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Abstract

Over the past several decades, coral reef ecosystems have experienced recurring bleach-

ing events. These events were predominantly caused by thermal anomalies, which vary

widely in terms of severity and spatio-temporal distribution. Acropora corals, highly promi-

nent contributors to the structural complexity of Pacific coral reefs, are sensitive to thermal

stress. Response of Acropora corals to extremely high temperature has been well docu-

mented. However, studies on the effects of moderately high temperature on Acropora corals

are limited. In the summer of 2016, a moderate coral bleaching event due to moderately

high temperature was observed around Sesoko Island, Okinawa, Japan. The objective of

this study was to examine thermal tolerance patterns of Acropora corals, across reefs with

low to moderate thermal exposure (degree heating weeks ~2–5˚C week). Field surveys on

permanent plots were conducted from October 2015 to April 2017 to compare the population

dynamics of adult Acropora corals 6 months before and after the bleaching events around

Sesoko Island. Variability in thermal stress response was driven primarily by the degree of

thermal stress. Wave action and turbidity may have mediated the thermal stress. Tabular

and digitate coral morphologies were the most tolerant and susceptible to thermal stress,

respectively. Growth inhibition after bleaching was more pronounced in the larger digitate

and corymbose coral morphologies. This study indicates that Acropora populations around

Sesoko Island can tolerate short-term, moderate thermal challenges.

Introduction

Coral reef ecosystems worldwide are being challenged by increasing global and local anthropo-

genic stress. Stressors can affect individual performance, community species composition, and

consequently, ecosystem function [1–4]. Coral bleaching is caused by the collapse of the mutu-

alistic relationship between host corals and their symbiotic algae and it is a major threat to the

health and survival of coral reefs. Bleaching occurs mainly in response to rising average sea

surface temperature (SST) with strong irradiance [5–8]. Bleached corals are physiologically
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stressed and this affects growth and mortality in coral populations [9,10]. Consequently, coral

bleaching may transform the structure and functional diversity of coral communities [11].

In addition to its immediate effects, bleaching may also have long-term effects on corals

after temperatures have returned to normal. Omori et al. [12] reported that the fertilization

rates of Acropora corals decreased by ~50% in 1999 following the 1998 mass bleaching event

on Aka Island in the Ryukyus. The bleaching event may have reduced sperm motility. Ward

et al. [13] also reported zero reproductive output of both bleached and recovered corals on

Heron Island, Great Barrier Reef (GBR), after the 1998 bleaching event. Muko et al. [14] found

that the coral recruitment rates after bleaching events were lower than those before on Irio-

mote Island in the Ryukyus. The prolonged effects of bleaching on coral growth are inconsis-

tent. Some studies reported reduced coral growth after a thermal anomaly [15], while others

indicated that the growth rates of surviving colonies were unaffected by bleaching [14]. High

coral mortality rates are typical immediately following a severe bleaching event [10,16–18]. In

contrast, extended or prolonged coral mortality 6–8 months after a bleaching event was

observed at the GBR [11]. Understanding the risks and mechanisms of the long-term pro-

longed effects of bleaching on coral populations will help us to predict future shifts in coral

community health and functioning.

Many coral reefs globally, including those in the Ryukyu Islands of Japan, experienced a

severe bleaching event in 1998 [19]. At Sesoko Island, the corals were severely affected by this

bleaching event [20]; up to 85% of the hard and soft coral cover was lost. The massive hard

coral morphologies, like Porites, were the survivors, whereas the branching hard coral mor-

phologies such as Acropora and the pocilloporids were more severely affected [20]. Similar

morphology-specific bleaching susceptibility has been reported for other coral reefs [21,22]. In

2016, severe bleaching events (>60% corals bleached) occurred on many reefs worldwide [11],

including the Ryukyu Islands [23]. Nevertheless, bleaching-induced mortality of Acropora cor-

als (thermally vulnerable taxa in the 1998 bleaching event) [20] was lower in 2016 than it was

in 1998 on the Sesoko Island reef; all Acropora colonies larger than 10 cm in diameter died

during the 1998 bleaching event [20]. In this study, we observed the effects of moderate ther-

mal stress on branching Acropora corals. This genus dominates in many reefs in the Ryukyu

Islands. Its member species show high morphological diversity and provide a three-dimen-

sional habitat for other reef organisms.

The life history and morphological traits of corals may determine their thermal stress toler-

ance. It has been postulated that compared to fast-growing branching species, slow-growing

massive species have higher thermal tolerance [11,22,24–26]. Morphological traits have been

assessed at the polyp and colony levels. The thicker polyp tissue of massive corals compared to

that of branching corals provides shade for the symbiotic algae within the coral cells via polyp

tissue retraction. This feature may, in part, account for the relatively higher thermal tolerance

of massive corals [19,20,27]. At the colony level, interspecific variations like encrusting vs.

branched colonies and intraspecific variation such as small vs. large colonies have been dis-

cussed in terms of their relative differences in mass flux rate. High mass flux rates are associ-

ated with the efficient removal of oxidative metabolites by diffusion [20,28].

