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Abstract

With the prosperity of machine learning and cloud computing, meaningful information can

be mined from mass electronic medical data which help physicians make proper disease

diagnosis for patients. However, using medical data and disease information of patients fre-

quently raise privacy concerns. In this paper, based on single-layer perceptron, we propose

a scheme of privacy-preserving clinical decision with cloud support (PPCD), which securely

conducts disease model training and prediction for the patient. Each party learns nothing

about the other’s private information. In PPCD, a lightweight secure multiplication is pre-

sented and introduced to improve the model training. Security analysis and experimental

results on real data confirm the high accuracy of disease prediction achieved by the pro-

posed PPCD without the risk of privacy disclosure.

Introduction

With sharp growth of electronic data, machine learning has impacted on human’s lifestyle by

predicting human’s behavior and future trends on everything [1], [2], [3]. To overcome the

limitations of storage and computing resource, how to outsource pricey tasks of machine

learning to the Cloud has attracted much more attention. For instances, data of the client can

be transmitted to the Cloud for either model training and predicting [4], [5], [6]. As a popular

machine learning algorithm, single-layer perceptron (SLP) is simple yet efficient and has been

widely used in disease prediction [7], [8], [9]. It is more appropriate for real-time disease pre-

dicting than some complex techniques such as naïve bayesian [10], decision trees [2] and sup-

port vector machines (SVMs) [11], [12] and so on. Clinical decision support system (CDSS),

which uses various data mining techniques to help physicians make proper disease diagnosis

and provide health services for patients, has received considerable attention [7], [13], [14],[15].

However, for privacy concerns, users don’t want to submit their medical data to an unautho-

rized institution [16], [17], [18]. At the same time, due to classifier being considered as own

asset of the medical service provider, there is a risk of exposing the prediction model to third-

party. Otherwise, third-party will use the model to make disease prediction for a patient who
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could damage the profile of medical service provider. Therefore, the confidentiality of both

medical data and disease model are crucial for the CDSS. How to achieve secure disease pre-

diction without compromising the accuracy of the result becomes a challenging issue.

To protect the privacy of patients’ medical data and the security of the prediction model, in

this study, we propose a privacy-preserving clinical decision scheme based on SLP with cloud

support (PPCD). As shown in Fig 1, two phases of SLP model training and disease predicting

are included. In the model training, Diagnosed patients encrypt their symptoms data and out-

source them with the corresponding diagnosed disease to the cloud. Meanwhile, the hospital

generates random weights which are then encrypted and sent to the cloud. After receiving

both of the encrypted medical data and the weights, the cloud trains the model accompanied

by a few interactions with the hospital. The cloud selects an encrypted sample and executes

the sign(.) function. If the returned value of sign(.) does not match its label, the cloud updates

the weights until the convergence criterion is satisfied or all the disease cases are matched.

When a patient wants to check his disease, he encrypts the data of the symptoms and submits

it to the hospital which completes the analysis based on the disease model and sends back the

encrypted diagnosis result and some medical advice.

Towards tackling the privacy concerns in Clinical decision support system, PPCD provides

disease model training and disease risk prediction for the patient in a privacy-preserving way

that makes the Cloud learns nothing about the patient’s medical information and the actual

model. Specifically, the main contributions lie in:

1. The proposal of PPCD which provides a privacy-preserving clinical decision based on SLP

with cloud support. It helps the doctor to predict disease since the medical data and the

diagnosis result remains in encrypted forms. Furthermore, the built disease diagnosis

model is also protected as an asset of the hospital.

2. For privacy-preserving in the phase of model training, a specific lightweight secure multi-

plication (LSM) is presented. By employing LSM, PPCD securely finishes the inner-product

in encrypted-domain (ED) after one round.

3. We implement PPCD by Java to check its performance in ED. Experimental results from

several medical data analysis confirm that PPCD achieves comparable accuracies with SLP

in plain-domain (PD).

The remainder of this paper is organized as follows: The following section briefly intro-

duces the preliminaries. Then, PPCD is proposed along with LSM. Also, correction & security

analysis is detailed, followed by the section of performance evaluation. Related works and con-

clusions are respectively given by the last two sections.

Preliminaries

In this section, a brief glimpse of the Paillier cryptosystem, SLP and secure multiplication (SM)

are given. Table 1 summarizes the key notations.

Single-layer perceptron

Following [19], SLP is to learn the weight vector w which is then multiplied with the input fea-

tures to determine if a sample belongs to one class or the other. We define an activation func-

tion sign(z) which takes the linear combination of the input values x and w as input. If sign(z)
is greater than a defined threshold θ, we predict 1 and -1 otherwise. In order to simplify the
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Table 1. Summary of notations.

