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Mining of integrated public transcriptomic and ChIP-Seq (cistromic) datasets can illuminate functions 
of mammalian cellular signaling pathways not yet explored in the research literature. Here, we 
designed a web knowledgebase, the Signaling Pathways Project (SPP), which incorporates community 
classifications of signaling pathway nodes (receptors, enzymes, transcription factors and co-nodes) 
and their cognate bioactive small molecules. We then mapped over 10,000 public transcriptomic or 
cistromic experiments to their pathway node or biosample of study. To enable prediction of pathway 
node-gene target transcriptional regulatory relationships through SPP, we generated consensus ‘omics 
signatures, or consensomes, which ranked genes based on measures of their significant differential 
expression or promoter occupancy across transcriptomic or cistromic experiments mapped to a specific 
node family. Consensomes were validated using alignment with canonical literature knowledge, 
gene target-level integration of transcriptomic and cistromic data points, and in bench experiments 
confirming previously uncharacterized node-gene target regulatory relationships. To expose the SPP 
knowledgebase to researchers, a web browser interface was designed that accommodates numerous 
routine data mining strategies. SPP is freely accessible at https://www.signalingpathways.org.

Introduction
Signal transduction pathways describe functional interdependencies between distinct classes of molecules that 
collectively determine the response of a given cell to its afferent endocrine, paracrine and cytokine signals1. The 
bulk of readily accessible information on these pathways resides in peer-reviewed research articles and in knowl-
edgebases that curate such information2. Many such articles are based in part upon discovery-scale datasets 
documenting, for example, the effects of genetic or small molecule perturbations on gene expression in transcrip-
tomic (expression array or RNA-Seq) datasets, and DNA promoter occupancy in cistromic (ChIP-Seq) datasets. 
Conventionally, only a small fraction of data points from such datasets are characterized in any level of detail in 
the associated hypothesis-driven articles. Although the remaining ‘omics data points possess potential collective 
re-use value for validating experimental data or gathering evidence to model cellular signaling pathways, the 
findability, accessibility, interoperability and re-use (FAIR) status of these datasets3,4 has been historically limited.
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We previously described our efforts to biocurate transcriptomic datasets involving genetic or small molecule 
manipulation of nuclear receptors5. Here we describe here a novel and distinct web knowledgebase, the Signaling 
Pathways Project (SPP), that enhances the FAIR status of public cell signaling ‘omics datasets along three dimen-
sions. Firstly, SPP encompasses datasets involving genetic and small molecule perturbations of a broad range of 
cellular signaling pathway modules - receptors, enzymes, transcription factors and their co-nodes. Secondly, SPP 
integrates transcriptomic datasets with biocurated ChIP-Seq datasets, documenting genomic occupancy by tran-
scription factors, enzymes and other factors. Thirdly, we have developed a meta-analysis technique that surveys 
across transcriptomic datasets to generate consensus ranked signatures, referred to as consensomes, which allow 
for prediction of signaling pathway node-target regulatory relationships. We have validated the consensomes 
using alignment with literature knowledge, integration of transcriptomic and ChIP-Seq evidence, and using 
bench experimental use cases that corroborate signaling pathway node-target regulatory relationships predicted 
by the consensomes. Finally, we have designed a user interface that makes the entire data matrix available for 
routine data browsing, mining and hypothesis generation by the mammalian cell signaling research community 
at https://www.signalingpathways.org.

Results
SPP overview.  Mammalian signal transduction pathways comprise four major categories of pathway mod-
ule: activated transmembrane or intracellular receptors, which initiate the signals; intracellular enzymes, which 
propagate and modulate the signals; transcription factors, which give effect to the signals through regulation of 
gene expression; and co-nodes, a broad variety of molecular classes, such as many transcriptional coregulators6, 
that do not fall into the other three categories. Figure 1 shows the scope of the SPP knowledgebase in terms of the 
major signaling pathway module categories, classes and node families, as well as the biosample classification of 
tissues and cell lines in which these nodes are studied. Table 1 shows representative examples of the hierarchical 
relationships within each of the SPP signaling pathway module categories. Having defined relationships within 
each major signaling pathway module, we proceeded to develop a dataset biocuration pipeline (Fig. 2) that would 
classify publically archived transcriptomic and ChIP-Seq datasets according to the signaling pathway node(s) 
whose transcriptional functions they were designed to interrogate, as well as their biosample of study. To make 
the results of our biocuration efforts routinely and freely available to the research community, we next developed 
a web user interface (UI) for the SPP knowledgebase that would provide for browsing of datasets, as well as for 
mining of the underlying data points. A comprehensive walkthrough file containing instructions on the use of the 
SPP interface is available in Supplementary Information Section 1.

Browsing of SPP datasets.  The full dataset listing (https://www.signalingpathways.org/datasets/index.jsf; 
see also Supplementary Information Section 1A for a user walk-through) can be filtered using any combination 
of: ‘omics dataset type; SPP category (receptor, enzyme, transcription factor, co-node); class or family; biosample 
physiological system and organ; or species. Individual dataset pages enable integration of SPP with the research 
literature via digital object identifier (DOI)-driven links from external sites, as well as for citation of datasets to 
enhance their FAIR status3,4.

Mining of SPP datasets in Ominer.  The SPP query interface, Ominer, allows a user to specify single gene 
target, Gene Ontology (GO) term or custom gene list in the “Gene(s) of Interest” drop-down, and to dial in addi-
tional node and biosample regulatory parameters in subsequent drop-down menus as required (Fig. 3a). Single 
gene queries are designed for researchers who wish to evaluate transcriptomic or ChIP-Seq evidence for regula-
tion of a single gene of interest across all nodes, or within specific categories, classes or families (see Table 2 for 
examples and Supplementary Information Section 1B for a user walk-through). GO term queries (see Table 3 for 
examples and Supplementary Information Section 1C for a user walk-through) accommodate users interested not 
in a specific gene, but rather in regulation of multiple genes mapped to broader functional or mechanistic terms 
by GO annotators. Gene list queries (see Supplementary Information Section 1D for a user walk-through) return 
transcriptional regulatory data points for custom user gene lists containing up to 500 approved gene symbols or 
Entrez GeneIDs.

