waived by the Ethics Committee 
of the Second Affiliated Hospital of Qiqihar Medical 
University for this retrospective study due to the exclusive 
use of deidentified patient data, which posed no potential 
harm or impact on patient care.

Data collection

Patients’ general information, including age, surgical 
method, and tumor staging, was retrieved through the 
medical record system. The overall survival (OS) of 
patients at 2, 4, and 6 years was calculated. Levels of T 
lymphocytes, B lymphocytes, natural killer (NK) cells, and 
lymphocytes, as well as TIGIT expression, in peripheral 
blood were assessed by extracting 2 mL of patient 
antecubital venous blood into a vacuum tube containing 
ethylenediaminetetraacetic acid tripotassium anticoagulant. 
Subsequently, 50 μL of whole blood was combined with 
5 μL of monoclonal fluorescent antibodies, mixed, and 
incubated at room temperature in the dark for 15 minutes; 
300 μL of lysing reagent was added, mixed, and left at 
room temperature in the dark for 10 minutes; 300 μL of 
phosphate-buffered saline was added and mixed, and within 
2 hours, flow cytometry (Navios EX Flow Cytometer, 
Beckman Coulter, Brea, CA, USA) was used for detection. 
Absolute lymphocyte count was determined using a blood 
cell analyzer (XN-2000, Sysmex, Kobe, Japan). An enzyme-
linked immunosorbent assay was used to measure patient 
serum levels of CTLA4 and neutrophils.

https://www.kegg.jp/
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Statistical analysis

To compare the normality of variables between groups, we 
employed the Shapiro-Wilk normality test. For normally 
distributed variables, we performed the unpaired Student 
t-test, while for nonnormally distributed variables, we used 
the Mann-Whitney test. We applied one-way analysis 
of variance and the Kruskal-Wallis test to compare the 
two groups. Spearman rank correlation analysis was 
conducted to calculate correlation coefficients. Survival 
rates were determined via the Kaplan-Meier method, and 
differences in survival curves were assessed with the log-
rank test. To eliminate the heterogeneity between tumor 
types, we recalculated the optimal threshold for every 
prognostic indicator using the “survminer” package in R 
software. In this study, both univariate and multivariate 
Cox proportional risk model analyses were implemented. 
Moreover, we assessed the prognostic model’s survival 
prediction accuracy using receiver operating characteristic 
(ROC) curve analysis and the Harrell consistency index 
(C-index). We completed all statistical analyses using R 
software v. 3.5.0 and SPSS 25 (IBM Corp., Armonk, NY, 
USA). A two-tailed P value <0.05 was considered to indicate 
statistical significance.

Results

The detection of pharmacodynamics-related genes for T 
cells based on BRCA scRNA-seq data 

To detect predictive indicators for treatment effectiveness 
prior to therapy, we obtained 1,971 T cells sampled from 
breast tissue, which were sequenced before treatment, with 
their associated with response information, including partial 
response (PR) and stable disease (SD) also being determined. 
Analysis of variance identified the top 10 DEGs in each 
sample. We used PCA to identify genes that were highly 
correlated with each component (Figure 1A). Additionally, 
we applied the UMAP algorithm, commonly used for 
visualizing high-dimensional data, and linear dimensionality 
reduction methods to classify cell populations with greater 
accuracy (Figure 1B). The analysis yielded 14 different 
subgroups of T cells, including PR and SD cells, from 
patients with BRCA (Figure 1C). Furthermore, we identified 
4,761 DEGs that were found in both PR and SD T cells 
(Figure 1D).

Prognostic characteristics of T-cell core pharmacodynamics-
related genes were constructed in the TCGA dataset

Gene expression profiling identified 3,195 DEGs. Among 
these genes, 896 genes were upregulated [log fold change 
(FC) >1 and Pval.adj <0.05] while 2,299 genes were 
downregulated (logFC <–1 and Pval.adj <0.05) in BRCA 
tissues compared to normal control tissues (Figure 2A). To 
examine the association between gene expression features 
with the prognosis of patients with BRCA, OS analysis was 
conducted, which revealed 1,691 significant genes (P<0.05). 
We identified the DEGs that overlapped with genes 
associated with prognosis and T-cell pharmacodynamics-
related genes to obtain 54 T-cell core pharmacodynamics-
related genes (Figure 2B).