Notation Definition

PKh Hospital’s public key of the Paillier encryption scheme

SKh Hospital’s private key of the Paillier encryption scheme

PKup Undiagnosed Patient’s public key of the Paillier encryption

SKup Undiagnosed Patient’s private key of the Paillier encryption

EPKh ð�Þ The Paillier’s encryption function

ESKh ð�Þ The Paillier’s decryption function

Sign(.) Activation function of SLP

xi Symptom vector of patient i
Oi Output value, Oi 2 {−1, 1}

Dk The k-th disease, k 2{1, m}

Cxi
�! Encrypted symptom vector of patient i

CWk
��! Weight ciphertext vector of k-th disease

xij The j-th symptom attribute of patient i
Cxi,j Ciphertext of xij
Cwj Ciphertext of wj
|xij| The absolute value of xij

rxij, rwj The random numbers, rxij, rwj 2 ZN
EXP Time cost of one exponentiation operation

MUL Time cost of one multiplication operation

DIV Time cost of one modular inverse operation

# Not equal to

https://doi.org/10.1371/journal.pone.0217349.t001

Fig 1. Architecture of the proposed PPCD.

https://doi.org/10.1371/journal.pone.0217349.g001
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notation, we define w0 = −θ and x0 = 1, so that

signðzÞ ¼
1 if z � y;

� 1 if otherwise;

(

ð1Þ

where

z ¼ w0x0 þ w1x1 þ � � � þ wnxn¼
n
Xn

i¼0
wjxj ¼ wTX:

For each training sample xi, we calculate the output value, and update w if the output is not

the same with the target. The value for updating the weights at each increment is calculated by

the learning rule,

wjþ1 ¼ wj þ Zoixij; ð2Þ

where η is the learning rate (0 < η� 1).

It is important to note that the convergence of the perceptron is only guaranteed if the two

classes are linearly separable. If a linear decision boundary can’t separate the two classes, a

maximum number of passes should be set over the training dataset and/or a threshold for the

number of tolerated misclassifications.

Paillier cryptosystem

Paillier cryptosystem is an additively homomorphic cryptosystem [20]. It works as follows:

1. Key generation: Two large prime numbers p and q are randomly and independently cho-

sen such that gcd(pq, (p − 1)(q − 1)) = 1, where |p| = |q|. Then, we compute n = pq and λ =

lcm(p − 1, q − 1), and select a random integer g in Z�n2 . By setting μ = (L(gλ mod n2))−1 mod

n and LðxÞ ¼ x� 1

n , the public key (n, g) and the private key (λ, μ) are obtained.

2. Encryption: Let m be a message to be encrypted where 0�m< n. With a randomly

selected r where 0< r< n, the ciphertext is calculated by c = E(m) = gm � rm mod n2.

3. Decryption: Let c be the ciphertext to decrypt where c 2 Z�n2 , the plaintext message is got by

m = D(c) = L(cλ mod n2) � μ mod n.

As a additively homomorphic, its identities: D((E(m1, r1) � E(m2, r2) mod n2) = (m1 + m2)

mod n and homomorphic multiplication of plaintexts: D((m1, r1)k mod n2) = km1 mod n.

Secure multiplication. Secure Multiplication(SM) [21] supports multiplication in ED.

Suppose Alice has two encrypted data Epk(X) and Epk(Y), Bob has the private key sk corre-

sponding to public key pk, the goal of SM is to compute Epk(X � Y) without leaking X and Y to

Alice. SM protocol is described as follow:

1. Alice gets ciphertext Epk(x) and Epk(y), generates two random numbers rx, ry 2 zn, and then

calculates x1 = Epk(x) � Epk(rx) and y1 = Epk(y) � Epk(ry). Send x1 and y1 to Bob.

2. After received x1 and y1, Bob decrypts x1 and y1 by using the private key sk to get Hx =

Dsk(x1) and Hy = Dsk(y1), then computes H1 = Hx � Hy mod N, last Bob encrypts H1 with

pk H = Epk(H1) and sends H to Alice.

3. Alice first computes s1 ¼ EpkðxÞ
N � ry ,s2 ¼ EpkðyÞ

N� rx and s3 = Epk(rx � ry)N−1, then multiplies

them as Epk(x � y) = H � s1 �s2 �s3.

Privacy-preserving clinical decision with cloud support
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The proposed PPCD model

Model overview and requirements

Model overview. To make employing SLP for model training and disease prediction with

privacy being protected, the proposed PPCD model contains four parties which are illustrated

in Table 2. They collaboratively conduct SLP model training and disease predicting. The CS

trains a disease prediction model based on the DP’s disease data. To check a disease, UP sub-

mits his symptoms data to the Hospital which predicts the corresponding disease based on the

trained model. Fig 1 depicts the detailed procedure.

Privacy requirements. In PPCD, DPs are trustworthy. They provide correct medical data

to the Cloud server. Meanwhile, CS and UP are honest-but-curious [22]. CS strictly follows the

privacy-preserving SLP learning protocol performed in the system. It wants to know HP’s sen-

sitive medical data and UP’s medical information once the condition is met. UP is interested

in the trained disease model. Hospital is honest. At the same time, an adversary from outside

is curious about all transferred data in the system by eavesdropping. So privacy-preserving is

critical for successfully diagnosing the patient’s disease, and security requirements of PPCD

are listed as follows.

