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Subluminal group velocity and 
dispersion of Laguerre Gauss beams 
in free space
Nestor D. Bareza & Nathaniel Hermosa

That the speed of light in free space c is constant has been a pillar of modern physics since the 
derivation of Maxwell and in Einstein’s postulate in special relativity. This has been a basic assumption 
in light’s various applications. However, a physical beam of light has a finite extent such that even in 
free space it is by nature dispersive. The field confinement changes its wavevector, hence, altering 
the light’s group velocity vg. Here, we report the subluminal vg and consequently the dispersion in 
free space of Laguerre-Gauss (LG) beam, a beam known to carry orbital angular momentum. The vg 
of LG beam, calculated in the paraxial regime, is observed to be inversely proportional to the beam’s 
divergence θ0, the orbital order ℓ and the radial order p. LG beams of higher orders travel relatively 
slower than that of lower orders. As a consequence, LG beams of different orders separate in the 
temporal domain along propagation. This is an added effect to the dispersion due to field confinement. 
Our results are useful for treating information embedded in LG beams from astronomical sources and/
or data transmission in free space.

Recently, Giovannini et al. showed thru experiments, backed by calculations, that spatially structured light indeed 
travels slower than c within a certain path distance1. That is, there is a decrease of group velocity vg for structured 
light. Although the phenomenon can be explained classically, they used a Hong-Ou-Mandel interferometer to 
measure the lag of a laterally structured photon compared to a photon with little lateral structure. In their experi-
ment, the slowing of light is due to dispersion in free space. They performed their experiment with a Bessel beam 
and a Gaussian beam. Alfano and Nolan remarked that by considering dispersion relation, Bessel beam can be 
very slow near a critical frequency which can be used as optical buffer in free space2. Slowing light due to its struc-
ture is different from slowing light with materials.

Laguerre-Gauss (LG) beam is an interesting structured light since it carries orbital angular momentum 
(OAM). LG beam can have orders of orbital or winding order  and radial order p. The scalar field of LG beam is 
expressed mathematically in standard cylindrical coordinates (r, ϕ, z) as follows,
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2 is the Rayleigh length3. This beam spreads along 
propagation as illustrated in Fig. 1a. In the far-field, the beam divergence of an = =

LG p0, 0 is represented by the 
opening angle θ0, which can be expressed in terms of minimum beam waist w0 and magnitude of the wavevector 
k0 as,
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In the LG expression in (1), the phase factor of the form ϕ  means  is the number of 2π windings around the 
azimuthal angle ϕ. First asserted by Allen et al., these beams ≠( 0) have Poynting vectors that spiral along the 
direction of propagation4. The helical wavefront for a beam with = 1 is illustrated in Fig. 1b. Negative s will 
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yield the same wavefronts but of opposite helicities. The realization that LG beam carries OAM has led to a myriad 
of applications from optical tweezing and micromanipulation5–7, to free space information8, to tranverse Doppler 
effect9, and in astrophysics10.

Although the radial order p of LG mode is very rarely discussed, it is mostly directly used in applications. One 
fundamental role of p is its enhancement of the angular beam shifts in reflection of higher order LG beams11. 
Moreover, higher orders of LG modes are also found to reduce the Brownian thermal noise in laser interferometry 
that could be useful in future gravitational wave detectors12. In optical trapping, if an optical vortex due to  con-
fines atom for precision measurements, the multi-ring dislocations due to p can be used as toroidal trap in observ-
ing persistent flow of Bose-Einstein condensates13,14.

In the paraxial regime, LG beams form a complete basis set such that it can be used as a tool in quantum infor-
mation processes15–17. Both  and p are realized as additional degrees of freedom in encrypting information in 
photons18,19. Hence, both the orbital and radial order can be used in encoding information aside from the polari-
zation of the light. As an application, free-space multiplexing is possible as photons are treated with higher quan-
tum dimensional states. Consequently, higher information density can be achieved even using the same number 
of photons.

In this manuscript we ask: What is the effect of the orbital order  and the radial order p of LG beam on its group 
velocity? The consequences are extensive. The most important of which is the different time of arrival of informa-
tion even in free space propagation. This is similar to the modal dispersion in fiber, a serious limitation in optical 
fiber communication20. The promised massive information when using LG beams will have an issue. Information 
embedded in these beams will not arrive at the same time and some corrections are then necessary.

In this paper, we report our calculation on the dispersion and reduction of vg′s in LG beams. The analytical 
expression is exact and our expression reduces to the result of Giovannini et al. for Gaussian beam when = 0 
and p =​ 0.

Results and Discussions
The vg can be derived by considering geometry in the ray-optic model. The path of light follows the direction 
of Poynting vector which points toward the direction of the wavevector. A field confinement produces spatially 
structured light, which alters the wavevector to include non-axial components. The transverse components cause 
the delay in the vg of light. Confined light therefore, would have its vg that is not equal to c.