Acropora corals most commonly have a branching colony morphology. However the genus

is morphologically diverse and includes corymbose, digitate, tabular, and arborescent forms

[29]. In this study, we excluded tissue thickness from the discussion of thermal tolerance dif-

ferences because all Acropora corals have similar tissue thickness [20]. We therefore evaluated

the effects of colony morphology and growth on thermal stress tolerance among various Acro-
pora species. We also compared the effects of thermal stress after bleaching events on the

growth of colonies of different sizes within the same species.

Moderate thermal anomalies and Acropora
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Seawater temperature, cloud cover, wind force, seawater turbidity, reef microhabitat structure

(such as coral overhang and crevices), water flow, wave action, and depth may all reduce thermal

stress and cause coral bleaching response heterogeneity on a small spatial scale (�tens of km)

[21,30–33]. Degree heating weeks (DHW) is an index of accumulated heat exposure over 12

weeks [34–37], and therefore it considers both intensity and duration of thermal exposure. DHW

of 4˚C-week usually results in significant bleaching and 8˚C-week results in critical, wide-spread

bleaching and significant mortality [35]. Following these criteria, DHW between 4–8˚C-week are

defined as representing a moderate thermal anomaly in this study. DHW has been widely used to

quantify bleaching thresholds and to asses thermal stress variability on a large spatial scale

(�hundreds of km) [38–40]. Small-scale thermal disparity and consequent differential bleaching

responses have been observed [33,41]. Nevertheless, to the best of our knowledge, no studies have

used DHW to determine thermal exposure variability on a small spatial scale.

In the present study, we explored the prolonged or extended effects of bleaching in Acro-
pora corals. We compared Acropora coral population dynamics before and after a moderate

thermal anomaly in different environmental regimes and examined whether (1) bleaching

prevalence is driven primarily by the degree of thermal exposure, (2) Acropora demographic

rates recover after the temperature returns to normal, and (3) Acropora colony morphological

traits determine inter and intraspecific differences in thermal stress tolerance.

Methods

Ethics statement

No permission was required to survey coral reefs in the study area. Only digital images of cor-

als were collected, no fauna or flora were collected or manipulated in this study.

Study area

This study was conducted around Sesoko Island, Japan (26.646˚N, 127.86˚E, Fig 1) between

October 2015 and April 2017. Field surveys were conducted four times, in October 2015, April

2016, October 2016, and April 2017. Sesoko Island is situated near the northern Okinawa

Island in the Ryukyu Islands. Five sites around Sesoko Island were selected: Hamamoto

(26.671672˚N, 127.882922˚E), Yakkai (26.663028˚N, 127.873797˚E), Sesoko Station

(26.63598˚N, 127.8661046˚E), Sesoko South (26.63005˚N, 127.858125˚E), and Sesoko West

(26.641375˚N, 127.856147˚E).

The influence of variability in the degree of thermal anomalies and other environmental

parameters on bleaching on a small spatial scale was evaluated (~5 km). The study area had

varying degrees of thermal exposure, anthropogenic stress/turbidity, and wave exposure

(Table 1). Seawater temperature in the reefs was measured continuously, but anthropogenic

stress and wave exposure were assessed qualitatively. Two rivers were situated near our study

sites. Nitrate (NO3) concentration in river 1 and 2 ranged from 0.7 ± 0.1 (mean ± SD) to

70.7 ± 27.9 μM and 2.8 ± 1.8 to 56.4 ± 1.7 μM, respectively (further details in S1 File). Suspended

particulate matter in river 1 from 1976 to 1996 was 19.2 ± 22.7 mg/L [42]. Additionally, consid-

erable pesticides such as diuron (<0.7 μg kg−1), irgarol (<0.016 μg kg−1), and chlorpyrifos

(<0.41 μg kg−1) have been previously detected in sediments of river 1 [43]. Hence, the distance

from the two rivers to the study area (Fig 1) is provided as a proxy for anthropogenic stress.

Temperature and Degree Heating Week (DHW) Measurement

One temperature logger was deployed at each study site from April 2016 to April 2017. From

April 2016 till October 2016 HOBO water temp pro v2 (Onset, Cape Cod, MA, USA) was
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Fig 1. Map of Sesoko Island showing study area. Differently colored rhombuses represent study sites. Dotted lines

represent reef edges.

https://doi.org/10.1371/journal.pone.0210795.g001

Table 1. Environment variability at study sites around Sesoko Island.