Results are returned in an interface referred to as the Regulation Report, a detailed graphical summary of 
evidence for transcriptional regulatory relationships between signaling pathway nodes and genomic target(s) of 
interest (Fig. 3b, transcriptomic & 3c, cistromic/ChIP-Seq). The vertical organization of the default Category view 
in both transcriptomic and cistromic/ChIP-Seq Regulation Reports reflects conventional schematic depictions of 
cellular signaling pathways, with Receptors on top, followed by Enzymes, Transcription Factors and Co-nodes. 
Reflecting the hierarchy in Table 1, each Regulation Report category is subdivided into classes (depicted as 
Category|Class in the UI) which are in turn subdivided into families containing member nodes, which are them-
selves mapped to bioactive small molecules (BSMs) that regulate their function. The transcriptomic Regulation 
Report (Fig. 3b) displays differential expression levels of a given target in experiments involving genetic (rows 
labelled with italicized node AGS) or BSM (rows labelled with bold BSM symbol) manipulations of nodes within 
a given family. Below the node sections, the transcriptomic Regulation Report contains a Models section, in 
which data points from related animal and cell model experiments are consolidated to convey evidence for pre-
viously underappreciated roles of a target transcript in specific physiological contexts, such as adipogenesis. To 
accommodate users seeking a perspective on regulation of a target in a specific organ, tissue, cell line or spe-
cies, users can select the “Biosample” and “Species” views from the dropdown. The cistromics/ChIP-Seq Report 
(Fig. 3c) displays ChIP-Atlas7-generated MACS2 peak values within 10 kb of a given promoter transcriptional 
start site (TSS) in ChIP-Seq experiments named using the convention IP Node AGS|BSM Symbol|Other Node 
AGS (Fig. 3c). To accommodate users seeking a perspective on regulation of a target in a specific organ, tissue, 
cell line or species, users can select the “Biosample” or “Species” views from the dropdown, as shown in Fig. 3b.
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Data points from transcriptomic contrasts are represented as red (induction) or blue (repression) if they meet 
the UI fold change cut-off of ≥2 (Fig. 3b), and gray below this cut-off. Data points from cistromic/ChIP-Seq 
experiments are represented as red for all MACS2 scores (Fig. 3c). Each data point in either Regulation Report 
links to a pop-up window containing the essential experimental information (Fig. 3d, upper = transcriptomic, 
lower = cistromic). This in turn links to a window summarizing the pharmacology of any BSMs used in the exper-
iment (Fig. 3e), or a Fold Change Details window that places the experiment in the context of the parent dataset 
(Fig. 3f), linking to the full SPP dataset page and associated journal article. The Fold Change Details window 
also provides for citation of the dataset, an important element of enhancing the FAIR status of ‘omics datasets3,4. 
Finally, to allow users to share links to SPP Regulation Reports with colleagues, or to embed them in research 

Fig. 1  Scope of the major signaling pathway module and biosample classifications in the SPP knowledgebase. 
Stable community-endorsed classifications for: (a) cellular receptors (International Union of Pharmacology, 
IUPHAR); (b) enzymes (International Union of Biochemistry and Molecular Biology, IUBMB) and (c) 
transcription factors (TFClass52) make up the foundation of the SPP data model. In addition, categorization 
of tissue and cell line biosamples according to their organ and physiological system of origin (d) facilitates an 
appreciation of tissue-specific patterns of transcriptional regulation. 5OHT, 5 hydroxytryptamine receptors; 
LDL, low density lipoprotein; NRs, nuclear receptors. For purposes of clarity, omitted from the transcription 
factors sunburst are factors with >3 adjacent zinc fingers (482 genes), Hox-related factors (180 genes), multiple 
dispersed zinc finger factors (140 genes) and other factors with up to three adjacent zinc fingers (24 genes). Note 
that this represents the theoretical scope of SPP; not all entities depicted are represented in the current version 
of the SPP knowledgebase. A full list of current datasets can be found at https://www.signalingpathways.org/
datasets/index.jsf.
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manuscripts or grant applications, all Reports are accessible by a constructed URL defining all of the individual 
query parameters.

Consensomes: discovering downstream genomic targets of signaling pathway nodes.  An 
ongoing challenge for the cellular signaling bioinformatics research community is the meaningful integration 
of the universe of ‘omics data points to enable researchers lacking computational expertise to develop focused 
research hypotheses in a routine and efficient manner. A particularly desirable goal is unbiased meta-analysis to 
define community consensus reference signatures that allow users to predict regulatory relationships between 
signaling pathway nodes and their downstream genomic targets. Accordingly, we next set out to design a 
meta-analysis pipeline that would leverage our biocurational platform to reliably rank signaling pathway node - 
target gene regulatory relationships in a given biosample context. Since this analysis was designed to establish a 
consensus for a node or node family across distinct datasets from different laboratories, we referred to the result-
ing node-target rankings as consensomes. A detailed description of the biocurational and statistical methodol-
ogies behind transcriptomic and cistromic/ChIP-Seq consensome analysis is provided in the Methods section.

Consensome queries (see Supplementary Information Subsection 1E for a walk-through) are designed for 
users unfamiliar with a particular signaling node family who are seeking evidence for targets that have close 
regulatory relationships with members of that family. Table 4 shows examples of the consensomes available in 
the initial version of the SPP knowledgebase. Section 2 of the Supplementary information shows the full list of 
consensomes available in the initial release of SPP. Consensomes are accessed through Ominer, in which the 
user selects the “Consensome” from “Genes of Interest”, then either “Transcriptomic” or “Cistromic (ChIP-Seq)” 
from the “’Omics Category” menu (see Supplementary Information Subsection 1E). Subsequent menus allow for 
selection of specific signaling pathway node families, physiological systems or organs of interest, or species. To 
accommodate researchers interested in a specific physiological system or organ rather than a specific pathway 
node, consensomes are also calculated across all experiments mapping to a given physiological system (metabolic, 
skeletal, etc.) and organ (liver, adipose tissue, etc.), providing for identification of targets under the control of a 
broad spectrum of pathway nodes in those organs. To maximize their distribution, exposure and citation in third 
party resources, consensomes can also by accessed by direct DOI-resolved links.

Consensomes are displayed in an accessible tabular format (Fig. 4) in which the default ranking is in ascend-
ing order of consensome p-value (CPV; see Methods), although targets can be ranked by any column desired. To 
reflect the frequency of differential expression of a given target relative to others in a specific consensome, the 
percentile ranking of each target within the consensome is displayed. Targets in the 90th percentile of a given con-
sensome – the highest confidence predicted genomic targets for a given node family - are accessible through the 
web interface, and the entire list of targets is available for download in spreadsheet format for import into custom 
analysis programs. As previously discussed, to suppress the diversity of experimental designs as a confounding 
variable in consensome analysis, the direction of differential expression is omitted when calculating the ranked 
signatures. That said, an appreciation of the pharmacology of a specific node-target gene relationship is essential 
to allow researchers to place the ranking in a specific biological context and to design subsequent experiments in 
an informed manner. To accommodate this, consensome targets link to transcriptomic or cistromic Regulation 
Reports filtered to display those data points (i.e. all p < 0.05 fold changes) that contributed to the calculation of 
the CPV for each target.

Validation of consensomes.  We next wished to verify that consensomes were reliable reference datasets 
for modeling regulatory relationships between cellular signaling pathway nodes and their downstream genomic 
targets. To do this we designed a validation strategy comprising four components: comparison of consensomes 
with existing canonical (i.e. literature-defined) node-target relationships; reciprocal validation of node-target 

Signaling Pathway Module Bioactive small molecule (BSM)

Category Class Family Node Ligand Drug
Synthetic 
organic

Natural 
substance

Receptors

G protein-coupled Adrenoreceptors ADRB1 EPI ISOPREN — —

Catalytic EGF receptors EGFR EGF GEFIT WZ002 —

Nuclear PPARs PPARG LINO ROSI GW544

Enzymes

Deacetylases Histone deacetylases HDAC3 VORIN — BUTYR

Kinases Abl family kinases ABL1 — IMAT — ZINC498

Cyclases Adenylyl cyclases ADCY3 — — FORSK

Transcription Factors
Basic leucine zipper CREB-like factors CREB1

Forkhead/winged helix FOXM FOXM1 — THSP

Co-nodes Heat shock proteins HSP 90 proteins HSP90AA1 GEDUN

Table 1.  Examples of signaling pathway module hierarchies in the SPP knowledgebase. Nodes and peptide 
BSMs are represented by approved HGNC symbol for the encoding gene. BSMs are abbreviated as follows: 
BUTYR, butyric acid; EPI, epinephrine; FORSK, forskolin; GEDUN, gedunin; GEFIT, gefitinb; GW544, 
GW409544; IMAT, imatinib; ISOPREN, isoprenaline; LINO, linoleic acid; ROSI, rosiglitazone; THSP, 
thrombospondin; VORIN, vorinistat; WZ002, WZ4002; ZINC498, ZINC08764498.
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relationships between transcriptomic and ChIP-Seq consensomes; validation of pan-node organ consensomes; 
and in three experimental use cases that functionally validate predicted node-target relationships.