To develop a clinical prognostic model, the dimensionality 
of 54 prognostic genes was reduced by employing a least 
absolute shrinkage and selection operator (LASSO) Cox 
regression model. Subsequently, 26 genes were obtained, 
based on which a prognostic model was established through a 
Cox analysis of OS (Figures 2C,2D). The formula for the risk 
score of this model is as follows: risk score = (–0.15607676 
× APOD expression) + (0.36138608 × EMP1 expression) 
+ (0.42949380 × ANO6 expression) + (–0.15424855 
× RARRES1 expression) + (–0.19074140 × PMAIP1 
expression) + (–0.23465677 × FAM166B expression) + 
(0.38785733 × DCTPP1 expression) + (–0.26348829 × 
ABRACL expression) + (–0.21325435 × ERRFI1 expression) 
+ (–0.27636725 × EIF4E3 expression) + (0.28325690 × 
ATP6AP1 expression) + (0.09527852 × CD24 expression) 
+ (0.22876573 × TMED3 expression) (Figure 2E). This 
formula, in combination with an analysis of the expression 
of the included genes, could provide the risk score. 

Risk model confirmation in the GEO dataset

The risk score for TCGA-BRCA was computed through 
use of the established model. To evaluate the capability of 
our model as a prognostic tool, we divided TCGA-BRCA 
into subgroups based on low- and high-risk scores. The surv_
cutpoint function in the “survminer” R package was applied 
to calculate an optimal cutoff point. Individuals with high-
risk scores demonstrated a shorter median survival time 
than did those with low-risk scores (2,447 and 6,498 days, 
respectively), with a P value of 4.733e−12 according to the 
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Figure 1 The detection of pharmacodynamics-related genes for T cells based on BRCA scRNA-seq data. (A) Highly variable genes in the 
variance analysis; (B) UMAP was used to classify cell populations. (C) T cells from patients with BRCA were divided into 14 subgroups, 
including PR and SD cells. (D) A total of 4,761 DEGs were identified in PR and SD T cells. PC, principal component; UMAP, unified 
matrix polynomial approach; BRCA, breast cancer; PR, partial response; SD, stable disease; DEGs, differentially expressed genes.

Fisher exact test (Figure 3A). The gene expression profiles 
of 13 genes in both the high-risk and low-risk patient of 
TCGA-BRCA were also determined (Figure 3B). The high-
risk group exhibited significantly unfavorable prognoses, 
with an increased chance of cancer-related death in TCGA-
BRCA [hazard ratio (HR) =2.7, 95% confidence interval 
(CI): 2.2–3.3; P<0.0001; Figure 3B]. We also plotted an 
ROC curve, as displayed in Figure 3C, where the time-
dependent ROC graph displays area under the curve (AUC) 
values of 0.75, 0.75, and 0.72 for the 2-, 4-, and 6-year 
OS predictions, respectively. In addition, we validated the 

risk score through GSE58812 (Figure 3D-3F), GSE20711 
(Figure 4A-4C), and GSE20685 (Figure 4D-4F), obtaining 
similar predictive AUC values.

 

Patients’ general information

We further clinically validated the accuracy of the model. 
A comparison of the general information of the two 
patient groups revealed that the patients in the unfavorable 
prognosis group were significantly older than those in 
the favorable prognosis group (50.24±3.23 vs. 48.75±3.16; 



Liu et al. Immune responses to BRCA5606

© AME Publishing Company.   Transl Cancer Res 2024;13(10):5600-5615 | https://dx.doi.org/10.21037/tcr-24-1829

10

5

0

Tu
m

or

0                 5                10
Normal

Up
Normal
Down

0.4

0.2

0.0

−0.2

C
oe

ffi
ci

en
ts

−8      −7      −6      −5      −4      −3
Log, λ

53      53      42      30      19        0

13.4

13.2

13.0

12.8

P
ar

tia
l l

ik
el

ih
oo

d 
de

vi
an

ce

−8      −7      −6      −5      −4      −3
Log, λ

53   53   53   53   50   46   37   35   26   22   13 6  0

A C D

DEGs                       Survival

scRNA

2,578 
(32.9%)

160 
(2.0%) 1,031 

(13.2%)

54 
(0.7%)403 

(5.1%)
446 

(5.7%)

3,166 
(40.4%)

B

APOD 

EMP1 

ANO6 

RARRES1 

PMAIP1 

FAM166B 

DCTPP1 

ABRACL 

ERRFI1 

EIF4E3 

ATP6AP1 

CD24 

TMED3

0.86 (0.79–0.92) 

1.44 (1.18–1.75) 

1.54 (1.15– 2.05) 