1. UP’s Privacy: In the disease diagnosis, sensitive symptom data of UP should not be leaked

to other untrusted parties during the transmission. Furthermore, the diagnosed result is

confidential for the patients such that it cannot be exposed to any other entities. It means

that UP’s privacy should be preserved.

2. DP’s Privacy: Generally, DP gets some history medical information, e.g., the diagnosed dis-

ease and the confirmed symptoms data. This information is highly sensitive and cannot be

got by the unauthorized entities. Otherwise, DP is unwilling to provide the history disease

data for model training due to privacy concerns.

3. Hospital’s Privacy: In PPCD, hospital trains disease model using the historical medical data

with the help of the Cloud. As an asset of the hospital, the disease model cannot be leaked

to UP and other parties during disease diagnosis.

Design goal. Based on the above scenarios and the security requirements, the system will

realize model training and disease diagnosis in a privacy-preserving and efficient way. The par-

ticular goals are shown as follows.

1. Privacy-preserving requirements: the flourish of Clinical decision support hinges upon

information secure and privacy-preserving. If the model’s privacy requirements are not con-

sidered, the patient’s sensitive data and the disease model will be exposed to the unautho-

rized parties. Thus history patients are more unwilling to share their medical data to PPCD,

the accuracy of the trained model is not ensured, and diagnosis service will be bad. There-

fore, the system should realize the privacy of history patients and undiagnosed patients.

2. Confidentiality and accuracy of disease model should be achieved: the disease model is a

valuable asset of the hospital, which may be reluctant to reveal the information of the dis-

ease model. Simultaneously, it is crucial applying privacy-preserving can’t compromise the

accuracy of predicting model.

The Proposed PPCD Model

Privacy-preserving training. This section shows how to construct PPCD, train the dis-

ease model and predict disease based on the model in a privacy-preserving way.

Privacy-preserving clinical decision with cloud support
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(1) System setting

Key generation: Paillier encryption algorithm is run by the hospital to generate keys for

both UP and the hospital. Given the secure parameter k, choose two large prime numbers p
and q randomly which satisfy |q| = |p| = k, hospital generates the pubic key (n, g) and the corre-

sponding private key (λ, μ), where n = pq and λ = lcm(p − 1, q − 1).

Data encryption: Raw medical data xi;j 2 xi
!
¼ ðxi;1; xi;2; . . .; xi;nÞ

i;n
are encrypted and sub-

mitted to the Cloud for storage and model training. The Cloud stores the disease patterns

< Dk >
d
i¼1

, each of which represents a disease sample < xi;Oi >
m
i¼1

, where xi is a n-dimen-

sion vector, each element represents confirmed symptom and Oi 2 {−1, 1} is associated

desired output, where 1 represents suffering from the disease and -1 represents not. Suppose

medical data have been preprocessed, so the format of data is suitable for PPCD. In system,

disease output is stored in cloud server in plaintext because leaking disease output does

not damage patients’ privacy. The encrypted patients’ medical data are stored in cloud as

Table 3.

Meanwhile, the disease predicting model is sensitive data which should be encrypted. At

the beginning of model training, the hospital generates a random weight w = (w1, w2, � � �, wn)

and encrypts it, then sends ciphertext of the weight to the Cloud server.

(2) Lightweight secure multiplication protocol

SM can be used to calculate inner-product on the two encrypted vectors. Given Cxi
�!
¼

ðCxi;1;Cxi;2; . . .;Cxi;nÞ and CW
��!
¼ ðCw1;Cw2; . . .;CwnÞ, Eð

Xn

i¼1
xi � wiÞ is calculated by run-

ning SM for n times. To efficiently compute the inner-product of two encrypted vectors, based

on SM, we propose an efficient lightweight secure multiplication (LSM) protocol which can

achieve inner-product on ciphertext in one time. By considering two parties C1 and C2, LSM

is detailed in Algorithm 1.

Table 3. Medical data for the k-th disease.

Medical sample Medical data Desired output

x1 {Cx1,1, Cx1,2, � � �, Cx1,n} O1

x2 {Cx2,1, Cx2,2, � � �, Cx2,n} O2

� � � � � � � � � � � � � � �

xn {Cxn,1, Cxn,2, � � �, Cxn,n} Oi

https://doi.org/10.1371/journal.pone.0217349.t003

Table 2. Description of the attended four parties.

Parts Descriptions

Diagnosed Patient(DP) DP encrypts the symptoms data with the hospital’s public key PKh and the diagnosed

result, which are used for training disease model, and then outsources the data to the

Cloud server

Undiagnosed Patients

(UP)

UP provides the encrypted disease symptoms data for hospital to make decisions

Hospital As a medical service provider, the hospital is a trusted party who is in charge of generating,

distributing and management of public key and private key. Meanwhile, the hospital

performs model training together with the cloud server and disease predicting for UP

based on patient’s symptoms

Cloud Server (CS) CS with almost unlimited storage trains the disease model according to the outsourced

medical data. The trained model is securely stored in the hospital

https://doi.org/10.1371/journal.pone.0217349.t002
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Algorithm 1: LSMðCxi
�!

