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Abstract: The physiochemical properties of nanomaterials have a close relationship with their status
in solution. As a result of its better simplicity than that of pre-assembled aggregates, the in situ
assembly of nanomaterials has been integrated into the design of electrochemical biosensors for
the signal output and amplification. In this review, we highlight the significant progress in the in
situ assembly of nanomaterials as the nanolabels for enhancing the performances of electrochemical
biosensors. The works are discussed based on the difference in the interactions for the assembly
of nanomaterials, including DNA hybridization, metal ion–ligand coordination, metal–thiol and
boronate ester interactions, aptamer–target binding, electrostatic attraction, and streptavidin (SA)–
biotin conjugate. We further expand the range of the assembly units from nanomaterials to small
organic molecules and biomolecules, which endow the signal-amplified strategies with more potential
applications.

Keywords: electrochemical biosensors; self-assembly; nanomaterials; hybridization; peptide;
streptavidin

1. Introduction

During the past several decades, miscellaneous nanomaterials with various elements
and different morphologies have been designed and synthesized. Owing to the amaz-
ing and powerful properties, they have been widely utilized in chemical, physical, and
biological-related fields. Generally, the properties of nanomaterials are closely related to
their physicochemical parameters, including composition, shape, and size. For instance, sil-
ver nanoparticles (AgNPs) can generate a well-defined and amplified electrochemical peak
based on the highly characteristic solid-state Ag/AgCl process [1], which have been widely
used as the electrochemical tracers for the detection of various targets [2]. The status of
nanomaterials in solution (monodispersion and aggregation) may have an important influ-
ence on their performances. For example, gold nanoparticles (AuNPs) and AgNPs exhibit
different local surface plasmon resonance (LSPR) adsorption and endow the solution with
different color. The inherent enzyme-mimetic catalytic activity can also be reversibly regu-
lated by modulating the status of nanozymes, such as MoS2, quantum dots (QDs), Cu2−xSe
NPs, and AuNPs [3–6]. Traditional fluorescent dyes show aggregation-induced quenching
properties, but on the contrary, aggregation-induced emission (AIE) phenomenon was also
observed in various organic molecules and nanomaterials [7–10]. Therefore, lots of optical
methods (fluorescence and colorimetric) have been precisely explored to analyze targets of
interest based on the aggregation-induced effect, including metal ions, small molecules,
DNA, and enzymes [11,12]. Up to now, several mechanisms for stimulating the aggregation
of nanomaterials have been demonstrated, including DNA hybridization, antigen–antibody
association, aptamer–target binding, electrostatic attraction, streptavidin (SA)–biotin inter-
action, metal ion–ligand coordination, and covalent bond formation [13–18]. However, the
homogeneous methods based on target-recognition-induced aggregation in solution are
less sensitive.
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As a result of the merits of low cost, high sensitivity, and ease of calibration and minia-
turization, electrochemical biosensors have received broad research interest for applications
from environmental monitoring to food safety and disease diagnosis. To further improve
their sensitivity, plenty of signal-amplified strategies have been designed and applied in
electrochemical assays. Usually, the signal-amplified strategies contain enzyme catalysis
(e.g., horseradish peroxidase and alkaline phosphatase), DNA assembly techniques such
as catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR), and various
functional nanomaterials [19–21]. Among these protocols, nanomaterials have shown great
promise for improving the sensitivity and selectivity of electrochemical assays because
of their excellent characteristics, such as good conductivity, high surface to volume ratio,
and ease of functionalization. Up to now, nanomaterials, including carbon nanotubes,
graphene, semiconductor quantum dots (QDs), metal nanoparticles (NPs), and 2D layered
nanosheets, have been exploited for the fabrication of electrochemical biosensors with
enhanced performances [22]. During various electrochemical assays, nanomaterials mainly
play four important roles for enhancing the detection performances: electrode substrate
modifiers, nanoelectrocatalysts, nanocarriers for enzymes and recognition elements, and
electroactive tracers. For example, carbon nanomaterials are frequently utilized in electro-
analytical and electrocatalytic sensing fields because of their high electrical conductivity,
excellent surface to volume ratio, and chemical stability [23]. Gold nanoparticles (AuNPs)
are easily incorporated with enzymes and biorecognition elements, perfectly combining
the catalytic properties of enzymes, recognition abilities of biorecognition elements with
excellent electrochemical properties of AuNPs [24].

It is a promising signal-amplified strategy to integrate the organized assembly or
unordered aggregation of nanomaterials into electrochemical methods [25]. Moreover,
the excellent conductivity and electrocatalytic activity of nanomaterials can significantly
enhance the conductivity and redox current. For instance, Chen et al. employed melamine
to induce the formation of the PdPt nanodendrites–melamine networks based on the firm
interactions between the nanodendrites and the three amino groups of each melamine
molecule [26]. Then, the formed networks with excellent catalytic ability were utilized
as the labels to increase the current for gene mutation detection. AgNPs aggregates
induced by the hybridization of DNA on AgNPs were successfully applied for multiplexed
DNA target detection [27]. However, these aggregate tags were synthesized through
hybridization prior to the sandwich assays, which may affect the uniformity of the size
of the aggregates. In 2015, Dai et al. introduced the concept of re-creation of the existing
platforms, which transferred the NPs-based colorimetric assay into the electrochemical
analysis with Hg2+ as the model analyte [28]. After that, a number of attempts have
been put into the construction of various detection techniques based on the conversion of
aggregation-based colorimetirc assays to interfacial analytical assays [29–33]. In addition
to acting as the aggregation triggers, biomacromolecules with nanoscale sizes can also
be used as the self-assembling building blocks to form diverse nanostructures for drug
delivery and biosensing. Meanwhile, the low conductivity of biomacromolecules facilitates
the development of electrochemical impedance biosensors.