0.86 (0.77–0.96) 

0.83 (0.72–0.95) 

0.79 (0.66–0.95) 

1.47 (1.09–2.00) 

1.30 (1.04–1.63) 

0.81 (0.67–0.97) 

0.76 (0.58–0.98) 

1.33 (0.97–1.82) 

1.10 (0.99–1.22) 

1.26 (0.92–1.72)

<0.001*** 

<0.001*** 

0.004** 

0.006** 

0.007** 

0.01* 

0.012* 

0.021* 

0.024* 

0.037* 

0.078 

0.079 

0.153
# Events: 151; Global P-value (Log-Rank): 
8.8886e−15 
AIC: 1638.15; Concordance index: 0.73

0.6          0.8        1      1.2   1.4  1.6 1.8  2  2.2

Hazard ratio (95% CI)E

Figure 2 Prognostic characteristics of T-cell core pharmacodynamics-related genes were constructed via the TCGA dataset. (A) Scatter 
plots of mRNA comparisons. The values of the axes are the average normalized signal values from each group (log2 scaled). (B) Venn 
diagram for DEGs, prognosis-related genes, and T-cell pharmacodynamics-related genes. (C) LASSO coefficient profiles of 54 genes. (D) 
A coefficient profile plot against the log (lambda) sequence. (E) Forest map of multivariate survival evaluation (N=1,075). *, P<0.05; **, 
P<0.01; ***, P<0.001. DEGs, differentially expressed genes; CI, confidence interval; AIC, Akaike information criterion; TCGA, The Cancer 
Genome Atlas; LASSO, least absolute shrinkage and selection operator; scRNA, single-cell RNA.

t=2.138; P=0.03) (Table 1). Compared to those in favorable 
prognosis group, patients in the unfavorable prognosis 
group exhibited significantly larger tumor size (4.25±0.87 
vs. 3.84±0.76 cm; t=2.247; P=0.02), higher tumor T stage 
(37.5% vs. 61.9%; χ2=4.149; P=0.04), greater lymph 
node metastasis (40.62% vs. 65.08%; χ2=4.224; P=0.04), 
and higher clinical stage (34.38% vs. 68.25%; χ2=8.596; 
P=0.003). These findings aligned with the risk factors 
identified in our model, emphasizing the significant impact 
of age and tumor characteristics on prognosis.

Immunity analysis

As shown in Table 2, the levels of CD3+T cells (796.28±292.16 

vs.  948.73±285.34; t=2.423; P=0.01), CD4 +T cells 
(367.38±119.25 vs. 433.26±124.36; t=2.508; P=0.01), CD8+T 
cells (348.69±231.47 vs. 472.35±173.49; t=2.666; P=0.01), 
neutrophils (2.81±1.03 vs. 3.45±1.16; t=2.728; P=0.008), 
lymphocytes (0.99±0.41 vs. 1.28±0.53; t=2.907; P=0.005), 
NK cells (20.14±3.47 vs. 22.05±3.15; t=2.614; P=0.01), 
and TIGIT (33.22±6.43 vs. 36.64±6.22; t=2.480; P=0.01) 
were significantly lower in the unfavorable prognosis 
group than in favorable prognosis group; meanwhile, the 
unfavorable prognosis group had significantly higher levels of 
B cells (4.96±1.16 vs. 4.35±1.03; t=2.533; P=0.01) and CTLA4 
(337.38±23.35 vs. 318.36±23.03; t=3.768; P<0.001). This 
pattern aligned with the tendencies identified in our model, 
indicating the significant impact of immune cells on prognosis.
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Table 1 General information of patients in the favorable prognosis and unfavorable prognosis groups

Parameter Favorable prognosis (n=63) Unfavorable prognosis (n=32) t/χ2 P

Age (years) 48.75±3.16 50.24±3.23 2.138 0.03

BMI (kg/m2) 23.38±3.54 23.87±3.29 0.667 0.50

Race 0.347 0.56

Han 50 (79.37) 27 (84.38)

Others 13 (20.63) 5 (15.62)

Smoking history 8 (12.70) 5 (15.62) 0.006 0.93

Alcohol history 14 (22.22) 9 (28.12) 0.145 0.70

Family history of cancer 4 (6.35) 1 (3.12) 0.032 0.85

Education level 0.016 0.89

Junior high school and below 22 (34.92) 10 (31.25)

Junior high school or above 41 (65.08) 22 (68.75)

Marital status 0.152 0.92

Married 41 (65.08) 22 (68.75)