;W
!
Þ ! Eð

Xn

i¼1
xi � wiÞ

Require: C1 has Cxl
�!

and CW
��!

; C2 has sk
Step1: C1:

(1) Chooses 2n random numbers rxij, rwj, 2 ZN

(2) Crxij E(rxij)

(3) Crwj E(rwj)

For each Cxij and Cwj

(4) Xij = Cxij � Crxij

(5) Wj = Cwj � Crwj; Send Xij, Wj to the C2

Step2: C2

(1) Receive Xij Wj from C1

(2) X0ij  DskðXijÞ

(3) W 0
j  DskðwjÞ

(4) h ¼
Xn

i¼1
X0ij � w0j

(5) H = Epk(h); sends H to C1

Step3: C1

(1) Receiving the H

(2) T1 ¼
Yn

i¼1
Eðrxij � rwjÞ

N� 1

(3) T2 ¼
Yn

i¼1
EðxijÞ

N� rwj

(4) T3 ¼
Yn

i¼1
EðwijÞ

N� rxij

(5) R ¼ H � T1 � T2 � T3 ¼ Eð
Xn

i¼1
xi � wiÞ

(3) Model training

In system setting phase, DP encrypts its medical information <xi, Oi> and outsources

<Cxi, Oi> to the Cloud. The Cloud collects some medical data< Cxi;Oi >
m
i¼1
2 Dk where k

represents the k-th disease. To train the predicting model wk of the k-th disease, the Cloud

selects disease samples with Ik to train the model.

Privacy-preserving disease model training is described by Algorithm 2.

Algorithm 2: Privacy-Preserving Model Training Based on SLP

1: Input: n input samples, < Cxi;Oi >
n
i¼1
2< Dk >

m
k¼1

, 1� k�m, iterationmax, learning rate

η, sign function sign(�)

2: Output: prediction model wk, 1� k�m
3: DP: for 1� k�m do

4: for 1� i� n do

5: DP encrypts symptom data as<Cxi, Oi, Ik> and submits to the cloud

6: Endfor

7: Endfor

Privacy-preserving clinical decision with cloud support
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8: for 1� k�m do

9: Hospital: chooses initialization wk
!

randomly.

10: for iteration = 1, 2, . . ., iterationmax

11: for 1� i� n do

12: Hospital: encrypts wk
!

and upload to the cloud

13: Cloud: chooses a medical sample <Cxi, Oi> and executes LSM to get

14: R ¼ Eð
Xd

j¼1
xij � wjÞ and send to the hospital

15: Hospital: decrypt R and calculation sign function Si = sign(DEC(R)) and send to the

cloud.

16: Cloud: If S # Oi and Oi = 1, exp = η
17: If S # Oi and Oi = −1, exp = n − η
18: for j = 1,. . .d
19: uj ¼ Cxexpi;j

20: Cwj = Cwj � uj
21: endfor

22: endfor

23: endfor

24: return wk, 1� k�m
Lines 3–7: DP encrypts symptom data and submits <Cxi, Oi, Ik> to the cloud.

Lines 8–12: The hospital randomly generates the weight wk
!

in which not all elements is

equal to 0 and encrypts it with own public key pk, then, send weight ciphertext fCwk
�!

; Ikg
{to the Cloud.

Lines 13–14: In the Cloud, choose a disease sample {Cxi, Ik} and 2n random numbers

rxij, rwj 2 ZN, then executes LSM to compute R ¼ Eð
Xn

i¼1
xij � wiÞ, where the cloud server is

C1, hospital is C2. Lastly send R to the hospital.

Lines 15: After receiving R, teh hospital decrypts R with private key sk, and execute the

sign(�) function as S ¼ signð
Xn

i¼1
xi � wiÞ, then send S to cloud.

Lines 16–20: The Cloud compare S with Oi. if S # Oi and Oi = 1, let exp = η; if S # Oi and Oi =

−1, let exp = n − η. Next the Cloud updates Cxi as Cxi;jexp, and then, update Cwj as Cwj � Cxi;jexp.

Line 24: If the entire disease samples are matched or training count is greater than conver-

gence criterion, hospital will terminate the training model and <wk Ik> is seen as prediction

model for Dk, else return and repeat lines 13–14.

After getting the k-th disease model, the Cloud selects< Cxi;Oi >
Xm

i¼1
2 Dkþ1 and

repeats lines 8–24. After all medical sample are trained, hospital cloud get prediction models

< Cwk; Ik >m
k¼1

for all disease.