Canonical signaling node downstream targets are highly ranked in transcriptomic and cistro-
mic nuclear receptor consensomes.  Two considerations recommended members of the nuclear receptor 
(NR) superfamily of physiological ligand-regulated transcription factors for selection for initial proof-of-principle 
validation of the consensomes. Firstly, as the largest single class of drug targets, they are the subject of a large body 
of dedicated research literature, affording considerable opportunity for testing the consensomes against existing 
canonical knowledge of their downstream targets. Secondly, as ligand-regulated transcription factors, members 
of this superfamily are prominently represented in both publically archived transcriptomic and ChIP-Seq exper-
iments, enabling meaningful cross-validation of consensomes between these two experimental categories. We 
selected the ten top ranked targets in the following consensomes: estrogen receptors in human mammary gland 
(ERs-Hs-MG); the androgen receptor in human prostate gland (AR-Hs-Prostate); the glucocorticoid receptor 
in mouse liver (GR-Mm-Liver); and the peroxisome proliferator-activated receptor (PPAR) family in the mouse 
metabolic system (PPARs-Mm-Metabolic). Encouragingly, we found that 36/40 (90%) of the most highly ranked 
targets across all four consensomes had been previously identified as targets of members of those node families 
in the research literature, and that of these same 40 genes, 82% (33/40) were in the 90th percentile or higher in the 
corresponding ChIP-Seq consensomes (Supplementary Information Section 3).

Fig. 2  Schematic depiction of SPP biocuration and FAIR annotation pipeline. See the Methods section for 
additional information.
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Frequently regulated hepatic transcripts are enriched for critical regulators of metabolic path-
ways.  Substantial literature evidence from prokaryotic8 and eukaryotic9 systems indicates that genes encod-
ing metabolic enzymes are transcriptionally plastic and subject to dynamic regulation of their expression by 
numerous afferent metabolic and endocrine cues. If consensome analysis were biologically valid, we anticipated 
that targets with elevated rankings in the murine hepatic transcriptomic consensome – that is, genes that are 
preferentially responsive to multiple hepatic signaling pathways - would be enriched for genes encoding enzymes 
with prominent roles in hepatic metabolism. To test this hypothesis, we first identified genes in the 99th percentile 
of the All nodes-Mm-liver transcriptomic consensome: that is, the top 1% of genes that are significantly differ-
entially expressed in expression profiling experiments in a murine hepatic biosample, irrespective of the experi-
mental design (Fig. 5, orange data points, n = 258; Supplementary Information Section 4; http://tiny.cc/guqk8y). 
Based upon a set of 1647 murine metabolic enzymes curated by the Mammalian Metabolic Enzyme Database 
resource (Corcoran, 2017 #250} we found that 38% (99/258) of the top 1% genes encoded metabolic enzymes, a 
6.5-fold enrichment over the frequency of metabolic enzyme-encoding genes in the entire All nodes-Mm-liver 
transcriptomic consensome (5.7%, 1490/25922).

We next speculated that transcripts under fine control by hepatic signaling pathways would be enriched for 
enzymes whose deficiency would have a critical impact upon hepatic metabolism. Using the OMIM resource10, 
we identified a set of unique human genes whose deficiency has a literature-supported connection to a human 
metabolic disease or trait (n = 5277). Using this reference gene set, we established that human orthologs of 40% 
(41/99) of metabolic enzyme-encoding targets in the 99th percentile of the All Nodes-Mm-liver transcriptomic 

Fig. 3  Key elements of the SPP query and reporting interface. (a) Ominer query form. (b) The transcriptomic 
Regulation Report. The default display for single gene queries is by Category, which can be adjusted to cluster 
data points by biosample or species. The default display for multi-gene queries is by Target. (c) The cistromic 
Regulation Report. IP antigens are identified using case-sensitive AGSs to denote experiments in different 
species. (d) Fold Change information windows for transcriptomic (upper) and cistromic (lower) Regulation 
Reports display essential information on the data point. (e) The Bioactive Small Molecule window displays the 
pharmacology of any BSMs used in the experiment. (f) The Fold Change Detail window places the data point in 
the context of the wider experiment and dataset, and provides for citation of the dataset.
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consensome had documented deficiencies in a human metabolic disorder (Table 5 and Supplementary 
Information Section 5), compared with a frequency of 15% (3865/25922) for such genes in the entire consensome.

Rate-limiting enzymes (RLEs) play critical roles in determining mammalian metabolic flux11. We surmised 
that hepatic signaling pathways might preferentially target RLE-encoding genes to exert efficient control over 
hepatic metabolism, and that this would be reflected in the enrichment of RLE genes among enzyme-encoding 
targets in the top 1% of the All Nodes-Mm-liver transcriptomic consensome. Consistent with this notion, 40/99 
(40%) of the metabolic enzymes encoded by targets in this group of genes catalyze rate-limiting steps in the path-
ways in which they participate (Supplementary Information Sections 4 and 5), a nearly 3-fold enrichment over 
the previously published estimate of 14% (96/687) for the proportion of hepatic metabolic enzymes made up by 
RLEs11. Collectively, these analysis demonstrates the ability of pan-node organ consensomes to illuminate factors 
that are downstream targets of multiple distinct signaling nodes in a specific organ and, by inference, have pivotal, 
tightly-regulated roles in the function of that organ.

We next wished to establish whether the biological significance implied by elevated rankings in consensomes 
for cellular signaling pathway node families was reflected in both gain- and loss-of-function validation experi-
ments at the bench.