Proxy for Anthropogenic Stress

Site Depth -High tide Distance from the shore Distance—river 1 Distance—river 2 Turbidity Wave Exposure Thermal exposure

Hamamoto 2 m 0.59 km 1.33 km 2.23 km High Low Intermediate

Yakkai 2 m 1.06 km 1.53 km 1.29 km High Low Intermediate

Sesoko Station 2 m 0.08 km 3.88 km 2.19 km Intermediate Intermediate High

South Sesoko 3 m 0.07 km 5.26 km 3.58 km Low High Intermediate

West Sesoko 4 m 0.08 km 4.66 km 3.82 km Low Moderate Low

https://doi.org/10.1371/journal.pone.0210795.t001

Moderate thermal anomalies and Acropora

PLOS ONE | https://doi.org/10.1371/journal.pone.0210795 January 30, 2019 4 / 20

https://doi.org/10.1371/journal.pone.0210795.g001
https://doi.org/10.1371/journal.pone.0210795.t001
https://doi.org/10.1371/journal.pone.0210795


deployed, and from October 2016 to April 2017 HOBO pendant loggers (Onset, Cape Cod,

MA, USA) were deployed. Hourly temperature data were collected from all sites. Weekly

mean temperatures per site were calculated from the hourly temperature data set. Then weekly

hotspots per site were calculated by subtracting the weekly mean temperature from the maxi-

mum monthly mean (28.9˚C) temperature of Okinawa, which was obtained from National

Oceanic and Atmospheric Administration (NOAA) coral reef watch website [38]. DHWs were

calculated by summating the average weekly temperatures of hotspots (�1˚C) of the previous

12 weeks [35–37].

Survey design

A hierarchical survey design was followed. At each site, two sub-sites ~30–60 m apart were

selected. At each sub-site, two permanent 2 m × 2 m quadrats ~10 m apart were established.

Each quadrat was divided into sixteen 50 cm × 50 cm sub-quadrats. A picture of each sub-

quadrat was taken perpendicular to the quadrat plane using a digital camera (Canon S95 in

Canon WP-DC38 waterproof case; Canon Inc., Tokyo, Japan) fitted with a wide-angle lens

(INON UWL-H100 28M67, 0.60 mm; INON Inc., Japan). Close-up images were taken of all

small colonies not detectable in the 50 cm × 50 cm images. Five-centimeter scales were placed

on or near all Acropora colonies for precise image calibration.

Adult Acropora size and void ratio

Projected area, branch spacing (S; n�10–20/colony), and branch diameter (d; n�10–20/col-

ony) were determined from the digital images with ImageJ v.1.51a [44]. Calibrations were

made using the 5-cm scales. All Acropora colonies >5 cm in diameter were assumed to be

adults. These were classified into four morphological groups: arborescent, tabular, corymbose,

and digitate (S1 Fig). Arborescent colony boundaries could not be determined; therefore, the

growth rates of this colony morphology were not measured, and they were removed from the

analysis. To monitor colony growth, a projected colony area was measured at all sites in Octo-

ber 2015, April and October 2016, and April 2017. Void Ratio (VR) is defined as the porosity

of a coral, i.e., the volume of open space in a coral relative to closed space[45]. Coral morpholo-

gies with higher void ratios have been shown to have higher mass flux rates [45], while higher

mass flux rates have been attributed to bleaching or thermal tolerance of corals [20]. VR was

calculated to test if different Acropora morphologies had similar VR and thermal susceptibility

patterns in this study. The following formula was used [45]:

(VR = (average S + average d)/average d). VR was measured only at Sesoko Station in

March 2018 because spatial variation in the VR of a species is expected to be negligible [45].

VR was measured for nine colonies of digitate and four colonies of each corymbose and tabu-

lar morphologies.

Bleaching prevalence

Bleaching prevalence was visually assessed during the October 2016 survey. Here, bleaching is

defined as when colonies exhibited a pale color and could be partial bleaching or complete

bleaching. The bleaching prevalence for all morphologies at each site was expressed as a per-

centage of the total number of bleached colonies.

Statistical analysis

Semi-annual growth and partial mortality were calculated for two time periods. Time period

one (t1) was from October 2015 to April 2016. Time period two (t2) was from October 2016 to

Moderate thermal anomalies and Acropora
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April 2017. SST was higher than normal in the summer of 2016 (S2 Fig) and corals including

Acropora spp. bleached (see results; [23]); therefore, t1 and t2 were defined as before and after

the bleaching period, respectively. Only adult colonies first observed in the October 2015 sur-

vey and still alive in all subsequent surveys (433 colonies) were included in the growth analysis.

Growth was expressed as the change in colony size within the projected area. Herein, the

terms positive, zero, and negative (partial mortality) refer to growth.

The growth dataset was also split according to colony morphology (tabular, digitate, and

corymbose). Sites with<5 colonies per morphology per time period were removed from the

analysis. Thus, digitate and tabular morphologies were not included in the analysis at Hama-

moto and Yakkai, respectively. Outlier colonies for growth decrements were assessed by Cleve-

land dot charts (S3 Fig) [46] and subsequently one tabular colony (−2986 cm2/6 months), and

two corymbose (�−158 cm2/6 months) and digitate colonies (�−732 cm2/6 months) with the

highest growth decrements were also removed from the analysis. Colony size was log-trans-

formed in the analyses. A linear mixed regression model was developed using time period, site,

initial size (as a covariate), and their interactions as fixed effects, and sub-sites and quadrats as

random effects. As random effects did not improve the model fit nor had significant effect,

they were removed from the model. Residual plots, however, suggested heterogeneity across

all explanatory variables. We attempted to resolve this issue by following alternative methods.