Disease prediction. In the phase, assuming prediction models have been trained and

stored in the hospital. The hospital can predict whether a patient suffers from K-th disease

using a K-th disease model. When an undiagnosed patient submits his encrypted symptoms

information to the hospital, the prediction will be executed as follow.

Step 1: When the ciphertext of symptoms information is arrived, the hospital decrypts the

ciphertext and gets the plaintext symptoms data xi
!

.

Step 2: Let s = 0, for each xj and wj, the hospital calculates sj = xj � wj, then gets s ¼
Xn

j¼1
sj.

Step 3: Compute S = sign(s), If S> = 0, then the patient suffers from the disease, but not

otherwise.

Privacy-preserving clinical decision with cloud support
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Step 4: hospital encrypts the prediction result with UP’s public key and return to the patient.

Correction & security analysis

In this section, we analyze the correction and security of the proposed PPCD scheme. Notably,

we focus on how PPCD achieve the privacy preserving of medical information of patient and

disease model.

(1) Correctness analysis of LSM

The correctness of LSM can be illustrated as follows:

In Step1:

Xij ¼ Cxij � EðrxijÞ ¼ EðxijÞ � EðrxijÞ ¼ Eðxij þ rxijÞ ð3Þ

Wj ¼ Cwj � EðrwjÞ ¼ EðwjÞ � EðrwjÞ ¼ Eðwj þ rwjÞ ð4Þ

In Step2:

Xij
0 ¼ DskðXijÞ; Wj

0 ¼ DskðwjÞ ð5Þ

h ¼
Xn

i¼1
Xij
0 � wj

0 ¼
Xn

i¼1
ðxi þ rxiÞðwi þ rwiÞ ð6Þ

H ¼ EpkðhÞ ¼ Eð
Xn

i¼1
ðxi þ rxiÞðwi þ rwiÞÞ ð7Þ

In the Step3:

T1 ¼
Yn

i¼1
Eðrxij � rwjÞ

N� 1
¼
Yn

i¼1
Eð� rxij � rwjÞ ¼ Eð

Xn

i¼1
� rxij � rwjÞ ð8Þ

T2 ¼
Yn

i¼1
EðxijÞ

N � rwj ¼
Yn

i¼1
Eð� rwj � xijÞ ¼ Eð

Xn

i¼1
� rwj � xijÞ ð9Þ

T3 ¼
Yn

i¼1
EðwjÞN � rxij ¼

Yn

i¼1
Eð� rxij � wjÞ ¼ Eð

Xn

i¼1
� rxij � wiÞ ð10Þ

R ¼ H � T1 � T2 � T3

¼ Eð
Xn

i¼1
ðxi � wi þ xi � rwi þ rxi � wi þ rxi � rwi � rwi � xi � rxi � wi � rxi � rwiÞÞ

¼ Eð
Xn

i¼1
xi � wiÞ

ð11Þ

From the above derivation, LSM can calculate the Eð
Xn

i¼1
xi � wiÞ in a round.

(2) Correctness analysis of training model

The correctness of PPCD can be illustrated as follows: in step3, the hospital decrypts R with

private key sk, and compute

si ¼ signðDecðRÞÞ ¼ signðDecðEð
Xd

j¼1
xij � wjÞÞÞ ¼ signð

Xn

i¼1
xij � wiÞ ¼ signðwk � xi

TÞ ð12Þ

So si is consistent with that in Eq (1).

In Step 4. The Cloud update Cwk as Cwj = Cwj � uj,
where uj ¼ Cxi;jexp

Privacy-preserving clinical decision with cloud support
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If S # Oi and Oi = 1, exp = η

uj ¼ Cxi;j
exp ¼ Cxi;j

Z ¼ Eðxi;j � ZÞ ð13Þ

Then

Cwj ¼ Cwj � uj ¼ EðwjÞ � Eðxi;j � ZÞ ¼ Eðwj þ xi;j � ZÞ ¼ Eðwj þ Z � Oixi;jÞ ð14Þ

If S # Oi and Oi = −1, exp = n − η

uj ¼ Cxi;j
exp ¼ Cxi;j

n� Z ¼ Eð� xi;j � ZÞ ð15Þ

Then

Cwj ¼ Cwj � uj ¼ EðwjÞ � Eð� xi;j � ZÞ ¼ Eðwj � xi;j � ZÞ ¼ Eðwj þ Z � Oixi;jÞ ð16Þ

Thus Cwj is also consistent with that in Eq (2).

From the above calculation, PPCD train correct disease model in the cloud. Namely the

accuracy of prediction model is satisfied.

(3) Security of patient’s medical data

To predict disease for patients, DP and UP encrypt medical information xi = {xi1, xi2,. . .,xij}
with the hospital’s public key PKh and upload the ciphertext Cxi = {Cxi1, Cxi2,. . .,Cxij} to the

Cloud. In the process of transmission, all the medical information is encrypted to prevent out-

side attacker from eavesdropping. An adversary cannot decrypt the ciphertext without the hos-

pital’s private key SKh. The symptom data is encrypted by the Paillier which is semantic secure

against the choose plaintext attack. So the medical information stored in the Cloud is secure

since the Cloud cannot identify the corresponding contents and get the plaintext of symptom

data.