Bench validation use case 1: elevated consensome rankings predict functional roles for targets 
in signaling node pathways.  Figure 6a shows a scatterplot depiction of the ERs-Hs-All organs consen-
some. The two distinct tails in the distribution demarcate between genes whose discovery rates are comparable, 
but based upon different total numbers of experiments in which the genes were assayable, and therefore giving 
rise to different CPVs. We used Q-PCR analysis to verify ER-dependent regulation of a panel of both character-
ized and uncharacterized ER targets (highlighted in orange in Fig. 6a) that were highly ranked in the ERs-Hs-All 
consensome (Fig. 6b). We next identified targets that were assigned very high consensome rankings, but whose 
functional importance in the context of signaling by the corresponding signaling nodes has been largely unchar-
acterized in the research literature. The tumor protein D52-like 1 (TPD52L1) gene encodes a little-studied 
protein that bears sequence homology to members of the TPD52 family of coiled-coil motif proteins that are 
overexpressed in a variety of cancers12. Despite a ranking in the transcriptomic (ERs-Hs-All-TC CPV = <1E-
130, 99.99th percentile) and ChIP-Seq (ERs-Hs-All-CC, 99th percentile) ER consensomes that was comparable 
to or exceeded that of canonical ER target genes such as GREB1 or MYC, and subsequent experimental bench 
validation of the ER family-TPD52L1 regulatory relationship (Fig. 6b, TPD52L1), the functional role of TPD52L1 
in ER signaling has gone unexplored in the research literature. Suggestive of a role for TPD52L1 in ER regulation 
of cell division, we identified 17BE2-dependent association of TPD52L1 with structures resembling stress fibers 

‘Omics Category Pathway Module (Category, Class, Family)
Biosample (System, 
Organ) Target SPP Query URL

Transcriptomic

All All PDK4 http://tiny.cc/pdk4tx

All Metabolic, Liver ALDH3A2 http://tiny.cc/ujvk8y

Receptors, Catalytic, Insulin receptor All PMAIP1 http://tiny.cc/kuvk8y

Enzymes, Kinases, Cyclin-dependent All GINS3 http://tiny.cc/0yvk8y

Cistromic (ChIP-Seq

All All LHPP http://tiny.cc/lhppcx

All Male Repro, Prostate TMPRSS2 http://tiny.cc/v9vk8y

Enzymes, Acetyltransferase, CBP/p300 All MAMDC2 http://tiny.cc/vfwk8y

Transcription factors, BZIP, C/EBP family Immune, Leukocytes TRIB1 http://tiny.cc/eiwk8y

Table 2.  Examples of Single Gene queries in the SPP knowledgebase. The Ominer query form accommodates 
any level of detail required, from broad discovery queries across multiple nodes and organs to specific 
regulatory contexts at more stringent differential expression or significance cut-offs. Please refer to 
Supplementary Information Section 1B for a guide to constructing Single Gene queries.

‘Omics Category
Pathway Module (Category, Class, 
Family) GO Term SPP Query URL

Transcriptomic

Receptors, Catalytic, All Fatty acid beta oxidation http://tiny.cc/rbyk8y

Receptors, G-protein coupled, All Glycolytic process http://tiny.cc/kdyk8y

Enzymes, Kinases, Cyclin-dependent Adipose tissue development http://tiny.cc/whyk8y

Enzymes, Acetyltransferases, All Acute inflammatory response http://tiny.cc/8izk8y

Cistromic (ChIP-Seq)

Receptors, Nuclear, PPARs Cellular response to fatty acid http://tiny.cc/zrzk8y

Enzymes, E3 Ubiquitin ligases, All Immune response http://tiny.cc/s8zk8y

Transcription factors, p53 domain, All Cellular response to DNA 
damage stimulus http://tiny.cc/hnzk8y

Transcription factors, BZIP, All Urea cycle http://tiny.cc/49zk8y

Table 3.  Examples of GO Term queries in the SPP knowledgebase. All example queries are for human gene 
annotations. GO Term queries must specify at least a Pathway Module Class. Please refer to Supplementary 
Information Section 1C for a guide to constructing GO term queries.
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(Fig. 6c), which play an important role in mitosis orientation during cell division13, and found that depletion of 
TPD52L1 resulted in a significant decrease in 17BE2-induced proliferation of MCF-7 cells (Fig. 6d).

MBOAT2 encodes an enzyme catalyzing cycles of glycerophospholipid deacylation and reacylation to mod-
ulate plasma membrane phospholipid asymmetry and diversity14. MBOAT2 has rankings in both the AR-Hs-All 
TC (CPV = 3.7E-38, 99.96th percentile) and ChIP-Seq (99th percentile) consensomes comparable to those of 
canonical AR target genes such as KLK3 and TMPRSS2. In contrast to the large volume of literature devoted to 
these targets however, with the exception of a mention in a couple of androgen expression profiling studies15,16, 
the functional role of MBOAT2 in the context of AR signaling has been entirely unstudied. In validation of its 
elevated AR consensome ranking, we confirmed that MBOAT2 was an AR-regulated gene in cultured prostate 
cancer cell lines (Fig. 6e), and that depletion of MBOAT2 significantly increased LNCaP cell numbers at growth 
day 5 in in R1881-treated celIs, but not untreated cells (Fig. 6f). This result was unexpected to us given the pre-
vailing perception of AR as a driver of prostate tumor growth, but can be rationalized in the context of suppres-
sion of growth and support of differentiation by AR in normal prostate luminal epithelium17. Such an assertion 
is supported by the recent characterization of the role of MBOAT2 in chondrogenic differentiation of ATDC5 
cells18, and by the fact that the AR agonist testosterone stimulates the chondrogenic potential of chondrogenic 
progenitor cells19.

Bench validation use case 2: GR, ERR family members and insulin receptor regulate targets 
encoding glycogen synthase phosphatase and kinase regulatory subunits.  The experimental 
validation studies in the first use case focused on distinct single node-target regulatory relationships. We next 
wished to validate the use of consensome intersection analysis to highlight convergence of multiple signaling 
nodes on targets involved in a common downstream biological process. Glycogen synthase, which catalyzes the 
rate-limiting step in the interconversion of glucose and glycogen in metabolic organs, is subject to tandem activa-
tion by protein phosphatase 1 (PP1)20, and deactivation by 5’AMP-activated protein kinase (AMPK}21. Although 
regulation of glycogen metabolism in a variety of organs is known to be under the control of signaling mediated 
by the glucocorticoid (GR)22, estrogen receptor-related (ERR)23 and insulin (IR)24 receptor families, the respec-
tive underlying mechanisms are incompletely understood. We wished to use SPP consensomes to investigate 
the hypothesis that regulation of glycogen metabolism by members of these distinct receptor families might 
involve convergent regulation of glycogen synthase activity. Surveying p < 0.05 genes in the mouse ERR and 
GR and human IR transcriptomic consensomes mapping to the GO terms “AMP-activated protein kinase activ-
ity” or “protein phosphatase regulator activity”, we isolated two targets, Ppp1r3c (GR-Mm-All CPV = 1.89E-15; 
ERR-Mm-All CPV 5.98E-06) and Prkab2 (ERR-Mm-All CPV = 1.84E-04, IR-Hs-All CPV = 4.9E-04). These 
encode, respectively, the PTG regulatory subunit of the PP1 holoenzyme25,26, and the AMPKβ2 regulatory sub-
unit of the AMPK holoenzyme27,28. Corroborating these predicted regulatory relationships, we identified con-
served GR and ERR response elements in the Ppp1r3c promoter (Supplementary Information Section 6). We 
also confirmed that Ppp1r3c was a target of GR in mouse Hepa-1-c liver cells (Fig. 7a) and that both Ppp1r3c and 
Prkab2 were transcriptionally regulated in response to either loss- or gain-of function of Esrra in skeletal muscle 
(Fig. 7b–d, left panel). Finally, consistent with the recently-documented regulation of AMPK activity by IGF1 
signaling29, treatment of myoblasts for 24 h with the IR agonist IGF1 stimulated the Prkab2 promoter, an effect 
that was further enhanced by expression of both Esrra and Esrrg isoforms (Fig. 7d, right panel).