Growth data were transformed with the following formula: sign(value) × (absolute

(value))1/2. This formula is appropriate for datasets with both negative and positive values.

Transformed growth data were then modelled using simple linear regression (Ordinal Least

square /OLS) and Partial Least Square (PLS) regression. PLS regression is a robust technique,

which is useful when several explanatory variables with multicollinearity are present. We also

modelled untransformed growth data by Generalized Least Square (GLS) regression. In this

method a variance structure for variables showing heterogenous patterns can be included in

the model as weight. Parsimonious GLS models were chosen by first selecting a variance struc-

ture and then an explanatory variable combination. Models with all explanatory variables and

different combinations of variance structure were fitted. The best variance structure was

selected by comparing Akaike Information Criteria (AIC) values of all GLS models. Variance

in the Ln-size was specified by a varPower function for all morphologies. Variances in both

site and time were specified for tabular colonies by a varIdent function. Only time and site

were specified for digitate and corymbose colonies, respectively. The best explanatory variable

combination was selected by stepwise backward variable elimination, to find a model with the

lowest AIC values for both OLS and GLS regression. If the difference in the AIC of two models

was less than two, then the model with the least number of parameters was selected as the best

fit model. Best fit PLS regression models were constructed based on Variable Importance

(VIP) and coefficient values of explanatory variables. Best-fit GLS plots showed (S4–S6 Figs)

homogenous residual patterns, whereas best-fit OLS and PLS models showed heterogenous

residual patterns. OLS and PLS regression models were therefore discarded. To test for the sig-

nificance of each variable, marginal ANOVA was performed on the best-fit GLS growth mod-

els. Further post-hoc tests by pairwise comparisons of least square means with Tukey

adjustments were performed, to test for significance within each interaction term. Normal dis-

tribution of the best-fit GLS model’s residuals were observed.

Whole colony mortality rates were calculated for t1 and t2. Mortality was also calculated

immediately after bleaching from April 2016 to October 2016 (tbl). There were 560 colonies

examined in t1, 522 in tbl, and 476 in t2. Dead colonies were assigned a value of 1 and living

colonies were given a value of 0. Various binomial Generalized Linear Model (GLM) regres-

sions were applied with a logit link function. First, temporal variations were tested at different

sites (all morphological categories were pooled by site). Significant temporal variations were
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observed only at Sesoko Station; therefore, the three best-fit binomial GLM models were devel-

oped for each time period. The following explanatory variables were included in these models:

site, time, Ln-size, colony morphology, and their interactions. Stepwise backward variable

elimination was carried out, to find a model with the lowest AIC values. χ2 tests were carried

out on GLM models to test for the significance of each variable. Post-hoc tests by pairwise least

square means comparison with Tukey adjustment was performed to test for significance

within the interaction terms.

One-way ANOVA and pairwise comparison of least square means with Tukey adjustment

methods were used to test if VR differed among morphology groups. GLS and GLM model

specification and selection protocols were based on Zuur et al. [46] and Zuur et al. [47], respec-

tively. PLS analysis was carried out using JMP Pro 13 software (SAS Institute Inc., Cary, NC).

All other analyses were performed using R v. 3.3.3 [48] and the following packages: nlme [49],

lmertest [50], stat, car [51], lsmeans [52], multcomp [53], AICcmodavg [54], and ggplot2 [55].

Results

Species composition

Corals with corymbose morphologies (N = 146) comprised Acropora digitifera, A. nasuta, A.

latistella, A. cerealis, A. nana, and A. valida. Those with digitate morphologies (N = 328) com-

prised A. gemmifera, A. monticulosa, A. humilis, a few colonies of A. digitifera, and A. nasuta.

Those with tabular colonies (N = 69) comprised the A. hyacinthus species complex [56] and A.

cytherea.

Degree heating week (DHW)

DHW reached above the significant bleaching level of 4˚C-weeks only at Sesoko Station (1.4 to

5.4˚C-weeks, Fig 2). Whereas, the DHW at Hamamoto and Yakkai reached just below the sig-

nificant bleaching level (1 to 3.9˚C-weeks, Fig 2). DHW at South Sesoko and West Sesoko ran-

ged from 1.1 to 3.5˚C-weeks and 1 to 2.3˚C-weeks, respectively (Fig 2). The duration of�1˚C-

weeks DHW was 13 weeks at West Sesoko and 16 weeks at all other sites. In this study, Sesoko

Station experienced a moderate thermal anomaly, West Sesoko experienced a low thermal

anomaly, and Hamamoto, Yakkai, and South Sesoko experienced an intermediate thermal

anomaly.

Spatial variation in the degree of bleaching

The degree of bleaching of Acropora corals was variable among sites. In October 2016, bleach-

ing was observed mainly at Sesoko Station (Fig 3). All colonies of all morphologies were

bleached at Sesoko Station. At South Sesoko, 9.6% of the digitate colonies were bleached but

the tabular and corymbose colonies were not affected. None of the colonies were bleached at

West Sesoko, Hamamoto, or Yakkai.