(4) Security of training disease model

During training the prediction model, all the computations are done over ciphertexts.

Eð
Xn

i¼1
xij � wiÞ is calculated by using LSM in which each party learns nothing from the proto-

col. The initial model is generated by the hospital randomly and updated in the process of

training over ciphertext, and the hospital’s SKh is well protected. Cxi;jexp and Cwj = Cwj � uj =

E(wj + ηOixi,j) can be computed easily over ciphertext because of the additive homomorphism

property of Paillier. Suppose the disease model is leaked to UP or the Cloud, they are not able

to recover wk, without the private key SKh.

(5) Security of predicting result

When a patient wants to identity his disease, he submits the ciphertext of symptoms data to

the hospital. After finishing disease prediction, diagnosis result is encrypted by UP’s public key

PKup and returned to UP. When an attack captures predicting result, he can’t recover the cor-

responding contents without DP’s private key SKup.

Performance evaluation

Complexity analysis

Computational complexity. To analyze the complexity of the proposed PPCD, Table 4

illustrates the computational cost for each step. For simplicity, we use EXP to denote the time
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complexity of one exponentiation operation on ciphertext in the Paillier cryptosystem. Simi-

larly, the time complexities of one multiplication operation on ciphertext and one modular

inverse operation in the decryption algorithm are represented by MUL and DIV, respectively.

In Step 1 of the disease learning phase, n exponents and multiplications are required by the

hospital which encrypts the initial weight. In Step 2, the Cloud uses (2n+3) exponents and

(4n+7) multiplications, and the hospital executes 2n exponents and 4n multiplications to

obtain R. In Step 3, one exponent and one modular inverse are consumed before getting S. In

Step 4, to update the weight, the Cloud does n exponents and n multiplication. At last, (n-1)

multiplications, one exponent and one modular inverse are executed to predict disease risk.

Then the encrypted diagnosis result is sent to UP.

Communication complexity. Assuming there are N samples with n dimensions, and the

length of the ciphertext is p. In the proposed PPCD system, the encrypted symptom data are

outsourced to the Cloud to train the classifier which costs O(N(np+L)). In model training,

the hospital transmits the encrypted initial weight which requires O(np+LIK). To compute R,

the cost of transferring data is O(3np+2p+LIK). In disease prediction, the hospital sends the

encrypted predicting result to UP that costs O(np+LIK). The communication complexities of

the proposed PPCD are detailed in Table 5.

Experimental results

To fairly evaluate the performance, the proposed PPCD is implemented by Java on Windows

7-X64. The Cloud is a computer with Intel Quad core 3.4GHz and 16GB available RAM, the

hospital runs a machine with Intel Quad core 3.4GHz and 8GB available RAM, and the patient

uses a laptop with Intel Dual core 2.0GHz and 8GB available RAM.

Data sets. In the experiment, we use the Wisconsin breast cancer dataset (WBCD),

the heart disease dataset (HDD) and the acute inflammations dataset (AID) from the UCI

machine learning repository [23] to test the performance of SLP based on our PPCD scheme.

Table 6 shows the statistical information of the employed three datasets.

WBCD contains 683 instances, and each instance includes 9 attributes ranging from 1 to

10. In WBCD, each instance can be grouped into one of two possible classes: benign or

Table 4. Summary of computational cost for xi in PPCD.

Phase Step Entity Computational cost

Disease learning Step 1 Hospital n(EXP+MUL)

Step 2 Cloud (2n+3)EXP+(4n+7)MUL
Hospital 2n(EXP+2MUL)

Step 3 Hospital EXP+DIV
Step 4 Cloud n(EXP+MUL)

Disease prediction Step 1 Hospital (n-1)MUL+EXP+DIV

https://doi.org/10.1371/journal.pone.0217349.t004

Table 5. Summary of communication overhead in PPCD.

Phase Step Communication overhead

Outsourcing DP’s data N(np+L)

Disease learning Step 1 np+LIK
Step 2 2np+2p
Step 4 np+ LIK

Disease prediction np+ LIK

https://doi.org/10.1371/journal.pone.0217349.t005
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malignant. HDD has 297 instances, and each instance consists of 13 attributes with two classes.

Except for sex, trestbpl, chol and thalach, the other 9 attributes range from 1 to 10. AID con-

tains 120 instances, and each instance includes 6 attributes with two decisions, i.e., inflamma-

tion of urinary bladder (IUB) and nephritis of renal pelvis origin (NRPO). Except for the

temperature, the other attribute is either 1 (YES) or 0 (No).