In this review, we mainly discuss the design and application of electrochemical biosen-
sors based on the in situ assembly of nanomaterials on the electrode surface for signal
readout and amplification. To facilitate the readability and comprehension, the works are
briefly discussed based on the difference in the interactions for the assembly of nanomate-
rials. Furthermore, we expand the range of assembly units from nanomaterials to small
molecules and biomacromolecules.

2. In Situ Assembly of Nanomaterials for Signal Amplification
2.1. DNA Hybridization

Due to the specificity of base-pairing hybridization, a variety of DNA assembly
nanotechnologies have been elaborately designed and versatilely applied in biosensing
for signal amplification [34,35]. It is a promising signal amplification strategy to combine
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the assembly technologies with nanomaterials. Moreover, the excellent conductivity and
electrocatalytic activity of nanomaterials can significantly transform the intrinsic electron
inert polymeric DNA into a conductive DNA nanostructure. Among them, hybridization-
inducing aggregation without the use of enzymes is simple and can be conducted at mild
conditions [36]. Song et al. developed a disposable electrochemical aptasensor array for
multiplied proteins detection by in situ DNA hybridization-induced AgNPs aggregation
for signal amplification [37]. As shown in Figure 1A, AgNPs were modified with two
complementary DNA sequences and two kinds of aptamers against platelet-derived growth
factor (PDGF-BB) and thrombin, respectively. After the capture of the target and the
sandwich-type reaction, DNA-labeled AgNPs were captured to form the AgNPs aggregates
on the electrode surface through the in situ hybridization of DNA. A remarkably amplified
electrochemical signal was observed by differential pulse stripping voltammetry (DPSV).
The sensitivity of this in situ hybridization-induced formation of AgNPs aggregates was
calculated to be 10 orders of magnitude higher than that of the single AgNP nanolabel.
Moreover, the DNA-induced assembly of AuNPs was employed for protein kinase activity
analysis (Figure 1B) [38]. In this paper, the Zr4+-labeled phosphorylated peptide could
capture DNA-modified AuNPs (DNA-AuNPs) via the coordination interaction between
the phosphate groups in DNA and Zr4+ ions Then, DNA-AuNPs polymeric networks
were formed in situ by DNA hybridization on the electrode surface. The conductive and
negative charged networks could accommodate a large amount of [Ru(NH3)6]3+ ions by
the electrostatic interactions. The current intensity was dramatically enhanced, and a low
detection limit and a wide linear range were achieved.
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At the same time, other DNA-based assembly nanotechnologies including enzyme-
aided and enzyme-free methods have also gained attractive attention. For example, Yu
et al. developed a cascade signal amplification platform through integrating duplex-
specific nuclease (DSN)-assisted target recycling with CHA reaction for the detection
of microRNA-141 (miR-141) (Figure 2) [39]. During the DSN-assisted target recycling
amplification, one miR-141 extracted from human breast cancer cells could induce the
production of massive DNA connectors, which would trigger the next CHA reaction.
Then, the AuNP hot spots were self-assembled into networks on the H2-immobilized
electrode surface. Numerous positively charged RuHex ions were captured by the anionic
phosphate backbone of DNA duplex, finally resulting in a significant amplification in the
electrochemical signal. Moreover, two-input AND and INHIBIT (INH) molecular logic
gates were fabricated to analyze miRNAs. As one enzyme-free isothermal alternative,
HCR avoids the restriction of precise dependence of pH and temperature in enzyme-
mediated methods and has been used to detect miRNA and others [40,41]. For example,
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Yuan et al. developed an electrochemical biosensor for the simultaneous detection of
multiple miRNAs, in which the DNA-modified magnetic nanoprobes loaded with two
different electroactive molecules were bound with the products of HCR [42]. However,
in this method, one copy of miRNA only triggered one copy of polymeric HCR product.
To further improve the sensitivity of the HCR-based method, Miao et al. reported an
electrochemical method for miRNA detection based on the analyte-triggered nanoparticle
localization on the electrode in combination with HCR amplification [43]. In this work,
miRNA induced the opening of a hairpin on the electrode-immobilizing tetrahedral DNA
for the capture of HCR-H0-modified AuNPs. Free HCR-H0 strands on the surface of
AuNPs could further induce in situ hairpin polymerization. Subsequently, numerous
AgNPs were assembled on the electrode, generating a sharp stripping current peak during
the solid-state Ag/AgCl reaction. Although DNA-modified NPs as the sensing units have
been widely used in electrochemical assays, extensive and complicated conjugation steps
increase the complexity and cost of the assays.
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To overcome the shortcoming of DNA label-based experiments, label-free and
nanomaterials-based signal amplification strategies have attracted more interest. As is
known to us, the polymeric products generated by DNA self-assembly can be used as
the templates for the assembly of nanomaterials through the electrostatic interaction or in
situ metallization [44,45]. For this view, Li et al. demonstrated that the positively charged
AuNPs could electrostatically assemble onto the double-helix of HCR products to amplify
the electrochemical signal [46]. It was reported that a cytosine (C)-rich DNA sequence
can be used as the template to prepare silver nanoclusters (AgNCs) that showed excel-
lent electrocatalytic ability and redox property [47,48]. Yang et al. developed a label-free
electrochemical method for the detection of miRNA (miRNA-199a) based on the in situ
DNA-templated synthesis of AgNCs [49]. As displayed in Figure 3, when miRNA-199a was
hybridized with the template probe, the target-assisted polymerization nicking reaction
(TAPNR) amplification was initiated, and massive intermediate sequences were generated
to bind with the secondary DNA probes on the electrode. Then, the HCR amplification was
triggered by the surface-tethered intermediate sequences. In this process, numerous C-rich
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loop DNAs were formed in the dsDNA polymers. In the presence of AgNO3 and NaBH4,
a large amount of AgNCs were produced by using C-rich loop DNAs as the templates.
Similar to AgNPs, the AgNCs could generate a dramatically enhanced current response.
Up to now, integrating HCR with the in situ formation of AgNCs has also been used to
develop electrochemical biosensors for the detection of methyltransferase activity, Pb2+