Spatio-temporal variation in growth

Seventeen possible GLS regression models were fitted to analyze the spatio-temporal variation

in the growth of each Acropora morphology. Models with the lowest AIC values were selected

as the best-fit models (Table 2). Pseudo R2 values for the best-fit models describing the digitate,

corymbose, and tabular growth rates were 30.6%, 45.8%, and 75.7%, respectively. The results

of the ANOVA carried out on the best-fit GLS models indicated that all morphologies showed

site-specific growth and Ln-size relationship (Initial size*Site—p<0.001 for all morphologies;

Table 3). The decrease in growth of the digitate colonies was both site and initial size-specific
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(digitate: Time*Site—p<0.001; Time*Initial size—p = 0.001; Table 3), whereas it was only

size-specific for corymbose colonies (Time*Initial size—p = 0.005; Table 3).

Fig 3. Spatial variation in bleaching prevalence (percent of bleached colonies) of the different Acropora
morphologies around Sesoko Island in October 2016. Sample numbers per group are in blue text.

https://doi.org/10.1371/journal.pone.0210795.g003

Fig 2. Spatio-temporal variation in DHW around Sesoko Island. Dashed line at 4˚C-weeks indicates the significant

bleaching level.

https://doi.org/10.1371/journal.pone.0210795.g002
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Site-specific decline in growth

The results of the ANOVA tests carried out on the best-fit models indicated that growth did

not decrease significantly in the tabular colonies during t2 (Time*Site—p = 0.057; Time—p =

0.116; Table 3;Table A in S2 File). The post hoc tests on the Time*Site term, however, showed

that growth of tabular colonies declined in t2 only at Sesoko Station (p = 0.039; Table 4 and Fig

4). The post hoc tests for the digitate colonies showed that growth declined significantly at

both Sesoko Station and West Sesoko in t2 (Sesoko Station p<0.001, West Sesoko p = 0.001;

Table 4 and Fig 4). The Site*Time interaction term was not present in the best-fit growth

model of corymbose colonies.

Colony size-specific decline in growth

For both corymbose and digitate colonies, the slopes of the regression between initial size and

growth declined significantly in t2 (Time*Initial size p = 0.005 and 0.001 for corymbose and digi-

tate respectively; Table 3 and Table A in S2 File and Fig 5A and 5B). At both Sesoko Station and

South Sesoko, the positive correlations detected between initial size and growth in t1 became neg-

ative in t2. The size-specific growth decline was spatially variable (Fig 5). Overlapping confidence

Table 2. AIC values of different GLS models of growth for each morphology. Best-fit models with lowest AIC values for each morphology are bolded and underlined.

“*” Denotes an interaction between two variables.

Model No. Model Parameters Digitate AIC Values Corymbose AIC Values Tabular AIC values

M full Initial size + Site + Time + Initial size*Site + Initial size*Time + Site*Time 5039.2 2276.9 1393.2

M1 Initial size + Site + Time + Initial size*Time + Site*Time 5052.0 2297.1 1403.0

M2 Initial size + Site + Time + Initial size*Site + Site*Time 5048.6 2283.8 1392.0

M3 Initial size + Site + Time + Initial size*Site + Initial size*Time 5059.9 2276.3 1396.6

M4 Initial size + Site + Time + Site*Time 5068.3 2303.0 1401.8

M5 Initial size + Site + Time + Initial size*Site 5065.1 2282.2 1394.8

M6 Initial size + Site + Time + Initial size*Time 5076.1 2289.9 1404.1

M7 Site + Time + Site*Time 5067.7 2317.1 1450.4

M8 Initial size + Site + Initial size*Site 5068.3 2282.7 1393.2

M9 Initial size + Time + Initial size*Time 5132.0 2294.9 1408.2

M10 Initial size + Site + Time 5085.6 2297.0 1402.5

M11 Initial size + Time 5136.5 2300.9 1407.4

M12 Initial size + Site 5084.8 2295.9 1400.9

M13 Site + Time 5083.8 2310.7 1448.6

M14 Time 5137.7 2335.3 1452.5

M15 Site 5083.3 2315.6 1447.8

M16 Initial size 5139.7 2300.1 1405.7

https://doi.org/10.1371/journal.pone.0210795.t002

Table 3. F & p values of ANOVA tests carried out on best-fit GLS growth models. Gray cells indicate that these terms were not included in the best-fit model.

Model Parameters Digitate Corymbose Tabular

F value p value F value p value F value p value

Time 0.38 0.540 6.32 0.013 2.50 0.116
Site 4.09 0.007 3.98 0.004 5.54 0.001

Initial size 1.47 0.226 10.31 0.002 22.99 <0.001
Time*Site 8.89 <0.001 2.58 0.057

Site*Initial size 6.21 <0.001 6.18 <0.001 6.46 0.001
Time*Initial size 11.34 0.001 8.24 0.005

https://doi.org/10.1371/journal.pone.0210795.t003
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intervals at t1 and t2 for all colony morphologies at Hamamoto, South Sesoko, and Yakkai indi-

cated that Acropora growth was less severely affected during t2 than it was at West Sesoko and

Sesoko Station. At the latter two sites, the intervals did not overlap. At all sites, the slopes were

parallel at t1 and t2 for the tabular colonies. In contrast, the slopes were not parallel at t1 and t2

for the corymbose and digitate colonies at all sites. Hamamoto and Yakkai were not included in

the digitate and tabular morphology datasets respectively, due to low sample size. There were sig-

nificant interactions between initial size and time for the digitate (p = 0.001; Table 3) and corym-

bose (p = 0.005; Table 3) morphologies. This interaction was excluded from the best model for

tabular morphology because it increased the AIC and was not significant (p = 0.417).