Bench validation use case 3: the murine ERR, PPARGC and adipose tissue consensomes impli-
cate Mcrip2 in adipocyte oxidative metabolism.  The control of cellular mitochondrial content and 

Omics Category Pathway Module (Category, Class, Family)
Biosample (System, Organ, 
Species) SPP Query URL

Transcriptomic

Receptors, Catalytic, EGF receptors Female Rep, Mammary gland, Hs http://tiny.cc/5g0k8y

Receptors, Nuclear, PPARs Metabolic, Liver, Mm http://tiny.cc/al0k8y

Enzymes, Kinases, Cyclin-dependent Female Rep, All, Hs http://tiny.cc/ep0k8y

Co-nodes, RNA binding domain, PPARGC1 
coactivator 1 (PPARGC1) Metabolic, All, Mm http://tiny.cc/8s0k8y

Transcription factors, SAND domain, AIRE Immune, Thymus, Mm http://tiny.cc/6w0k8y

All Metabolic, Liver, Mm http://tiny.cc/guqk8y

All Metabolic, Adipose, Mm http://tiny.cc/f8qk8y

ChIP-Seq

Enzymes, Acetyltransferases, CBP/p300 All, All, Hs http://tiny.cc/1d1k8y

Enzymes, Acetyltransferases, NCOA family All, All, Hs http://tiny.cc/we1k8y

Transcription factors, BZIP, C/EBP family All, All, Mm http://tiny.cc/xh1k8y

Transcription factors, E2F/FOX, E2F family All, All, Hs http://tiny.cc/tj1k8y

Transcription factors, E2F/FOX, FOXO family All, All, Mm http://tiny.cc/jn1k8y

Table 4.  Examples of consensomes in the SPP knowledgebase. Consensomes are calculated at either: the 
signaling pathway node family level, ranking targets based on their transcriptional sensitivity to manipulation 
of nodes in a given gene family; or across all experiments in a given organ biosample, to indicate frequently 
regulated targets in a given organ. Female Rep, Female reproductive; Hs, human; Mm. mouse. Please refer to 
Supplementary Information Section 1D for a guide to constructing consensome queries.
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Fig. 4  Consensome user interface. The example shows genomic targets most frequently significantly 
differentially expressed in response to genetic or pharmacological manipulation of the human insulin receptor 
in a transcriptomic experiment. Targets are ranked by default by the consensome P value (CPV), which equates 
to the probability that the observed frequency of differential expression occurs by chance. Target symbols link to 
a SPP Regulation Report filtered by the consensome category and biosample parameters to show the underlying 
data points.

Fig. 5  Scatterplot of the mouse all nodes liver transcriptomic consensome. This plot distills data from nearly 
300 distinct experiments to convey a visual appreciation of the relative rates of differential expression of murine 
genes across a variety of hepatic signaling contexts. Genes in the 99th percentile are highlighted in orange. For 
cross-reference with Table 5, genes encoding selected metabolic enzymes in the 99th percentile are called out by 
gene symbol and name. For details, refer to the Transcriptomic Consensomes subsection in the Generation of 
Consensomes section of the Methods.

https://doi.org/10.1038/s41597-019-0193-4


1 0Scientific Data |           (2019) 6:252  | https://doi.org/10.1038/s41597-019-0193-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

oxidative capacity is important for cellular and organismal energy homeostasis30. For example, brown and beige 
adipocytes generate new mitochondria and increase their oxidative and thermogenic capacity in response to 
norepinephrine (NE), which is secreted locally when the organism senses a cold environment31. NE (adrenergic) 
stimulation elicits an acute transcriptional response, exemplified by the induction of genes such as the uncoupling 
protein Ucp1, the Pparg co-node Ppargc1a and the signaling regulator Gadd45g31,32. In vivo, chronic or repeated 
exposure to cold (or to adrenergic agonists) also leads to higher mitochondrial DNA content, increased cristae 
density and enhanced expression of oxidative enzymes (OxPhos complexes) and Ucp131.

Mitochondrial biogenesis is regulated by a variety of nuclear receptors, including members of the ERR fam-
ily, as well as Pparg and its co-nodes Pppargc1 and Ppargc1b, members of the PPARGC family of RNA-binding 
transcriptional coregulator co-nodes33. A highly ranked gene in the ERRs-Mm-All transcriptomic consensome 
was Mcrip2 (CPV = 1.54E-12), which has no literature-characterized function or role other than a report iden-
tifying it as an interacting partner of Ddx6 that was localized to RNA stress granules34. Interestingly, we noted 
that Mcrip2 was also very highly ranked in the All nodes-Mm-adipose (http://tiny.cc/f8qk8y; CPV = 6.58E-37), 
PPARs-Mm-Adipose (http://tiny.cc/rbrk8y; CPV = 1.17E-30), PPARGC1s-Mm-Metabolic (http://tiny.cc/7drk8y; 
CPV = 1.84E-04) and All nodes-Mm-liver (http://tiny.cc/guqk8y; CPV = 2.2E-88) transcriptomic consensomes, 
indicating potentially influential roles in adipose and hepatic biology. Inspection of the Mcrip2 transcriptomic 
(http://tiny.cc/mcrip2tx) and cistromic (http://tiny.cc/mcrip2cx) Regulation Reports indicated that it was regu-
lated under conditions of mitochondrial biogenesis in adipose tissue, as well as loss and gain of function of a vari-
ety of known signaling node regulators of mitochondrial biogenesis. Corroborating this evidence, we identified 
a conserved consensus ERR binding site in the first intron of Mcrip2 (Supplementary Information Section 7) and 
confirmed that Esrra and Ppargc1a were recruited to the Mcrip2 ERRE (Fig. 7e). We also confirmed the interde-
pendence of Esrra, Ppargc1a and Ppargc1b in regulation of Mcrip2 in mouse muscle cells (Fig. 7f; Supplementary 
Information Section 7) and brown adipocytes (Fig. 7f), and demonstrated induction of Mcrip2 in response to 
conditions mimicking chronic adrenergic stimulation of brown adipocytes (Fig. 7g).

Discussion
Effective re-use of ‘omics datasets in the field of cellular signaling relies upon the ability of bench researchers 
to ask sophisticated questions across this universe of data points in a routine manner. Many excellent tools and 
resources have been developed in the field of cell signaling ‘omics35–46. Here, we set out to complement these 
resources to allow researchers to routinely answer targeted questions such as: what cell cycle-related factors 
are regulated by FGF receptors in human liver? What genomic targets are most responsive to insulin receptor 

Target SPP query URL CPV Hepatic metabolic pathway Known human deficiency disease

Lipid metabolism

Ephx1 http://tiny.cc/m61k8y 7.27E-107 Conversion of epoxides to trans-dihydrodiols Familial hypercholanemia

Aldh3a2 http://tiny.cc/6b2k8y 2.11E-103 Oxidation of fatty aldehydes to fatty acids (RL) Sjogren-Larsson syndrome

Acadm http://tiny.cc/kf2k8y 9.52E-65 Medium-chain fatty acid β-oxidation (RL) ACADM deficiency

Lpl http://tiny.cc/gj2k8y 1.44E-62 Hydrolysis of TGs from TG-rich lipoproteins 
(RL) Familial combined hyperlipidemia