Divorce 16 (25.40) 7 (21.88)

Other 6 (9.52) 3 (9.38)

Breast surgery 0.291 0.59

Breast conservation 6 (9.52) 5 (15.62)

Mastectomy 57 (90.48) 27 (84.38)

Radiotherapy 0.034 0.85

Yes 44 (69.84) 21 (65.62)

No 19 (30.16) 11 (34.38)

Tumor size (cm) 3.84±0.76 4.25±0.87 2.247 0.02

Tumor staging (T) 4.149 0.04

T1/T2 39 (61.90) 12 (37.50)

T3/T4 24 (38.10) 20 (62.50)

Lymph node involvement 4.224 0.04

N0 41 (65.08) 13 (40.62)

N1-3 22 (34.92) 19 (59.38)

Clinical staging 8.596 0.003

I/II 43 (68.25) 11 (34.38)

III/IV 20 (31.75) 21 (65.62)

Data are presented as mean ± standard deviation or n (%). BMI, body mass index.

OS

The OS prediction of patient prognosis through model 
construction demonstrated high predictive performance. 

We analyzed the OS status of the two patient groups. 

The results revealed that the 6-year OS of the favorable 

prognosis group was significantly higher than that of the 
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Table 2 Immunity analysis

Parameter Favorable prognosis (n=63) Unfavorable prognosis (n=32) t P

CD3+T cell (cells/μL) 948.73±285.34 796.28±292.16 2.423 0.01

CD4+T cell (cells/μL) 433.26±124.36 367.38±119.25 2.508 0.01

CD8+T cell (cells/μL) 472.35±173.49 348.69±231.47 2.666 0.01

B cell (×109/L) 4.35±1.03 4.96±1.16 2.533 0.01

Neutrophil (×109/L) 3.45±1.16 2.81±1.03 2.728 0.008

Lymphocyte (×109/L) 1.28±0.53 0.99±0.41 2.907 0.005

NK cell (%) 22.05±3.15 20.14±3.47 2.614 0.01

CTLA4 (pg/mL) 318.36±23.03 337.38±23.35 3.768 <0.001

TIGIT (%) 36.64±6.22 33.22±6.43 2.480 0.01

Data are presented as mean ± standard deviation. NK, natural killer; TIGIT, T-cell immune receptor with Ig and ITIM domains. ITIM, 
immunoreceptor tyrosine-based inhibitory motif.

Table 3 Overall survival

Parameter Favorable prognosis (n=63) Unfavorable prognosis (n=32) χ2 P

2-year OS 2 (3.17) 4 (12.50) None 0.005

4-year OS 3 (4.76) 7 (21.88)

6-year OS 58 (92.06) 21 (65.62)

Data are presented as n (%). OS, overall survival.

unfavorable prognosis group (92.06% vs. 65.62%; P=0.005), 
emphasizing the potential relationship between OS and 
prognosis status (Table 3).

Correlation analysis

The correlation analysis revealed that worsening prognosis 
was positively correlated with age, tumor size, B cell level, 
and CTLA4 level and was negatively correlated with tumor 
stage (T1/T2), lymph node metastasis (N0), clinical stage 
(I/II), CD3+T cells, CD4+T cells, CD8+T cells, neutrophils, 
lymphocytes, NK cells, TIGIT, and OS (Table 4). As patient 
prognosis deteriorated, the staging increased, indicating 
a significant association between prognosis and tumor 
characteristics and immune response.

Logistic regression analysis

The results of the logistic regression analysis identified 
tumor size, B cell level, age, CTLA4, tumor staging (T), 
lymph node metastasis, and clinical staging independent 
as risk factors associated with worsening prognosis, while 

Table 4 Correlation analysis

Parameter r P

Age (years) 0.218 0.03

Tumor size (cm) 0.237 0.02

Tumor staging (T) −0.231 0.02

Lymph node involvement −0.233 0.02

Clinical staging −0.323 0.001

CD3+T cell (cells/μL) −0.245 0.01

CD4+T cell (cells/μL) −0.248 0.01

CD8+T cell (cells/μL) −0.290 0.004

B cell (×109/L) 0.264 0.01

Neutrophil (×109/L) −0.263 0.01

Lymphocyte (×109/L) −0.266 0.009

NK cell (%) −0.270 0.008

CTLA4 (pg/mL) 0.365 <0.001

TIGIT (%) −0.252 0.010

OS −0.306 0.003

NK, natural killer; CTLA4, cytotoxic T lymphocyte-associated 
protein 4; TIGIT, T-cell immune receptor with Ig and ITIM domains.
ITIM, immunoreceptor tyrosine-based inhibitory motif