Table 4. Post-Hoc tests for the Site*Time term used in the best-fit growth models of all morphologies. Least-square means of growth are compared between different

site pairs. The results are averaged over the levels of Site. The level of significance was 0.05. Df = degrees of freedom; SE = standard error.

Morphology Site Time pairs Estimate Std. Error Df t-ratio p value

Digitate Sesoko Station t1-t2 50.71 8.53 479 5.95 <0.001
South Sesoko t1-t2 6.58 5.68 479 1.16 0.248
West Sesoko t1-t2 20.77 5.44 479 3.82 0.001

Yakkai t1-t2 15.00 10.38 479 1.45 0.149

Corymbose Site*Time interaction term was not included in the best-fit model

Tabular Hamamoto t1-t2 149.93 94.78 106 1.58 0.117
Sesoko Station t1-t2 92.86 44.39 106 2.09 0.039
South Sesoko t1-t2 71.42 62.52 106 1.14 0.256
West Sesoko t1-t2 1.33 5.78 106 0.23 0.820

https://doi.org/10.1371/journal.pone.0210795.t004

Fig 4. Spatio-temporal growth variation among Acropora morphologies at different study sites. Left and right bars of each pair

represent growth in t1 and t2, respectively. Stars represent significant decrease of growth in t2.

https://doi.org/10.1371/journal.pone.0210795.g004
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Morphological variations in mortality after bleaching event

Spatio-temporal variation in mortality rates was tested using a binomial GLM. χ2 tests on this

GLM model showed that temporal variation in mortality rates was site specific (Time*Site p =

0.024; Table 5 and Fig 6). It was significant at Sesoko Station, but not at the other sites (p ran-

ged from 0.121–1.000; Table 6 and Fig 6). Mortality rates increased significantly from <2% in

t1 to 35% in tbl (p<0.001) and 24% in t2 (p = 0.001) at Sesoko Station (Table B in S2 File). At

Sesoko Station in t1 and tbl, null models were the best-fit models with the lowest AIC values

Fig 5. Initial size and growth relationship. Spatio-temporal variation in initial size and growth relationship of corymbose (A), digitate (B), and tabular (C) colonies. Line

represents predicted slopes and 95% confidence intervals at different time periods.

https://doi.org/10.1371/journal.pone.0210795.g005
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(Table B in S2 File). Mortality rates at Sesoko Station were independent of initial size and mor-

phology in t1 and tbl (Table B in S2 File). In t2, two models, one with only morphology and

another with only morphology and initial size (Model no. 2 and 4; Table B in S2 File) as

explanatory variables were the best-fit models. χ2 test of Model no. 4 showed that morphology

had a significant effect (p = 0.047) while initial size (p = 0.145; Table C in S2 File) did not have

a significant effect on mortality rates. In t2, mortality was observed in 41% (n = 37) digitate

colonies, 5% (n = 20) corymbose colonies, and none of the tabular colonies (n = 6). At West

Sesoko, 77% (n = 9) of colonies that died during t2 were also digitate.

VRs

VR varied significantly with morphology (p value = 0.004, Table D in S2 File). Digitate colonies

had lowest VR of 1.46 ± 0.18 (Table 7). Corymbose colonies had a significantly higher VR than

digitate colonies (p = 0.004, Table E in S2 File). VR of tabular colonies was similar to both cor-

ymbose (p = 0.425) and digitate colonies (p value = 0.068).

Discussion

The results of the present study indicate that the degree of coral bleaching may vary among

reefs within a small spatial range, such as several kilometers, primarily owing to the relative

Table 5. χ2 tests on spatio-temporal variability of GLM fitted mortality rates (all morphologies pooled).