and Type b3a2 [50–52]. In addition, AgNCs generated in the polymeric HCR products
exhibit excellent ECL property and have been utilized to detect HATs activities [53]. In
addition, double-stranded DNA (dsDNA) can be employed as the template for the prepa-
ration of copper nanoclusters (CuNCs). Zhao et al. reported an electrochemical method for
protein detection based on the HCR-assisted formation of CuNCs [54]. The formed CuNCs
could release numerous Cu2+ ions by acid dissolution, thus catalyzing the oxidation of
o-phenylenediamine by O2 and leading to the strong electrochemical signal. With exonu-
clease T7 triggered targets recycling and HCR amplification, Wang et al. prepared tree-like
overlapping and branching Y-shaped dsDNA for the precise in situ growth of CuNCs [55].
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2.2. Metal Ion–Ligand Coordination

Organic ligands modified on the surface of NPs can bind metal ions with different
stability constants. The formation of the ligand–metal–ligand complex can induce the
aggregation of NPs. In 2015, Wei et al. first proposed the concept of converting liquid-
phase colorimetric assay into enhanced surface-tethered electrochemical analysis [28].
Based on the strategy, Hg2+ was sensitively detected as the model analyte. As shown in
Figure 4A, cysteamine-capped AgNPs were prepared and modified with thymine-1-acetic
acid, in which thymine (T) could be specifically coordinated with Hg2+ by the formation of
a T-Hg2+-T bond. Meanwhile, the gold electrode was modified with thymine-1-acetic acid.
Hg2+ was captured by thymine modified on the electrode surface, which allowed for the
attachment of thymine-functionalized AgNPs (Ag-T) nanoprobes. Subsequently, surface-
bound Ag-T nanoprobes could induce more Hg2+ and nanoprobes to be immobilized on
the electrode, thus leading to the formation of Ag-T-based nanostructures. Finally, a strong
and well-defined electrochemical signal was attained. The detection limit of the proposed
electrochemical sensor was approximately two orders of magnitude lower than that of
the AgNPs-based colorimetric assay of Hg2+. Similarly, Cu2+ and Cr3+ were selectively
detected through their coordination with 4-mercaptobenzoic acid and 3-mercaptopropanoic
acid, respectively [56,57]. Recently, Gu et al. employed T-functionalized upconversion
nanoparticles (UCNP) as sensing units (T-UCNP) to develop an ECL sensor for the analysis
of Hg2+ [58]. After the target-induced aggregation, multiple UCNPs were assembled on
the electrode surface, and an amplified ECL signal was generated.
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Biomolecules that can specifically interact with metal ions can also been detected by
this method. For example, Zhao et al. reported an electrochemical method for the chiral
recognition of D-/L-tryptophan (Trp) based on the Cu2+-assisted NPs aggregation [59]. As
shown in Figure 4B, D-Trp functionalized AuNPs (D-Trp-AuNPs) were used to modify the
glass carbon electrode. As a result of the high binding constant with NPs and D-Trp, Cu2+

could induce more electroactive Au@Ag NP to assemble on the D-Trp-AuNPs-modified
electrode. In the presence of D-Trp, more Au@Ag NPs networks were formed on the
electrode surface, and a strong DPV was observed. In addition, Wang et al. reported the
detection of lipopolysaccharide based on the Cu2+-induced formation of AuNPs aggregates
as the signal labels on the electrode surface, in which anionic groups were coordinated
with Cu2+ ions to induce the nanoparticle aggregation [60].