In reality, the raw medical data xi;j 2 xi
!
¼ ðxi;1; xi;2; . . .; xi;nÞmay be decimal. However, the

Paillier can only encrypt integers. To resolve the above problem, approximation and expansion

(A&E) method is adopted. Following the suggestion of [12], we adopt expanding each piece of

medical data by multiplying 104, and rounding off all the values after the decimal point. For

instance, xij is an integer lying in (Zn* −Zn), the item of weight w = (w1, w2, . . ., wn) is in

(Zn* −Zn), then xi,j are encrypted using the Pallier as follows.

Cxi;j ¼
Eðxi;jÞ xi;j � 0;

Eðn � jxi;jjÞ xi;j < 0;

8
<

:
ð17Þ

Cwj ¼
EðwjÞ wj � 0;

Eðn � jwjjÞ wj < 0;

(

ð18Þ

where Cxi,j, Cwj are the ciphertexts of xi,j and Cwj, respectively.

Results and analysis. We conduct PPCD with a predefined iteration threshold 100, and

then use the classifier and three real data sets to evaluate the classifier’s performance in terms

of accuracy. For each data set, the ratio of training data samples to the testing data samples is

7:3. Experimental results are detailed in Tables 7–10. Apparently, for breast cancer, the overall

accuracy achieved by SLP is 96.2% while PPCD reaches 95.6%. For heart disease, SLP obtains

an overall accuracy of 94.6%, and PPCD has 93.9%. On AID, SLP gets an accuracy of 93.3% for

IUB while PPCD achieves a comparable result 92.5%. For NRPO in AID, accuracy for SLP is

93.3% while PPCD gets 91.7%. Actually, PPCD reaches comparable disease analysis results

with that of by SLP.

Table 6. Description of the benchmark data sets.

Data

sets

size dims #classes attributes

WBCD 683 9 2 clump thickness; uniformity of cell size; uniformity of cell shape; marginal

adhesion; single epithelial cell size; bare nuclei; bland chromatin; normal nucleoli;

mitoses

HDD 297 13 2 age; sex; cp; trestbpl; chol; fbs; restecg; thalach; exang; oldpeak; slope; ca; thal

AID 120 6 2 temperature; occurrence of nausea; lumbar pain; urine pushing; micturition

pains; burning of urethra, itch, swelling of urethra outlet

https://doi.org/10.1371/journal.pone.0217349.t006

Table 7. Accuracy comparisons of SLP in PD and PPCD in ED on WBCD.

Output/Target Class 1 Class 2 Overall

SLP(PD) Class 1 426(62.3%) 18(2.6%) 96.0%

Class 2 8(1.2%) 231(33.8%) 96.7%

Overall 98.2% 92.8% 96.2%

PPCD(ED) Class 1 423(61.9%) 21(3.1%) 95.3%

Class 2 9(1.3%) 230(33.7%) 96.2%

Overall 97.9% 91.6% 95.6%

https://doi.org/10.1371/journal.pone.0217349.t007
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In terms of efficiency, Table 11 gives the runtime comparisons of PPCD on the three data

sets. For Breast cancer, it takes 6.125s for history patients to encrypt all the symptoms. In the

training phase, it takes 2993.1s for the Cloud to train the classifier. In the predicting phase, it

takes 0.098s for the hospital to computer undiagnosed patient’s disease risk (including 0.013s

for UP to encrypt all the symptoms). For Heart disease and AID, the time cost of data encryp-

tion, model training, and disease predicting are decreased as the reduction of the number

of sample cases. For the sake of simplicity, multicore programming has not adopted the

evaluation.

Related work

Without sufficient storage, computation or knowledge of the clinical decision, the clients fre-

quently prefer outsourcing their data to the Cloud for model training and disease predicting.

Ledley and lusted [24] firstly proposed a clinical decision support system which can help physi-

cians to solve diagnostic problems. Later, a large number of disease prediction system based

on various data mining techniques have been presented. For example, a fast prediction disease

system based on SVM was proposed by [25] to predict the risk of progression of adolescent idi-

opathic scoliosis. Wang et al. [26] gave a risk assessment for individuals with a family history

of pancreatic cancer using Bayesian classification. By introducing SVM, Huang et al. [27]

Table 8. Accuracy comparisons of SLP in PD and PPCD in ED on HDD.

Output/Target Class 1 Class 2 Overall

SLP(PD) Class 1 155(52.2%) 5(1.7%) 96.9%

Class 2 11(3.7%) 126(42.4%) 92.0%

Overall 93.4% 96.2% 94.6%

PPCD(ED) Class 1 155(52.2%) 5(1.7%) 96.9%

Class 2 13(4.4%) 124(41.8%) 90.5%

Overall 92.3% 96.1% 93.9%

https://doi.org/10.1371/journal.pone.0217349.t008

Table 10. Accuracy comparisons of SLP in PD and PPCD in ED for NRPO of AID.