Model Parameters Mortality Rates

Pr (>Chisq) Chisq

Time 1.09 0.580
Site 6.47 0.170

Time*Site 17.61 0.024

https://doi.org/10.1371/journal.pone.0210795.t005

Fig 6. Spatial variations in mortality at different time periods. Letters represent significantly different groups. Error

bars denote standard deviation. Sample size per treatment is below the graphs in blue text. t1: time period 1; tbl: 1

month after bleaching; t2: 6 months after bleaching. Different morphology categories are pooled by site.

https://doi.org/10.1371/journal.pone.0210795.g006
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differences in thermal exposure among reefs (Figs 2, 3 and S2). The maximum daily tempera-

ture and daily temperature fluctuations were significantly higher at Sesoko Station than at all

other sites within a 5 km range (S2 Fig and S3 File), in addition the DHW at Sesoko Station

was also highest (Fig 2). Compared to other shallow sites (Hamamoto and Yakkai) Sesoko Sta-

tion was also closest to the shore (Table 1). This might explain the higher temperature regime

at this site. Sesoko Station was the only site where all Acropora colonies were bleached irrespec-

tive of their morphology in the summer of 2016 (Fig 3). Bleaching-induced mortality and sup-

pressed growth rates were observed for all morphologies following the bleaching event only at

Sesoko Station. Relative to global bleaching events, Sesoko station was exposed to moderate

thermal stress [4,23]. Moderate thermal anomalies are known to elicit a stress response in cor-

als. For example, some sites at Florida Keys experiencing DHW�3˚C-weeks resulted in a loss

of 5% Shannon diversity [57]. Moderate temperature anomalies (+ 1.8˚C) at Aka Island, Oki-

nawa, Japan resulted in narrower size-class distribution of corymbose Acropora due to size

specific mortality rates [58]. Our study additionally showed that, in the absence of a local envi-

ronment filter, even mild to moderate thermal anomalies can result in prolonged effects such

as depressed growth rates and increased mortality rates. Variations on a small spatial scale may

have implications for the local conservation of coral reefs in the Anthropocene (sensu [4]). To

preserve coral larval sources and sinks, corals located on reefs where the temperature is low,

which are remote from local disturbances like crown of thorns starfish (COTS) predation and

construction activity should be selected for the conservation.

Table 6. Post-hoc tests to compare temporal variations in mortality rates at different sites. The least-square means of mortality rates are compared between different

time periods. The results are on a logit scale. The level of significance was 0.05. SE = Standard Error.

Site Time-pairs odds.ratio SE z.ratio p.value

Hamamoto t1-t2 0.29 0.34 -1.04 0.551
t1-tbl 7.11E+05 3.64E+08 0.03 1.000
t2-tbl 2.47E+06 1.26E+09 0.03 1.000

Sesoko Station t1-t2 0.06 0.05 -3.60 0.001
t1-tbl 0.05 0.03 -4.13 <0.001
t2-tbl 0.73 0.27 -0.88 0.654

South Sesoko t1-t2 0.97 0.44 -0.08 0.997
t1-tbl 0.92 0.41 -0.18 0.982
t2-tbl 0.96 0.43 -0.10 0.995

west Sesoko t1-t2 0.32 0.21 -1.71 0.202
t1-tbl 1.49 1.36 0.43 0.902
t2-tbl 4.70 3.70 1.96 0.121

Yakkai t1-t2 0.22 0.26 -1.27 0.415
t1-tbl 0.28 0.34 -1.05 0.545
t2-tbl 1.31 1.17 0.30 0.952

https://doi.org/10.1371/journal.pone.0210795.t006

Table 7. Predicted mass transfer coefficients of different shapes in laminar/ turbulent flow (Patterson 1992) and void ratios calculated from close-up images of cor-

responding Acropora morphologies.

Geometric Shape Corresponding Morphology Mass Transfer VR (this study) Thermal sensitivity

Thickening cylinders

(height� width)

Digitate 0.31/0.36 1.46 ± 0.18 High

Thinning cylinders

(height > width)

Corymbose 0.54/0.64 1.87 ± 0.20 Moderate

Flat/plate-like organisms Tabular 1.25/1.1 1.72 ± 0.09 Low

https://doi.org/10.1371/journal.pone.0210795.t007
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Prolonged mortality was observed in the digitate colonies at Sesoko Station after the 2016

bleaching event even when temperature had already returned to normal. The mortality rates

immediately after bleaching were both size- and morphology-independent at Sesoko Station. Six

months after bleaching, mortality of the digitate colonies continued at this site. Prolonged mortality

in the digitate colonies may have been the result of negative growth or partial mortality, which

occurred in all the bleached digitate colonies there. The physiological processes impaired by bleach-

ing caused whole or partial coral colony mortality [6,59–61]. Susceptibility to bioerosion may

increase in partially dead colonies [62]. Colonization of turf algae on the dead skeletons in partially

dead coral colonies may increase microbial activity and degrade the local environment [63].

The mass flux rates determined by colony morphology might explain the different responses

to thermal exposure among the various types of Acropora corals in this study. Digitate and cor-

ymbose colonies had decreased growth rates in t2 at both Sesoko Station and West Sesoko,

while that of tabular colonies decreased only at Sesoko Station. Furthermore, extended mortality

was observed only for digitate colonies, indicating that digitate and tabular colonies were the

most susceptible and resistant to thermal stress, respectively. Some studies have suggested that

fast-growing corals with high metabolic rates are relatively more sensitive to thermal anomalies

because they accumulate harmful bleaching by-products such as reactive oxygen species (ROS)

[10,11,24–26,64]. Growth was slower in digitate colonies than in corymbose and tabular colo-

nies; however, bleaching susceptibility was the greatest in digitate colonies. In contrast to the

fast growth hypothesis, mass transfer coefficients of various geometric shapes based on Rey-

nolds-Sherwood numbers calculated by Patterson [65], may corroborate the order of thermal

sensitivity in aquatic invertebrates. The relative differences in thermal susceptibility among the

colony morphologies observed in the present study followed Patterson’s mass transfer theory

(Table 7), with the highest mass flux rates for flat shapes like tabular morphology. Furthermore,

digitate colonies had the lowest VRs although they did not significantly differ from those for

tabular colonies. The presence of such a pattern, albeit weak, suggests that morphological traits

of corals may be associated with enhanced mass flux in branched corals [45].