2.3. Metal–Thiol and Boronate Ester Interactions

Phenylboronic acid (PBA) and its derivates can bind with α-hydroxycarboxylate acids
(such as citrate and tartrate) and o-diphenol/diol-containing species (such as catechol
derivatives, nucleosides, and glycoproteins) via the formation of a covalent boronate
ester bond [61]. Such interactions have been introduced into the design of various
biosensors [62–64]. Capping reagents play an important role in the enhancement of the
stability and solubility of nanomaterials [65,66]. Among them, trisodium citrate is the most
frequently used reagent for the synthesis of negatively charged AgNPs and AuNPs. Unlike
DNA, the ribose group in RNA contains an intact cis-diol structure in the pentose ring at
the 3′-terminal, which can react with PBA to form a boronate ester covalent bond. Our
group reported a label-free electrochemical method for the detection of miRNAs based
on the in situ aggregation of AgNPs [67]. As shown in Figure 5, after the hybridization,
the exposed cis-diol moiety in the ribose of the captured miRNA was derivatized by
4-mercaptophenylboronic acid (MPBA). Next, the thiol group of MPBA could grasp citrate-
capped AgNPs via the formation of a Ag-S bond. Then, the surface-bound AgNPs could
recruit more MPBA and AgNPs from solution through the formation of boronate ester and
Ag-S bonds, finally resulting in the in situ generation of MPBA-AgNPs-based networks
on the electrode surface. Based on the amplified electrochemical signal, miRNA-21 was
sensitively determined with a detection limit down to 20 aM.
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Tyrosinase can catalyze the oxidation of tyrosine residue in the substrate peptide and
transform monophenol into o-diphenol, which could be recognized by MPBA. Based on
the MPBA-AgNPs-based networks, our group developed two sensitive electrochemical
strategies for the determination of protein kinase activity [68]. As shown in Figure 6, after
the hydroxyl of tyrosine residue was phosphorylated in the presence of tyrosine kinase (Src)
and 5-[-thio] triphosphate (ATP-S), the thiophosphate peptide could bind to AgNPs through
the formation of a Ag-S bond. Eventually, under the MPBA-assisted in situ assembly of
AgNPs, the nanoarchinectures were formed on the electrode. In another strategy, after
the oxidation of tyrosine residue, MPBA reacted with the o-diphenol moiety, and then,
AgNP was captured by MPBA through the Ag-S interaction, leading to the generation
of AgNPs-based networks. However, once the tyrosine residue was phosphorylated, the
oxidation and assembly process would be blocked, resulting in the decrease in the current
intensity. Moreover, glycan on the surface of glycoprotein can also react with MPBA to
induce the formation of MPBA-AgNPs-based networks on the electrode surface, thus
allowing for the development of electrochemical glycoprotein aptasensors [69].
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ATP-S was used as the co-substrate. In the second design (B), ATP was used as the co-substrate, and
tyrosinase was used to convert monophenol into o-diphenol [68]. Copyright 2017 Elsevier B.V.
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Benzene-1,4-dithiol (BDT) with two thiol groups can be used as the connector for the
assembly of AgNPs. Based on the BDT-induced in situ formation of AgNPs networks, Hou
et al. constructed a modification-free amperometric biosensor for the detection of wild-type
p53 protein [70]. As displayed in Figure 7, a dsDNA probe containing two consensus sites
was employed to modify the gold electrode for the capture of wild-type p53 protein. After
the binding between the probe and protein, the thiol and amine groups on the surface of
p53 protein bind to AgNPs via the formation of Ag-S and Ag-N bonds. In the presence of
BDT, more AgNPs were in situ assembled on the electrode surface to form the networks
for signal amplification. This method has been successfully used to detect wild-type p53
protein in cell lysates with satisfactory results.
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2.4. Peptide-Induced Assembly of Nanoparticles

As a result of the diversity of structural units (amino acids), peptides can be syn-
thesized with a specific sequence and used as the aptamer for the capture of the target.
Moreover, a peptide with positive charges can induce the aggregation of negatively charged
citrate-capped AuNPs and AgNPs via the electrostatic interactions. In this process, the pep-
tide probe plays two roles (the target binder and the NPs aggregation inducer). Once the
peptide was bound to the target, it would lose the ability to trigger the aggregation of NPs.
Based on this fact, AuNPs and AgNPs-based liquid-phase colorimetric assays have been
converted into surface-tethered electrochemical electrochemical assays [71]. For example,
the tripeptide (Arg-Pro-Arg) with two positively charged arginine residues could lead to
the AuNPs aggregation. Dipeptidyl peptidase-IV (DPP-IV) can induce the hydrolyzation
of the peptide, thus preventing the aggregation of AuNPs. DPP-IV activity was determined
by the colorimetric and electrochemical methods based on the peptide-induced AuNPs
aggregation [72].