Suppose light travels along z in standard cylindrical coordinates (r, ϕ, z). A plane wave has a wavevector 
component that is purely along z thus, this light is expected to travel at c. For Gaussian and Bessel beams, the 
wavevectors comprise of both longitudinal z and radial r components. The radial component will cause an added 
path length in the propagation of these beams. It will generate a time delay in the speed of light. For beams with 
OAM, the wavevectors constitute the whole basis components. The delay then for an OAM-carrying beam is due 
to the added path length that originated from both radial and azimuthal wavevector components.

The vg calculation in the paraxial regime of LG beam is detailed in the Methods section. The vg is found to be 
inversely proportional to the orbital order , the radial order p, and the beam’s divergence θ0, as
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This expression shows that the delay of LG beam is related to its order, + p2 . When the order is zero, the 
beam reduces to a Gaussian mode = =

LG( )p0, 0 . The vg for = 0, p =​ 0 is consistent with the reported delay in 
Gaussian beams1. The subluminal vg of Gaussian modes varies for different w0 values, and that vg is even further 
reduced for relatively smaller w0. This holds true since, for a certain λ0, relatively lower w0 yields larger far-field 
beam divergence. As the beam propagates for such case, the field confinement in the transverse structure is 
amplified.

For a fixed θ0, the expression results with discrete vg values, since  and p take the values of integers and natural 
numbers, respectively. This fact is helpful for precise detection in communications using LG beams, as one has 
prior knowledge of the beams’ arrival based on discrete vg’s.

As a representation of Equation (3), a colormap of vg/c values for ∈ − [ 5, 5] and p ∈​ [0, 10], is shown in 
Fig. 2. We generated this plot with a beam of a central wavelength λ0 =​ 632.8 nm and a minimum beam waist 
w0 =​ 2.0 μm. All values fall below unity implying subluminal speed of LG beams for any  and p values. The case 

Figure 1.  (a) LG beam spreading through propagation and (b) LG wavefront for = 1 and p =​ 0.
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= 0 and p =​ 0, located at the center of lowest row, corresponds to vg/c of a Gaussian beam. This beam obtained 
the largest vg/c value or the least reduced vg. This is expected since a Gaussian beam with no radial and orbital 
order is the least structured beam compared to higher modes of LG beams. A Gaussian beam yields the least 
magnitude of transverse component in the altered wavevector, hence it intuitively results with vg closest to c.

The vg/c becomes lower as one goes farther from = 0 and p =​ 0, seen by the change in the color in Fig. 2. 
Different orders + p(2 ) of LG beams disperse along propagation. The free-space dispersion based on Equation (3) 
can be expressed as the effective group index of refraction ng, given by, = + + +( )n p1 (2 1)g k w

1
2

0 0
. For any 

w0 values, ng is linearly related to + p2 . Thus, LG beams of different orders that are initially propagated simul-
taneously will have different time delays after travelling the same path distance. This makes LG beams separate in 
the temporal domain. This contributes to the dispersion due to field confinement. A beam with higher order will 
have greater added path length δz, evident when relating Equation (13) to Equation (10) (see derivation in 
Methods section).

The free-space dispersion of LG beams consequently demands corrections in their applications such as in data 
transmission/communication, in multiplexing, in interaction with nonlinear materials and in OAM spectrum 
detection21–26. The dispersion can also be substantial in quantum information processes for encryption and 
decryption of higher quantum dimensional states, such as  and p values, in photons.

Setting p =​ 0 in Equation (3), the role of different values of OAM alone can be seen. Padgett et al. demonstrate 
that for a given beam size, the far-field opening angle increases with increasing OAM27. Larger apertures are 
required when receiving beams with relatively higher OAM. The -dependence of vg for LG beams that we report 
may be incorporated to such receiving optical system. A time-controllable receiving aperture size can be pro-
grammed according to computed delays prior to the arrival of beams. As opposed to the beam divergence relation 
presented in Equation (2) due to skewness of Poynting vector with respect to optical axis, they also considered the 
contribution of normal diffractive spreading by the standard deviation of the spatial distribution. They derived 
the far-field beam divergence α


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Reformulating Equation (11), the vg expression for OAM-carrying beams (p =​ 0) according to this beam diver-
gence definition, we get a more compact form:
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For light with OAM ≠( 0) and p =​ 0, we can think that the added path length due to beam divergence 
increases by a factor of + 1. This factor is consistent with the conservation of total linear momentum in the 
system. In the work of Giovannini et al.1, the added path length comes from the radial component of the Poynting 
vector with respect to the optical axis. In Equation (13) (see Methods section), we show that even a Poynting vector 
with angular component due to  with respect to the optical axis can also contribute to the path.

Figure 3a shows the plots of vg/c versus  for different p values. The symmetry of trends between < 0 and 
> 0 with respect to = 0 shows that the dispersion of OAM-carrying beams yield the same value of vg regard-

less of the helicity or polarity of . In Fig. 2, the color distributions between left and right regions mirror each other 
with respect to the central column, owing to the  factor in Equation (3). The plot is shifted downwards for  
relatively higher radial order (p >​ 0). The vg is reduced by an added p

k w( )0 0
2
 factor in the denominator of Equation (4).