https://www.baidu.com/s?wd=cytotoxic T-lymphocyte-associated protein 4&usm=1&ie=utf-8&rsv_pq=86aeb6ef00057f5e&oq=CTLA4%E5%85%A8%E7%A7%B0&rsv_t=aee7qL9MmcED817rDL9AZMxxNIcMDzovKM0mh7FJiVv%2FQKnA8AtoQFxq7Z4&sa=re_dqa_zy&icon=1
https://www.baidu.com/s?wd=cytotoxic T-lymphocyte-associated protein 4&usm=1&ie=utf-8&rsv_pq=86aeb6ef00057f5e&oq=CTLA4%E5%85%A8%E7%A7%B0&rsv_t=aee7qL9MmcED817rDL9AZMxxNIcMDzovKM0mh7FJiVv%2FQKnA8AtoQFxq7Z4&sa=re_dqa_zy&icon=1
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CD3+T cells, CD4+T cells, CD8+T cells, neutrophils, 

lymphocytes, NK cells, and TIGIT were identified as 

protective factors against worsening prognosis (Table 5).

ROC analysis

By combining clinical parameters, we developed a 
composite model to predict the probability of worsening 
prognosis in patients with BRCA. The AUC value of the 
combined model was 0.898 (Figure 5), demonstrating a 
significantly high predictive value of the relevant clinical 
features in identifying the occurrence of deteriorating 
prognosis in patients with BRCA.

Discussion

Development of a predictive model for patients with BRCA

This study aimed to enhance the current landscape of 
prognostic modeling by incorporating immune cell 
signatures within the context of BRCA. The utility of 
immune cell signatures has been extensively investigated 
in previous studies (35,36); however, our work introduces 
several innovative aspects that represent a significant 
advancement. Notably, we integrated a multimodal 
approach to delineate the intricate interplay between 
immune cell dynamics and tumor behavior within the 
microenvironment. By capturing the heterogeneity and 
functional states of tumor-infiltrating immune cells, our 

Table 5 Logistic regression analysis

Parameter Odds ratio 95% CI Beta P 

Age (years) 1.162 1.013–1.348 0.150 0.03

Tumor size (cm) 1.930 1.111–3.569 0.658 0.02

Tumor staging (T) 0.369 0.15–0.877 −0.996 0.02

Lymph node involvement 0.367 0.15–0.872 −1.002 0.02

Clinical staging 0.244 0.096–0.589 −1.412 0.002

CD3+T cell (cells/μL) 0.998 0.996–1.000 −0.002 0.02

CD4+T cell (cells/μL) 0.996 0.992–0.999 −0.004 0.01

CD8+T cell (cells/μL) 0.997 0.994–0.999 −0.003 0.006

B cell (×109/L) 1.705 1.137–2.655 0.534 0.01

Neutrophil (×109/L) 0.592 0.381–0.881 −0.524 0.01

Lymphocyte (×109/L) 0.296 0.108–0.735 −1.216 0.01

NK cell (%) 0.837 0.723–0.956 −0.178 0.01

CTLA4 (pg/mL) 1.038 1.017–1.063 0.037 <0.001

TIGIT (%) 0.915 0.846–0.981 −0.089 0.01

CI, confidence interval; NK, natural killer; TIGIT, T-cell immune receptor with Ig and ITIM domains; OS, overall survival. ITIM, 
immunoreceptor tyrosine-based inhibitory motif.
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Figure 5 ROC analysis of the model combined with the clinical 
features of breast cancer. ROC, receiver operating characteristic; 
AUC, area under the curve.
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objective was to provide a more sophisticated and dynamic 
prognostic framework, potentially revealing previously 
unrecognized immune subtypes and their prognostic 
implications. Furthermore, the incorporation of machine 
learning algorithms and network-based analyses enabled 
the identification of key immune modulatory pathways 
and predictive biomarkers, thus enriching the prognostic 
armamentarium for personalized therapeutic interventions.