PrP(95−110) with an amino acid sequence of THSQWNKPSKPKTNMK was identi-
fied as the receptor of small amyloid-β (Aβ) oligomer (AβO) with high specificity and
affinity [73–76]. Our group found that PrP(95−110) could induce the AuNPs or AgNPs
aggregation with a color change [77,78]. For this view, we further developed an electro-
chemical platform for the detection of AβO based on the in situ formation of AgNPs net-
works for signal amplification [78]. As shown in Figure 8A, the adamantine (Ad)-modified
PrP(95−110) could be attached on the surface of AgNPs to result in their aggregation.
Based on the host–guest interaction, the formed Ad-PrP(95−110)-AgNPs networks were
tethered on the β-CD (β-cyclodextrin)-modified electrode surface, thus producing an am-
plified electrochemical signal. However, in the presence of AβO, the binding of AβO to the
peptide hindered the interaction of the peptide and AgNPs, thus leading to the reduced
magnitude of aggregation on the electrode and decreasing the electrochemical signal from
the oxidation of AgNPs.
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As a hormone produced by placenta, human chorionic gonadotropin (hCG) is recog-
nized as an important indicator for pregnancy and several cancers. Our group designed an
electrochemical biosensor for hCG detection with a dual-functional peptide probe (PPLRIN-
RHILTR) [79]. As shown in Figure 8B, the positively charged hCG-binding peptide used
as the sensing unit can induce the aggregation of AuNPs via the electrostatic interactions
and facilitate the in situ formation of AuNPs, which assemble on the electrode surface.
The formed networks could significantly reduce the charge transfer resistance. However,
in the presence of hCG, the stable complex of the peptide probe and hCG lost the coag-
ulating ability toward AuNPs. The amount of AuNPs assemblies on the electrode was
reduced, and the charge transfer resistance was intensified. This method based on the
electrochemical impedance technique achieved the determination of hCG with a detection
limit of 0.6 mIU/mL. By using AgNPs as the redox probes for a well-defined and amplified
electrochemical signal, hCG could be sensitively measured by linear-sweep voltammetry
(LSV) [80].

As one type of essential structural molecules, peptides with excellent self-assembly
and molecular recognition ability can be self-assembled into various nanostructures. More-
over, through the careful encoding of peptide with a binding or reactive site, peptides can
co-assemble with additional nanomaterials with unique optical and chemical properties
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into functional hybrid superstructures. Recently, Han et al. reported the co-assembly of
peptides and carbon nanodots (CNDs) (Pep/CND) based on the π−π stacking between
tyrosine residues and CNDs (Figure 9A) [81]. The peptide and CNDs endowed Pep/CND
co-assembly with the recognition capability and the catalytic activity, respectively. They
further applied the Pep/CND co-assembly to construct an electrochemical method for the
detection of transglutaminase 2 (TG2). As shown in Figure 9B, TG2 catalyzed the ligation
of peptide P2 and peptide P1 on the electrode surface. Next, CNDs was bound to P2,
subsequently triggering the co-assembly of a plenty of P3 and CNDs because the tyrosine
was located at one terminal. The large amount of CNDs with catalytic ability could catalyze
the redox reaction between H2O2 and 3,3′,5,5′-tetramethylbenzidine (TMB), resulting in
the enhancement of electrochemical signal for the sensitive detection of TG2.

Nanomaterials 2021, 11, x  10 of 19 
 

 

assembly of peptides and carbon nanodots (CNDs) (Pep/CND) based on the π−π stacking 
between tyrosine residues and CNDs (Figure 9A) [81]. The peptide and CNDs endowed 
Pep/CND co-assembly with the recognition capability and the catalytic activity, respec-
tively. They further applied the Pep/CND co-assembly to construct an electrochemical 
method for the detection of transglutaminase 2 (TG2). As shown in Figure 9B, TG2 cata-
lyzed the ligation of peptide P2 and peptide P1 on the electrode surface. Next, CNDs was 
bound to P2, subsequently triggering the co-assembly of a plenty of P3 and CNDs because 
the tyrosine was located at one terminal. The large amount of CNDs with catalytic ability 
could catalyze the redox reaction between H2O2 and 3,3′,5,5′-tetramethylbenzidine (TMB), 
resulting in the enhancement of electrochemical signal for the sensitive detection of TG2. 

 

 
Figure 9. Schematic representation of (A) the co-assembly of P3 and CNDs and (B) the principle of 
the analysis of TG2 [81]. Copyright 2021 American Chemical Society. 

2.5. SA–Biotin Interaction 
SA is a tetrameric protein that can bind to four biotin molecules with high binding 

affinity in a wide pH range (Kd = 10−15 M) [82,83]. The specific and strong interaction is 
always utilized for the conjugation of antibodies or nucleic acids with enzymes or nano-
materials for signal output. It has been reported that aromatic phenylalanine (Phe) and its 
derivates can self-assemble into various nanostructures through the modulation of differ-
ent parameters. Our group found that the biotinylated Phe (biotin-Phe) monomers can 
self-assemble into monodispersed biotin–Phe nanoparticle (biotin–FNP) by controlling 
the pH value [84]. Then, an impedimetric biosensor for the determination of caspase-3 
activity and evaluation of cell apoptosis was based on the in situ assembly of biotin–FNP 
in the presence of SA [85]. As shown in Figure 10, tetrameric SA protein can be captured 
by the biotinylated DVED-containing peptide. Then, free biotin-binding sites of SA on the 
electrode surface allowed for the anchor of biotin–FNP and SA, finally leading to the for-
mation of SA–biotin–FNP networks on the electrode surface. The direct electron transfer 
between [Fe(CN)6]3−/4− and the electrode was seriously hindered. In the presence of 
caspase-3, the cleavage of peptide prevented the binding of SA and the follow-up for-
mation of biotin–FNP networks on the electrode surface. The electron transfer resistance 
(Ret) was inversely proportional to the concentration and activity of caspase-3. The method 
was further employed to develop aptasensors for impedimetric detection of miRNAs and 
small molecules by competitive reactions [84,86]. 