Cpt2 http://tiny.cc/2l2k8y 3.22E-58 Mitochondrial fatty acid β-oxidation (RL) Neonatal CPT II deficiency

Carbohydrate metabolism

Pklr http://tiny.cc/5n2k8y 1.04E-79 Glycolysis (RL) Pyruvate kinase deficiency

Idh1 http://tiny.cc/7p2k8y 3.21E-58 TCA cycle (RL) Glass syndrome, Ollier disease

Amino acid metabolism

Prodh http://tiny.cc/ws2k8y 2.54E-94 Oxidation of proline to glutamate (RL) Hyperprolinemia

Pah http://tiny.cc/602k8y 3.09E-62 Phenylalanine catabolism (RL) Phenylketonuria

Cth http://tiny.cc/c42k8y 9.20E-59 Cysteine synthesis (RL) Cystathioninuria

Oat http://tiny.cc/752k8y 3.14E-58 Glutamate biosynthesis Gyrate atrophy

Other metabolic pathways

Cbs http://tiny.cc/h92k8y 6.47E-87 Trans-sulfuration pathway (RL). Homocysteinemia

Hsd3b2 http://tiny.cc/4f3k8y 1.01E-68 Aldosterone biosynthesis (RL) Congenital adrenal hyperplasia

Comt http://tiny.cc/1g3k8y 5.26E-65 Degradation of catecholamines Panic disorder, schizophrenia

Alpl http://tiny.cc/cp4k8y 1.86E-60 General hydrolysis of phosphate esters Adult hypophosphatasia

Xdh http://tiny.cc/mq4k8y 2.33E-61 Purine metabolism (RL) Type I xanthinuria

Hmox1 http://tiny.cc/pv4k8y 2.93E-59 Heme degradation (RL) HMOX1 deficiency

Cps1 http://tiny.cc/ww4k8y 3.14E-58 Mitochondrial urea cycle (RL) CPS1 deficiency

Hsd17b10 http://tiny.cc/h14k8y 3.21E-58 17β-oxidation of androgens and estrogens HSD10 mitochondrial disease

Table 5.  Selected genes encoding metabolic enzymes in the 99th percentile of the All nodes-Mm-liver 
transcriptomic consensome & deficiency in whose human orthologs is associated with a metabolic disorder. 
SPP Query URL links point to transcriptomic Regulation Reports filtered for mouse liver (FC > 1 & p < 0.05). 
Gene names corresponding to gene symbols are shown in Fig. 5. See Supplementary Information Section 5 for 
the full list. RL, rate-limiting reaction.
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Fig. 6  Validation of ER regulation of TPD52L1 and AR regulation of MBOAT2. (a) Scatterplot of the ERs-
Hs-MG transcriptomic consensome. Genes selected for Q-PCR validation are colored orange and called 
out by approved gene symbol. 99th and 95th percentile cut-offs are shown for reference. (b) Q-PCR analysis 
of dose dependent induction by 17BE2 in MCF-7 cells of targets with elevated rankings in the ER-Hs-MG 
transcriptomic consensome. Cells were treated for 18 h with varying concentrations of 17BE2 alone or 
1 nM 17BE2 in combination with 100 nM of the selective ER downregulator FULV. Consistent with the 
strong ER family node dependence of regulation predicted by the ERs-Hs-MG transcriptomic and ChIP-
Seq consensomes, FULV completely abolishes 17BE2 induction of all target genes tested. Each number is 
representative of −log[17BE2] such that the number 9 is equivalent to 1 nM 17BE2. Data are representative of 
three independent experiments. (c) MCF-7 cells were immunolabeled with TPD52L1 antibody (green) and 
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signaling in the liver? What targets in my gene set are regulated by E3 ubiquitin ligases? To fill this gap, we 
designed a knowledgebase, SPP, which allows bench researchers to routinely evaluate evidence in public tran-
scriptomic or ChIP-Seq datasets to infer the roles of cellular signaling pathway nodes in their system of interest.

The SPP resource is characterized by a number of unique features. Previous transcriptomic meta-analysis 
approaches in the field of cellular signaling have been perturbation-centric, and applied to experiments involving 
a single unique perturbant47,48. Consensomic analysis differs from these approaches in that it is node-centric: 
that is, it is predicated upon the functional relatedness of any genetic or small molecule manipulation of a given 
pathway node, and accordingly incorporates a step that maps experiments to their relevant pathway nodes. This 
mapping step affords the consensomic analysis greater statistical power, enabling it to call potential node-target 
relationships with a higher degree of confidence than would otherwise be possible. Incorporation of this map-
ping approach into the Regulation Reports also serves to place emphasis on the functional relatedness of distinct 
experimental perturbations with respect to a given node-target regulatory relationship. An additional unique 
aspect is that many other primary analysis and meta-analysis studies describing integration of transcriptomic 
and ChIP-Seq datasets, although insightful, are limited in scope, and exist only as stand-alone literature studies. 
Ours is to our knowledge the first meta-analysis to be sustainably integrated into an actively-biocurated FAIR 
web resource in a manner supporting routine dataset re-use and citation by bench researchers lacking formal 
informatics training.

Our resource has a number of limitations. SPP is currently based upon transcriptomic and ChIP-Seq data, since 
these are the most numerous and informatically mature of the various types of ‘omics data. Future versions of the 
knowledgebase will only benefit from the incorporation of the growing number of metabolomic and proteomic profil-
ing datasets, which will illuminate effects of signaling pathways on cellular functions not addressed by transcriptional 
methodologies. Secondly, bias in publically archived datasets towards specific nodes and biosamples is to some extent 
reflected in SPP. Other limitations of the consensomes relate to the design of available archived experiments. For exam-
ple, certain targets may be regulated by a given node only under specific circumstances (e.g. acute BSM administration, 
or in a specific organ or tissue) and if such experiments do not exist or are otherwise publically unavailable, these targets 
would not rank highly in the corresponding node consensome. Moreover, a low ranking for a target in a consensome 
does not necessarily imply the complete absence of a regulatory relationship, and may reflect the requirement for a quite 
specific cellular context (e.g. specific organ) for such regulation to take place. Caveats such as these notwithstanding, we 
believe SPP adds value to the currently available tool set enabling bench investigators to re-use archived discovery scale 
transcriptional datasets for hypothesis generation and data validation.