The significant impact of TILs on the prognosis and 
response to chemotherapy and immunotherapy in the BRCA 
population has been extensively demonstrated through 
numerous investigations (37-39). In a recent study (40),  
researchers employed the CIBERSORT algorithm to 
estimate the proportions of 22 immune cell types in 
nearly 11,000 individuals with BRCA and discovered a 
significant association between immune suppressor cells 
and unfavorable prognosis, while T follicular helper cells 
exhibited a correlation with chemotherapy response in 
estrogen receptor-negative patients with BRCA. Similarly, 
another study (41) evaluated the association between TILs 
and response and survival in 3,771 patients with BRCA who 
received neoadjuvant therapy. The results indicated elevated 
levels of TILs were linked to a favorable outcome in human 
epidermal growth factor receptor 2-positive or triple-
negative BRCA. Consequently, the quantification of TILs 
may provide innovative options for personalized treatment 
and enhanced prognostication for individuals with BRCA.

Our study focused on assessing the comparative 
quantitative levels of 1,971 immune cell signatures in an 
extensive BRCA sample. Furthermore, we overlapped DEGs, 
prognostic-related genes, and T cell pharmacodynamics-
related genes to obtain 54 T-cell core pharmacodynamics-
related genes. To construct a clinical prognostic model, 
the dimensionality of 54 prognostic genes was reduced by 
employing the LASSO Cox regression model. By applying 
the LASSO model, we identified 26 genes and established 
a prognostic model based on OS information through 
conducting Cox analysis. The reliability of the model 
was assessed via GEO datasets (GSE58812, GSE20711, 
GSE20685), and thorough analysis confirmed that the 
model has good predictive value for OS.

Clinical validation of the prediction model

By screening the database of patient genes and constructing 
a risk factor model, we identified several factors influencing 
patient prognosis and clinically validated them. The results 
revealed that age, tumor size, tumor staging (T), lymph 

node metastasis, clinical staging, CD3+T cells, CD4+T cells, 
CD8+T cells, B cells, neutrophils, lymphocytes, NK cells, 
TIGIT, and OS were all factors associated with a poor 
prognosis in patients with BRCA. These factors overlapped 
with the risk factors identified through genetic screening, 
highlighting the significant association between tumor 
characteristics, immune response, and patient prognosis. 
Additionally, we developed a combined model of clinical 
parameters that confirmed the diagnostic value of these risk 
factors for worsening prognosis in patients with BRCA.

The immune system plays a crucial  role in the 
initiation, progression, and control of tumors. Levels of 
lymphocytes in the TME are correlated with the response 
to chemotherapy and prognosis. Immune checkpoint 
inhibitors, such as CTLA4 and TIGIT, work by blocking 
immune checkpoints on tumor cells,  reducing the 
transmission of immune-suppressive signals and enhancing 
the cytotoxicity and proliferation capacity of lymphocytes. 
BRCA has historically been considered to have poor 
immunogenicity, which accounts for the slow progress in 
immunotherapy research in this field. As immunotherapy 
continues to be advanced in other types of cancer, the 
research on its application in BRCA is intensifying.

By combining genetic data with clinical characteristics, 
we developed a predictive model that integrates tumor 
biology outside the clinical realm, providing more refined 
information and target support for drug selection in modern 
treatment settings. Broadly speaking, the comprehensive 
analysis of relevant molecular markers can help facilitate 
the timely assessment of malignancy, the prediction of 
metastasis, the determination of prognosis, and ultimately, 
satisfactory tumor control through the selection of 
appropriate treatment strategies. 

Limitations

It is essential to recognize that the immune cell signature-
based prognostic model, although derived from robust 
multiomics analyses and validated across diverse patient 
cohorts, may have inherent constraints that warrant 
consideration. First, the reliance on retrospective data 
and publicly available datasets introduced the potential 
for sampling bias and factors that could distort the results, 
which could hinder upon the generalizability of the model 
to broader clinical populations. Moreover, the prognostic 
model’s reliance on gene expression profiles and immune 
cell infiltration assessment may not fully capture the 
dynamic and evolving nature of the TME over the course 
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of disease progression and in response to therapeutic 
interventions. The variability in sources and collection 
methods of these data, along with the potential inclusion of 
various confounding factors, may reduce the reliability and 
efficacy of our model. Furthermore, as with any predictive 
model, the clinical applicability and utility of our prognostic 
model in informing medical decisions and improving 
patient outcomes should be validated in prospective 
research conducted in real-world clinical settings.

Conclusions

We developed a predictive model analyzing the OS and 
prognosis of patients with BRCA and found that this 
model possesses significant predictive value. The risk 
factors identified through genetic screening have been 
clinically validated. Specifically, tumor characteristics and 
immunotherapy are the critical factors for the prediction of 
prognosis in patients with BRCA. 
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