Figure 9. Schematic representation of (A) the co-assembly of P3 and CNDs and (B) the principle of
the analysis of TG2 [81]. Copyright 2021 American Chemical Society.

2.5. SA–Biotin Interaction

SA is a tetrameric protein that can bind to four biotin molecules with high binding
affinity in a wide pH range (Kd = 10−15 M) [82,83]. The specific and strong interaction
is always utilized for the conjugation of antibodies or nucleic acids with enzymes or
nanomaterials for signal output. It has been reported that aromatic phenylalanine (Phe)
and its derivates can self-assemble into various nanostructures through the modulation of
different parameters. Our group found that the biotinylated Phe (biotin-Phe) monomers
can self-assemble into monodispersed biotin–Phe nanoparticle (biotin–FNP) by controlling
the pH value [84]. Then, an impedimetric biosensor for the determination of caspase-3
activity and evaluation of cell apoptosis was based on the in situ assembly of biotin–FNP
in the presence of SA [85]. As shown in Figure 10, tetrameric SA protein can be captured
by the biotinylated DVED-containing peptide. Then, free biotin-binding sites of SA on
the electrode surface allowed for the anchor of biotin–FNP and SA, finally leading to
the formation of SA–biotin–FNP networks on the electrode surface. The direct electron
transfer between [Fe(CN)6]3−/4− and the electrode was seriously hindered. In the presence
of caspase-3, the cleavage of peptide prevented the binding of SA and the follow-up
formation of biotin–FNP networks on the electrode surface. The electron transfer resistance
(Ret) was inversely proportional to the concentration and activity of caspase-3. The method
was further employed to develop aptasensors for impedimetric detection of miRNAs and
small molecules by competitive reactions [84,86].
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3. In Situ Assembly of Small Molecules and Biomolecules

In DNA assembly-based electrochemical methods, the DNA assembly unit is usu-
ally conjugated with an electroactive molecule for signal output. Actually, the amount
of electroactive molecule in the assembly product is low, and the insulation property of
DNA and its assembly may decrease the detection performances. Recently, small molecules
and biomacromolecules are proposed as the assembly units to form nanostructures on
the electrode surface for improving the detection sensitivity. For example, inspired by the
polymerization reaction, Hu et al. has reported the application of surface-initiated electro-
chemically mediated atom-transfer radical polymerization (SI-eATRP) as an amplification
strategy for the electrochemical biosensing of different targets, including double-stranded
DNA (dsDNA) and protein kinase activity [87,88]. Typically, they demonstrated the
de novo growth of a polymers (dnGOPs)-based electrochemical biosensor for the detec-
tion of target DNA (tDNA) through SI-eATRP [89]. The principle of this method was
illustrated in Figure 11A. Peptide nucleic acid (PNA) probes with a neutrally charged
N-(2-aminoethyl)glycine units-composed backbone were immobilized on the electrode
to specifically capture tDNA. After hybridization, phosphate groups with high density
could bind to Zr4+ and α-bromophenylacetic acid (BPAA) through the phosphate-Zr4+-
carboxylate coordination chemistry. With the aid of a constant potential, the SI-eATRP was
triggered, and numerous electroactive ferrocenylmethyl methacrylate (FMMA) monomers
were polymerized into long polymeric chains on the electrode surface. Since the electro-
chemical response was greatly improved, tDNA was sensitively and selectively detected
with a detection limit of 0.072 fM. However, the utilization of Cu2+ ions as catalysts may
interfere with the next electrochemical experiments because of the non-specific interaction
with nucleic acids and the electrochemical deposition of metal on the electrode. For this
consideration, they further explored novel surface-initiated electrochemically controlled
reversible-addition-fragmentation-chain-transfer (SI-eRAFT) polymerization without the
use of transition metal ions for assays [90–92]. For instance, they reported a signal-amplified
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electrochemical sensing of thrombin activity by SI-eRAFT polymerization [93]. As shown
in Figure 11B, after the thrombin-specific substrate peptide (Tb peptide) was cleaved, 4-
cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPAD) was bound to the peptide by the
formation of the carboxylate–zirconium–carboxylate complexes. The initiation of SI-eRAFT
resulted in the polymerization of a large number of FMMA on the electrode surface, leading
to the significant increase in the current intensity. The results showed that the SI-eRAFT-
based amplification strategy held great promise in the sensitive analysis of biomolecules.
Recently, an in situ initiated ring-opening polymerization signal amplification strategy was
also integrated with an electrochemical biosensor for the detection of CYFRA 21-1, which
is a specific biomarker for non-small cell lung cancer [94]. In addition to the covalent bond
for the polymerization of signal molecules, a peptide can self-assemble into various stable
nanostructures via non-covalent interaction including hydrogen bonding, hydrophobic
interaction, electrostatic interaction, non-specific Van der Waals and π–π stacking. Inspired
by DNA assembly techniques, Huang et al. reported a signal amplification strategy based
on the in situ self-assembly of peptides for the determination of AβO [95]. After being
captured by the peptide CP4-PrP(95–110), the captured AβO could trigger the in situ
self-assembly of the amphiphilic C16-GGG-PrP(95–110)-Fc peptide on the surface of the
electrode under mild conditions. The accumulation of numerous Fc molecules generated a
significantly amplified signal.
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Generally, the efficiency of enzyme-catalyzed hydrolysis or modification of substrate
peptide or nucleic acid may be hampered due to the steric hindrance and low freedom of the
substrate. Thus, it is useful to integrate the homogeneous assay with the surface-tethered
electrochemical analysis, which can retain the high efficiency of the enzymatic reaction and
the high selectivity of the interfacial analytical method. Our group reported an electro-
chemical caspase-3 biosensor by conversing a homogeneous assay into a surface-tethered
electrochemical analysis based on the SA–biotin interaction [96]. As shown in Figure 12,
SA molecules could co-assemble with the peptide substrates (biotin–GDEVDGK–biotin)
to form (SA–biotin–GDEVDGK–biotin-SA)n aggregates on the SA-modified electrode
surface. The in situ performed aggregates significantly blocked the electron transfer of
[Fe(CN)6]3−/4− and increased the Ret. However, after the homogeneous cleavage of the
peptide by caspase-3, the amount of intact biotin–GDEVDGK–biotin decreased, and the
product of biotin-labeled pieces further competed with the peptide substrate to bind SA,
leading to the suppression of the in situ assembly of biotin–GDEVDGK–biotin and SA.
DNA probes can be employed as the assembly units for the detection of miRNAs and en-
zyme activities. Our group also developed a DSN-based electrochemical biosensor for the
analysis of miRNAs by integrating homogeneous enzymatic reaction with surface-tethered
electrochemical analysis [97]. In the work, the biotinylated DNA (biotin–DNA–biotin)
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can trigger the in situ co-assembly of DNA and SA on the electrode. The insulating
(SA–biotin–DNA–biotin)n assemblies could hamper the electron communication between
[Fe(CN)6]3−/4− and the electrode. However, when the biotinylated DNA was hybridized
with the target miRNA, the biotin–DNA–biotin in the dsDNA would be hydrolyzed by
DSN, resulting in the hybridization–enzymolysis cycle and the generation of abundant
biotin–DNA fragments. The released fragments could further compete with biotin–DNA–
biotin to bind SA and thus reduced the amount of (SA–biotin–DNA–biotin)n assemblies.
In addition, our group also reported a (SA–biotin–DNA–biotin)n networks-based electro-
chemical biosensor for the detection of telomerase activity in cancer cells [98]. The primer
was extended by telomerase to generate many (TTAGGG)n repeats on the electrode surface.
The elongated primer could hybridize with its complementary sequence biotin–DNA–
biotin, subsequently triggering the in situ co-assembly of biotin–DN–biotin and SA into
(SA–biotin–DNA–biotin)n networks. Numerous phosphate groups in networks blocked
the access of negatively charged [Fe(CN)6]3−/4− to the electrode surface, resulting in the
increase in Ret. Based on the signal-amplified strategy, telomerase extracted from two HeLa
cells could be readily determined.
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The applications and analytical performances of different assembly strategies are
summarized in Table 1.
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Table 1. Analytical performances of different electrochemical biosensors based on the in situ assembly of nanomaterials and
molecules for the signal enhancement.