Methods
Data model design.  The goal of SPP is to give bench scientists routine access to biocurated public transcrip-
tomic and ChIP-Seq datasets to infer or validate cellular signaling pathways operating within their biological system 
of interest. Although such pathways are diverse and dynamic in nature, they typically describe functional interde-
pendencies between molecules belonging to three major categories of pathway module: activated transmembrane or 
intracellular receptors, which initiate the signals; intracellular enzymes, which propagate and modulate the signals; 
and transcription factors, which give effect to the signals through regulation of gene expression49. Accordingly, we 
first set out to design a knowledgebase that would reflect this modular architecture. To ensure that our efforts were 
broadly aligned with established community standards, we started by adapting existing, mature classifications for 
receptors (International Union of Pharmacology, IUPHAR50), enzymes (International Union of Biochemistry and 
Molecular Biology Enzyme Committee51) and transcription factors (TFClass52). Molecular classes that are relevant 
to cellular signaling pathways but do not fall into any of the three categories referred to above, such as regulatory 
RNAs, chromatin factors and cytoskeletal components, were assigned to a “co-nodes” category, classified accord-
ing to approved genome nomenclature committee-defined gene families. Table 1 shows representative examples of 
the hierarchical relationships within each of the signaling pathway module categories. To harmonize and facilitate 
data mining across different signaling pathway modules, top level categories were subdivided firstly into functional 
classes, which in turn were subdivided into node families, to which individual node genes were assigned. Figure 1a–c 
summarizes the scope of the major classes and/or families in each category, collectively comprising 174 families of 
receptors, 616 families of enzymes and 371 families of transcription factors. Note that some families contain only a 
single known node. Figure 1d summarizes the hierarchy of physiological systems and organs into which experimen-
tal biosamples (tissues and cultured or primary cell lines) were classified. Consistent with terminology in use in the 
cellular signaling field1,53, we refer to these individual gene products as nodes. Impacting the functions of nodes in 
all four categories are bioactive small molecules (BSMs), encompassing: physiological ligands for receptors; prescrip-
tion drugs, targeting almost exclusively nodes in the receptor and enzyme categories; synthetic organics, represent-
ing experimental compounds and environmental toxicants; and natural products (Table 1). BSM-node mappings 
were retrieved from an existing pharmacology biocuration initiative, the IUPHAR Guide To Pharmacology50, or 
annotated by SPP biocurators de novo with reference to a specific PubMed identifier (PMID).

imaged by deconvolution widefield microscopy. Images shown are max intensity projections, where DAPI 
(blue) stains DNA. Scale bar is 10μm. (in the inset, 5μm). M, membrane; N, nucleus; P, perinuclear junctions; 
SF, stress fibers. (d) Depletion of TPD52L1 restricts MCF-7 cell viability. (e) Induction of MBOAT2 in LNCaP 
prostate epithelial cells upon treatment with 0.1 nM AR agonist R1881. (f) AR-stimulated viability of LNCaP 
cells is enhanced by depletion of MBOAT2. Cells were harvested on Day 5. Gene expression of KLK3 and 
FKBP5, known canonical AR target genes, was slightly reduced or unaffected, respectively, by MBOAT2 siRNA 
knockdown (data not shown). Statistical significance was determined using PRISM by One-way ANOVA with 
Tukey’s multiple comparison test. *p < 1E-04.
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Dataset biocuration.  For knowledgebase design purposes, we defined a dataset as a collection of individual 
experiments encompassed by a specific GEO series (GSE, for transcriptomic datasets) or SRA Project (SRP, for 
ChIP-Seq datasets).

Fig. 7  Validation of consensome predictions of genomic targets for GR, ERR and IR. (a) Ppp1r3c is regulated 
by GR. Mouse Hepa-1-c hepatoma cells were treated with 250 nM dexamethasone (DEX) for 48 h, followed 
by qPCR of glycogenic genes including Ppp1r3c, Ppp1r3b and the established GR/NR3C1 targets pyruvate 
carboxylase (Pcx) and Fgf21. (b) Endogenous Ppp1r3c and Prkab2 transcripts were measured by quantitative 
real-time PCR in C2C12 day 3 myotubes treated with vehicle or 5 μM of the Esrra inverse agonist XCT790 
(IC50~0.5 mM) for 24 h. (c) Endogenous Ppp1r3c and Prkab2 transcripts were measured by quantitative real-
time PCR in C2C12 day 3 myotubes transduced with recombinant adenovirus expressing GFP or human 
Esrra/ERRα. Experimental transcript levels were normalized to 36B4 expression and results are expressed as 
the mean ± S.E.M. Asterisks * indicate significant difference vehicle vs. treatment groups, (p ≤ 0.05, n = 3). 
(d) Left panel. Expression of Prkab2 transcript is reduced by 40% in Esrra-depleted skeletal muscle compared 
to wild-type tissue. Endogenous Prkab2 expression was assayed by Q-PCR in vastus lateralis muscles of 
male wild-type (WT) or Esrr1−/− mice (ERRα−/−). Prkab2 transcript was normalized to 36B4 expression 
and results are expressed as the mean (±S.E.M). Asterisk * indicates significant difference between groups 
(p < 0.05, n = 4). Right panel. Activity of the Prkab2.-2.82.Luc promoter-reporter in C2C12 myoblasts (MB) 
cotransfected with vector, ERRα/Esrra or ERRγ/Esrrg, as indicated. One day post-transfection MB were then 
cultured in 0.1% FBS overnight −/+10 nM IGF1 treatment for 24 hours. Data are reported as mean luciferase/
renilla values normalized to control ( ± S.E.M.) for three trials. Asterisks indicate significant differences between 
transfection conditions (*) or IGF1 treatment (**), (p ≤ 0.05, n = 3). (e) ChIP of Esrra (left panel) and Ppargc1a 
(right panel) at the Mcrip2 ERRE. C2C12 myotubes were treated as described in Methods. Relative occupancy 
represents the amount of Mcrip2 DNA (or of a control genomic region that has no ERR binding sites) that is 
immunoprecipitated by anti-Esrra or anti-Flag (detecting the Flag-tagged Ppargc1a in the different myotubes, 
relative to the DNA immunoprecipitated in LacZ/control shRNA cells (which has been set as 1 for each DNA 
region). Data are mean ± SD (n = 3). (f) Left panel. Mcrip2 is induced by Ppargc1 co-nodes in C2C12 myotubes 
in an Esrra-dependent manner. RNA (isolated 24 hrs after Ppargc1a/b expression) was analyzed by RT-qPCR. 
Data are normalized to 36B4, and expressed relative to levels in LacZ/shGFP cells. Right panel. Expression levels 
of Mcrip2, but not the related gene Mcrip1, are decreased in primary brown adipocytes lacking Esrra, Esrrb 
and Esrrg (ERR TKO), relative to ERR WT mice. mRNA levels were determined as in left panel. (g) Simulation 
of chronic adrenergic stimulation of primary brown adipocytes by overexpression of Ppargc1a and Gadd45g 
significantly increases expression of Mcrip2 relative to mock-transfected adipocytes. Included as controls are 
the OXPHOS genes Tfam and Pdk4, encoding pyruvate dehydrogenase kinase isoform 4, a characterized ERR 
target and the third highest ranked target in the All nodes-Mm-adipose transcriptomic consensome signature. 
Differentiated adipocytes were infected with adenoviruses expressing Ppargc1a and Gadd45g and mRNA levels 
measured as described in the Methods section.
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Transcriptomic datasets.  We previously described our efforts to biocurate Gene Expression Omnibus (GEO) 
transcriptomic datasets pertinent to nuclear receptor signaling as part of the Nuclear Receptor Signaling Atlas5. 
In order to expand this collection to encompass datasets involving perturbation of the full range of known sign-
aling pathway nodes, we carried out a systematic survey of GEO and the research literature to identify an initial 
population of transcriptomic datasets representing a reasonable cross-section of the various classes of signaling 
pathway node referred to in Fig. 1. We next carried out a three step QC check to filter for datasets that (i) included 
all files required to calculate gene differential expression values; (ii) contained at least two biological replicates to 
allow for calculation of associated significance values; and (iii) whose samples clustered appropriately by principal 
component analysis. Typically, 20–25% of archived transcriptomic datasets were discarded at this step for failure 
to meet one or more of the above criteria.