Size-specific growth decline in response to size-specific mass flux rates may decrease mean

corymbose and digitate colony size due to climate change. After the bleaching event investi-

gated in the present study, the growth of larger corymbose and digitate colonies decreased

more than it did for the smaller ones. Partial mortality is more likely to occur in larger colonies

at both normal [66,67] and high [58,68,69] temperatures. Several studies have shown that

smaller colonies were comparatively less affected by high temperature exposure than larger

colonies of the same species [20,70,71]. These observations were ascribed principally to the

more effective removal of harmful metabolites like ROS because of the relatively higher mass

flux in small, flat coral colonies [20,28]. Edmunds and Burges [72] empirically determined that

high temperature has more severe negative effects on photosynthesis and respiration in larger

whole branching Pocillopora verrucosa than it does on smaller ones. These physiological

responses, therefore, could also influence coral growth. The size-nonspecific responses of tabu-

lar colonies to thermal anomalies observed in the present study may be explained by the fact

that tabular colony branch height increases only slightly as the colonies grow. In contrast,

height significantly increases as corymbose and digitate colonies grow. Coral colonies with

large height to diameter (aspect) ratios have comparatively lower mass flux rates [28], there-

fore, increasing the aspect ratio with the growth of corymbose and digitate morphologies

might explain the observed size-specific thermal responses.

Corals at South Sesoko may have escaped thermal stress or quickly recovered using efficient

mass transfer. The growth of larger corymbose and digitate colonies also decreased at South

Sesoko. Nevertheless, this site was not as severely affected by thermal anomalies as the other sites.

Moreover, this site experienced high partial mortality (Figs 4 and 6) and mortality rates even in
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t1, suggesting that factors other than temperature were involved here. At all sites, number tags

were attached by cable ties to iron rods and used to mark fixed plots. These loosened only at

South Sesoko, suggesting that the water movement was strongest at this site. Field studies after

the 1998 mass bleaching event reported relatively milder bleaching effect at sites with high water

flow [20,73]. High water flow may mitigate coral bleaching by lowering oxidative stress through

efficient mass flux [30,74]. Experimental studies also validated that mass transfer in branched cor-

als was higher under oscillatory flow (wave action) than it was under unidirectional flow [45].

This hypothesis should be tested by quantifying water movement in future studies.

High turbidity and increased heterotrophy during and after thermal exposure may have

contributed to thermal resistance at Hamamoto and Yakkai. Corals were not thermally

stressed at this turbid site. High turbidity alleviates the thermal and solar irradiance effect [75–

77] possibly by reducing solar irradiance. In addition, heterotrophic plasticity in some species

might acclimatize them to turbid environments by increasing their feeding rate [78]. Increased

feeding rate in thermally stressed corals [79] coupled with high organic and nutrient load in

turbid environments would lead to higher lipid content enabling corals to maintain their

growth and survival rates following a bleaching event [80]. It is possible that Acropora at

Hamamoto and Yakkai were not thermally stressed due to a combination of the above factors.

Conclusion

Over the past decades, trait-based approaches, i.e., studying traits of corals such as growth

forms, colony size, and growth rate, among coral genera or higher taxa have gained recogni-

tion in coral reef ecology [81]. A recent metanalysis showed coral morphology to be a reliable

predictor of bleaching variability [82]. However, studies examining intrageneric variability are

limited, and the thermal response within the genus Acropora is usually inconsistent across

studies. For example, digitate Acropora were the most thermally sensitive in some studies

[26,83], but tabular Acropora were found to be more sensitive in other studies [14,84,85]. Such

inconstancy might suggest that the local environment, traits of the species studied, or some

other factors had roles in governing intrageneric variability. Therefore, it is important to con-

duct studies of coral bleaching across different environments and temperatures to delineate

the roles of morphology, environment, and species-level traits in intrageneric thermal

response variability.

In conclusion, our first hypothesis, that bleaching prevalence is driven primarily by thermal

exposure, was supported in the present study. Our second hypothesis, that demographic rates

recover to normal levels after bleaching was, however, not. Our third hypothesis, that morpho-

logical traits of colonies explain differences in thermal exposure response, was also accepted as

indicated by the size specific thermal response and morphological thermal hierarchy observed

in this study. Overall, future studies investigating the relationships between multiple morpho-

logical traits, quantified environmental conditions, and demographic rates can be informative

regarding how coral reefs of Sesoko Island, Japan will respond to future climate change.
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