Interaction Nanomaterials Target Detection Range Detection Limit Ref.

DNA
hybridization

DNA-AuNPs lysozyme 1 pM–1 nM 0.32 pM [36]
DNA-AgNPs PDGF and thrombin 5 pg/mL–1000 ng/mL 1.6 pg/mL [37]
DNA-AuNPs PKA 0.03–40 U/mL 0.03 U/mL [38]
DNA-AuNPs miR-141 0.1 fM–10 nM 25.1 aM [39]
DNA-CeO2 VEGF 1 fg/mL–0.1 ng/mL 0.27 fg/mL [41]

Thi-modified DNA-Fe3O4
NPs and

Fc-CHO-modified
DNA-Fe3O4 NPs

miR-141 and miR-21 1 fM–1 nM
0.44 fM for miR-141

and 0.46 fM for
miR-21

[42]

DNA-AgNPs miR-17-5p 100 aM–100 pM 2 aM [43]

DNA-based
electrostatic
interaction

Ag@Au CSNPs Hg2+ 10 pM–2.5 nM 3.6 pM [44]
CTAB-capped AgNPs PSA 0.1 pg/mL–75 ng/mL 0.033 pg/mL [45]

AuNPs DNA 15 pM–1.0 nM 2.6 pM [46]

DNA-based in
situ metallization

AgNCs DNA 0.2 fM–1 pM 0.16 fM [48]
AgNCs miR-199a 1.0 fM–0.1 nM 0.64 fM [49]
AgNCs methyltransferase 0.02–10 U/mL 0.0073 U/mL [50]
AgNPs Pb2+ 1 pM–100 nM 0.24 pM [51]
AgNPs Type b3a2 10 fM–10 nM 0.56 fM [52]
AgNCs HAT 0.5–100 nM 0.49 nM [53]
CuNPs folate receptor 0.01–100 ng/mL 3 pg/mL [54]
CuNCs miR-21 10 pM–0.1 fM 10 aM [55]

Metal ion–ligand
coordination

thymine-modified AgNPs Hg2+ 50 pM–50 nM 5 pM [28]
MBA-modified AgNPs Cu2+ 0.1–100 nM 0.08 nM [56]
MPA-modified AgNPs Cr3+ 200–5000 ppb 278 ppb [57]