Similarly, vg/c is plotted against p for different 


 values in Fig. 3b. The drop in vg/c values in these plots is 
steeper compared to plots of vg versus . This is due to the 2 factor in p in Equation (3). Beams of different radial 
orders disperse faster than beams of different OAM. The plot of vg/c versus p shifts downward as the beam is 
endowed with higher orbital order.

Figure 2.  Colormap of vg/c values as function of  and p with central wavelength λ0 = 632.8 nm and 
minimum beam waist w0 = 2.0 μm. Each pixel of a specific color corresponds to vg/c value (colored scale bar). 
Warm colored pixels have relatively higher vg/c values compared to cool colored pixels.
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Different modes can have the same vg as seen in Fig. 3. These modes have the same beam order but of different 
combinations of mode indices. We call these modes with the same vg as degenerate modes. There will be more 
degenerate modes for lower vg. This can be seen if we include more plots for higher values of p (>​3) in Fig. 3a. The 
same can be observed in Fig. 3b by including plots with higher ′ s, except that twice the modes must be accounted 
for ≠ 0 to consider the opposite helicities. Relatively higher beam order yields more degenerate modes.

The number of degenerate modes, denoted by + d p2 , in the dispersion of LG beam with + p2  order is 
given by,

= + + .+ 



d p2 1 (5)p2

Only the Gaussian beam is non-degenerate, which uniquely is the fastest relative to other LG modes. The 
number of degenerate modes is just one plus the order of the beam. Some combinations of mode indices that yield 
the same vg are presented in Table 1. In detection, the order of LG beam can be determined by performing cross 
correlation function even with intensity that resulted from partially coherent source28. There are several ways to 
discriminate the explicit combination of mode indices in degeneracy of the beam order. One example is to first 
quantify p by employing double correlation function on the captured intensity profile29. Then, the magnitude and 
polarity of  can be characterized by measuring OAM based on Fraunhofer diffraction pattern that is formed by 
passing light through shaped apertures30,31.

In conclusion, we have derived the group velocity vg of LG beam that is inversely proportional to the orbital 
order , the radial order p and the far-field beam divergence θ0. This result shows that LG beams are both sublu-
minal and dispersive even in free space. Discrete ′v sg  are obtained for an arbitrary θ0. The dispersion of LG beams 
has degenerate modes for certain discrete vg; The number of degenerate modes is just one plus the LG beam’s order 
+ p(2 ). We also highlight that light travels in the direction of the Poynting vector, therefore both radial and 

angular components will contribute to the added path length. This report would have far-reaching consequences 
on the OAM beam’s applications.

Methods
The transverse wavevector of a light beam alters both the phase velocity vp and group velocity vg. We are only con-
cern with vg calculation since this parameter corresponds to the actual speed of light as it travels through space, 
whereas vp indicates the field signal variation32.

For a given path length Δ​z between two different points such as z1 and z2, a structured light travels at a time Δ​t  
that includes an added path length δz due to the transverse components of the wavevector. They are related by  
Δ​t =​ (Δ​z +​ δz)/c. In the ray-optic model, the vg can be obtained by calculating δz and is mathematically formu-
lated as follows,

Figure 3.  Plots of (a) vg/c versus  for different p values and (b) vg/c versus p for different  values.

Order + p2 Degeneracy counts + d p2 Mode indices  p( , )

1 2 (1, 0), (−​1, 0)

2 3 (2, 0), (−​2, 0), (0, 1)

3 4 (3, 0), (−​3, 0), (−​1, 1), (1, 1)

4 5 (4, 0), (−​4, 0), (2, 1), (−​2, 1), (0, 2)

  

Table 1.   Some combinations of mode indices yielding + +p2 1 degenerate vg values of LG beam in 
+ p2  order.
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The path of light can be represented as a diverted ray with a certain angle from the beam axis. The amount of 
δz is the difference between length of diverted ray within the actual path and Δ​z. This can be expressed as
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where Φ​ is the phase profile of the scalar field. As an example, Φ​ =​ kz −​ ωt for plane wave thus δz is zero, as 
expected. However for LG beam, the beam waist varies significantly at distances near the Rayleigh length. This 
manifests variation of vg as it propagates in the near field. We consider the paraxial regime in order to simplify 
further δz, so that we can derive an expression of z-independent vg for any arbitrary field. This then translates 
spatial dependence of vg into wavevector. The derivation by Giovannini et al.1 considers Φ​ as complex argument 
of the scalar field function,

ψ ψΦ = .z k z karg ( , ) ( , ) (8)0

The paraxial wave equation is then written in terms of quantum mechanical operator with evolution of wave-
function from z1 to z2:
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where = − ∇⊥ ⊥k̂ i  is the operator representing the transverse wave vector. By taking an inner product of ψ(z2, k) 
in Equation (9) and substituting the result to Equation (7), we obtain the relation:
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such that ∇⊥
2  operator is the transverse Laplacian.

Now, for an LG beam, we substitute Equation (1) to Equation (12) in order to have
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And the group velocity for such beam is given by,
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where 1/k0w0 is replaced by the opening angle of the beam θ0/4 for a more intuitive picture. When = 0 and p =​ 0,
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Equation (15) is consistent with the calculation for Gaussian beam1.
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