Output/Target Class 1 Class 2 Overall

SLP(PD) Class 1 48(52.2%) 2(1.7%) 96.0%

Class 2 6(3%) 64(42.4%) 91.4%

Overall 88.9% 97% 93.3%

PPCD(ED) Class 1 46(52.2%) 4(1.7%) 92%

Class 2 6(4.4%) 64(41.8%) 91.4%

Overall 88.5% 94.1% 91.7%

https://doi.org/10.1371/journal.pone.0217349.t010

Table 9. Accuracy comparisons of SLP in PD and PPCD in ED for IUB of AID.

Output/Target Class 1 Class 2 Overall

SLP(PD) Class 1 57(47.5%) 2(1.7%) 96.7%

Class 2 6(5%) 55(45.8%) 90.2%

Overall 90.5% 96.5% 93.3%

PPCD(ED) Class 1 55(45.8%) 4(3.3%) 93.2%

Class 2 5(4.2%) 56(46.7%) 91.8%

Overall 91.7% 93.3% 92.5%

https://doi.org/10.1371/journal.pone.0217349.t009
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designed a prediction model for breast cancer diagnosis while Barakat et al. [28] focused on

the diagnosis of diabetes mellitus. For heart disease analysis, Anooj et al. [29] tried to use spe-

cific fuzzy rules. Though various prediction models have been developed, privacy protection of

patients medical information fails to take into account which will impede the more progress of

CDSS.

To address this challenge, some secure disease prediction [1], [7], [8], [9], [11], [12], [14]

which diagnose patients’ disease without leaking medical data and prediction model have been

widely studied. Wang et al. [14] proposed a Healer framework based on somewhat homomor-

phic encryption. It uses a small samples size to facilitate secure rare variants analysis and

obtains the final results by decrypting ciphertexts in the trusted party. A privacy-preserving

CDSS on Naïve Bayesian Classification was proposed by Liu et al. [5] which can help a clini-

cian to diagnose the risk of patients’ disease in a privacy-preserving way. Wang et al. [9] pro-

posed a secure SLP learning model for e-Healthcare, but it can only protect the privacy of

patients’ medical information, the disease model isn’t protected. In [11], Zhu et al. proposed

an efficient and privacy-preserving medical pre-diagnosis framework using SVM which can

protect the sensitive personal health information without privacy disclosure with lightweight

multi-party random masking and polynomial.

Recently, Tsung et al. [30] proposed a decentralized privacy-preserving healthcare predic-

tive modeling framework on private Blockchain networks, in which privacy-preserving online

machine learning is integrated with a private Blockchain network, apply transaction metadata

to disseminate partial models, and design a new proof-of-information algorithm to determine

the order of the online learning process, Each participating site contributes to model parame-

ter estimation without revealing any patient health information. Zhang et al. [1] proposed a

secure disease prediction scheme based on matrices and SLP which builds on new medical

data encryption, disease learning, and disease prediction algorithms that utilizes random

matrices. Liu et al. [7] proposed a Hybrid privacy-preserving clinical decision support system

in fog–cloud computing, in which a fog server uses SLP to securely monitor patients’ health

condition in real-time, The newly detected abnormal symptoms can be further sent to the

cloud server for high-accuracy prediction in a privacy-preserving way. Compared with some

sophisticated machine learning algorithms such as Naïve Bayesian, SVM, and deep learning

classification, SLP is efficient and straightforward.

Table 11. Runtime comparisons of PPCD in ED and SLP in PD.

Dataset Phase PPCD(s) SLP(s)

Breast cancer Data encryption 6.125 - - -

Model training 2993.100 0.012

Disease predicting 0.098 0.005

Heart disease Data encryption 3.259 - - - -

Model training 1860.505 0.010

Disease predicting 0.145 0.002

AID(UIB) Data encryption 1.564 - - -

Model training 743.875 0.010

Disease predicting 0.143 0.001

AID(NRPO) Data encryption 1.467 - - -

Model training 683.387 0.080

Disease predicting 0.148 0.001

Note: "- - -" means not available.

https://doi.org/10.1371/journal.pone.0217349.t011
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Conclusions

In this paper, we proposed a privacy-preserving disease predicting system based SLP which

can help physicians make a proper diagnosis of disease and provide health services for patients

anytime anywhere in a privacy-preserving way. In PPCD, DP’s historical medical data are

used to train SLP in ED, and the hospital uses the trained model to predict diseases for a UP.

Towards easing the privacy concerns from DP, we suggest an additively homomorphic encryp-

tion also for simplicity and generality. Inevitable multiplications of SLP motivate us introduc-

ing LSM into PPCD. Then users’ medical information and the trained model are secret to the

cloud. Compared with SLP, comparable results reached by PPCD suggest that sacrificing data

precision to improve efficiency is feasible in practical use.

Although PPCD benefits privacy-preserving diagnosis, the balance between security and

efficiency should be considered firstly. Therefore, how to optimize the model training using

mini-batch for efficiency improvement and finding an effective way of introducing some other

advanced machine learning methods to build the privacy-preserving disease prediction system

are worthy of investigation.
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