Thymine-modified
UCNPs Hg2+ 10 pM–100 nM 0.4 pM [58]

Au@Ag NPs D-tryptophan 5 pM–1 nM 1.21 pM [59]
L-cysteine-modified

AuNPs lipopolysaccharide 1.0–10 pg/mL 0.033 pg/mL [60]

Metal–thiol and
boronate ester

interactions

citrate-capped AgNPs tyrosinase 0.001–0.5 mU/mL 0.1 mU/mL [61]
citrate-capped AgNPs thrombin 0.025–5 ng/mL 0.02 ng/mL [61]
citrate-capped AgNPs H2O2 1 nM–0.6 µM Not reported [62]
citrate-capped AgNPs miR-21 0.1–50 fM 20 aM [67]
citrate-capped AgNPs tyrosine kinase 0.1–25 ng/mL 0.1 ng/mL [68]
citrate-capped AgNPs PSA 0.5–200 pg/mL 0.2 pg/mL [69]
citrate-capped AgNPs wild-type p53 0.1–100 pM 0.1 pM [70]

Peptide-induced
assembly

citrate-capped AuNPs PKA 0.01–1 U/mL 20 mU/mL [71]
citrate-capped AuNPs DPP-IV 0.001–0.5 mU/mL 0.55 µU/mL [72]
citrate-capped AgNPs AβO 0.01–200 nM 6 pM [73]
citrate-capped AgNPs AβO 20 pM–100 nM 8 pM [78]
citrate-capped AuNPs hCG 0.001–0.2 IU/mL 0.6 mIU/mL [79]
citrate-capped AgNPs hCG 0.001–0.2 IU/mL 0.4 mIU/mL [80]

Carbon nanodots transglutaminase 2 1 pg/mL–50 ng/mL 0.25 pg/mL [81]

SA–biotin
interaction

biotin-FNPs aflatoxin B1 0.05–3 pg/mL Not reported [84]
biotin-FNPs caspase-3 1–125 pg/mL 1 pg/mL [85]
biotin-FNPs miR-21 0.1–250 fM 0.1 fM [86]
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Table 1. Cont.

Interaction Nanomaterials Target Detection Range Detection Limit Ref.

In situ assembly
of small

molecules and
biomolecules

Fc derivate DNA 1.0 fM–1.0 nM 0.47 fM [87]
Fc derivate PKA 0–140 mU/mL 1.63 mU/mL [88]
Fc derivate DNA 0.1 fM–0.1 nM 0.072 fM [89]
Fc derivate DNA 10 aM–10 pM 3.2 aM [90]
Fc derivate PKA 0–140 mU/mL 1.02 mU/mL [91]
Fc derivate trypsin 25–175 µU/mL 18.2 µU/mL [92]
Fc derivate thrombin 10–250 µU/mL 2.7 µU/mL [93]
Fc derivate CYFRA 21-1 1 pg/mL–1 µg/mL 9.08 fg/mL [94]

Fc-labeled peptide AβO 0.005–5 µM 0.6 nM [95]
(SA–biotin–peptide–

biotin)n
caspase-3 0–50 pg/mL 0.2 pg/mL [96]

(SA–biotin–DNA–biotin)n miR-21 0.01–2.5 fM 10 aM [97]
(SA–biotin–DNA–biotin)n telomerase 20–5000 cells/mL 20 cells/mL [98]

Abbreviation: AuNPs, gold nanoparticles; AgNPs, silver nanoparticles; PDGF, platelet-derived growth factor; PKA, protein kinase
A; miR, microRNA; VEGF, vascular endothelial growth factor; Thi, thionine; Fc-CHO, ferrocene carboxaldehyde; CSNPs, core–shell
nanoparticles; CTAB, cetyltrimethylammonium bromide; PSA, prostate specific antigen; AgNCs, silver nanoclusters; CuNPs, copper
nanoparticles; CuNCs, copper nanoclusters; HAT, histone acetyltransferase; MBA, 4-mercaptobenzoic acid; MPA, 3-mercaptopropanoic acid;
UCNPs, upconversion nanoparticles; DPP-IV, dipeptidyl peptidase-IV; AβO, amyloid-β oligomer; hCG, human chorionic gonadotropin;
biotin–FNPs, biotin–phenylalanine-assembled nanoparticles; SA, streptavidin; Fc, ferrocene; CYFRA 21-1, cytokeratin19 fragment.

4. Conclusions

Liquid-phase aggregation-based assays, such as colorimetric and fluorescence assays,
are simple and convenient. In contrast to the homogeneous analysis, heterogeneous inter-
face assays are considered as more sensitive and accurate tools for biochemical detection.
Nanomaterials in aggregation state may exhibit different optical and chemical properties
compared to the monodispersed state. In this review, we summarize the advancements in
the in situ assembly of nanomaterials for the signal output and amplification of electrochem-
ical biosensors. The proposed strategies by converting liquid-phase aggregation-based
assay into sensitive surface-tethered electrochemical analysis have exhibited more advan-
tageous performances and have shown promising applications. It is expected that new
assembly methods and units would be more effective and abundant to achieve highly
sensitive and specific detection.
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