The remaining datasets were diverse in design, typically involving genetic (single or multi-node node overex-
pression, knockdown, knockin or knockout) or BSM (physiological ligand, drug or synthetic organic or natural 
substance; single or multi-BSM; time course; agonist, antagonist or tissue-selective modulator) manipulation of 
a signaling node across a broad range of human, mouse and rat biosamples. To maximize the amount of biolog-
ical information extracted from each transcriptomic dataset, we calculated differential expression values for all 
possible contrasts, and not just those used by the investigators in their original publications. Next, transcriptomic 
experiments were mapped where appropriate to approved symbols (AGSs) for human, mouse and rat genes, 
representing genetically perturbed signaling nodes, and/or to unique identifiers for BSMs, as well as to the previ-
ously described biosample controlled vocabulary. Model experiments representing a variety of physiological and 
metabolic processes (e.g. inflammation, adipogenesis, fasting-fed) were annotated where appropriate.

Gene differential expression values were calculated for each array and RNA-Seq experiment. Array data. 
Array data were processed as previously described54. Briefly, expression data obtained from GEO are the 
investigator-provided summarized and normalized array feature expression intensities available in the “series 
matrix” or “processed” files, respectively. The full set of processed and normalized sample expression values pro-
vided by the investigator was extracted and processed in the current version of the statistical program R55. To 
calculate differential gene expression for investigator-defined experimental contrasts, we used the linear modeling 
functions from the Bioconductor limma analysis package56. Initially, a linear model was fitted to a group-means 
parameterization design matrix defining each experimental variable. Subsequently, we fitted a contrast matrix 
that recapitulated the sample contrasts of interest as defined in the study, producing fold-change and significance 
values for each array feature present on the array. P values obtained from Limma analysis were not corrected 
for multiple comparisons. In cases where a given gene was represented on an array by more than one probe-set, 
data from individual probe-sets were generated separately and fold-change values were not pooled across array 
features. RNA-Seq data. For RNA-Seq data, when aligned and annotated raw sequence count values were depos-
ited to GEO, we used these along with R and the R limma and edgeR analysis packages to calculate differential 
expression values. Briefly, this involves the trimmed mean of M-values (TMM) normalization followed by voom 
transformation as detailed in the Limma user manual. Current BioConductor organism annotation libraries were 
used for annotation of investigator-provided gene identifiers. If RNA raw counts were not available in the GEO 
dataset record, we used BioJupies57, which fetches the raw SRA FASTQ files and performs the alignment, anno-
tation, and differential expression analysis. For both expression array and RNA-Seq data types, experiments were 
organized into datasets and assigned to newly minted digital object identifiers (DOIs), as previously described4.

ChIP-Seq datasets.  In addition to integration of transcriptomic datasets with each other, their integration with 
related ChIP-Seq datasets was desirable since it would provide for cross validation of predicted node-target rela-
tionships, as well as providing for more detailed mechanistic modeling of such relationships than would be pos-
sible using either omics platform individually. The ChIP-Atlas resource7 supports re-use of ChIP-Seq datasets 
by carrying out uniform MACS2 peak-calling across ChIP-Seq datasets archived in NCBI’s Short Read Archive 
(SRA). We therefore next set out to identify and annotate ChIP-Atlas-processed SRA ChIP-Seq datasets relevant 
to mammalian signaling pathway nodes. Individual SRA experiments were first mapped to SRA Study Identifier 
(prefix SRP, DRP or ERP), which represents the SPP cistromic dataset unit. Individual SRA experiments (prefix 
SRX, DRX or ERX) were then mapped to the AGS of the immunoprecipitation (IP) node and any other genet-
ically manipulated nodes (e.g. knockdown or knockout background), to any BSMs represented in the experi-
mental design, and to the biosample in which the experiment was carried out. Experimental data and associated 
metadata were then loaded into the SPP Oracle 12c database.

Generation of consensomes.  Transcriptomic consensomes.  Transcriptomic ‘datasets’ are collections of 
data from different sources (i.e. different GEO datasets). Experiments, or contrasts in statistical terminology, are 
pairs of conditions (i.e. control and treatment) within data sets, each of which has multiple observations, that are 
used to generate nominal p-values and fold changes in expression for each gene (target) represented in the pair. 
These are all pre-computed and stored in the SPP Oracle database. Experiments are the unit of analysis, of which 
a single dataset can have one or more. differential expression values and associated significance measures were 
generated from appropriate experimental contrasts in GEO Series as previously described54.

Large scale meta-analysis pipeline of publically archived transcriptomic datasets is complicated primarily by 
the sheer heterogeneity of genetic and pharmacological perturbation designs represented in these datasets. We 
hypothesized that irrespective of the nature of the perturbation impacting a given pathway node, downstream 
targets with a greater dependence on the integrity of that node would be more likely to be differentially expressed 
in response to its perturbation than those with a weaker regulatory relationship with the node. Accordingly, to 
enhance the statistical power of the analysis, we initially binned transcriptomic experiments for meta-analysis 
on the basis of genetic or pharmacological manipulation of a given signaling node. To further extend statis-
tical power, experiments involving manipulation of all nodes in a defined gene family were combined for 
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meta-analysis. Next, we further classified experiments according to the biosample and species in which they were 
carried out, prior to committing them to the consensome pipeline as described before.

Computation of target & experiment-specific nominal p-values & fold changes: Although RNA-Seq datasets 
are growing in number, expression arrays remain in use and the vast majority of expression profiling datasets 
archived in Gene Expression Omnibus are on array platforms. We first therefore set out to develop an algorithm 
that would establish consensus across array datasets. Although much less than 1% of genes in any particular array 
experiment are represented by more than 1 probeset, a few genes had 2–5 probesets and a very few had as many 
as 15 or 20. In such cases, we combined probeset-specific fold changes and probeset-specific p-values to generate 
gene level fold-changes and p-values. Briefly, we used the fold changes to convert the individual probeset-specific 
two-tailed nominal p-values into z-scores that capture the direction of the change:

( )( )
Z qnorm

sign log F P1 2

2p
p p

=







+ − 





where Zp is the directional probeset-specific z-score, Pp is the two-tailed probeset-specific p-value, Fp is the 
probeset-specific fold change, qnorm() is the standard normal inverse CDF, and sign(x) is 1 when x is > = 0 and 
−1 when x < 0. Thus, when Fp is > = 1, this yields Zp = qnorm(1 − Pp/2) (range is [0, ∞)), and when Fp < 1, this 
yields the lower tail, Zp = qnorm(Pp/2) (range is (−∞, 0]).

A summary gene-specific p-value was calculated as 2 times the upper tail of the standard normal cumulative 
distribution function assessed at the absolute value of the average of the probeset-specific Z’s:

Z
Z

n
p p=

∑

P pnorm Z2 (1 ( ))= ∗ −

where Z is the average of the probe-specific z-scores, P is the gene specific two-tailed p-value, n is the number of 
probesets for a gene, and pnorm is the standard normal cumulative distribution function.

The summary gene-specific experiment-specific fold change is calculated by exponentiating the predicted 
value of log2 fold change from a linear regression of probeset log2 fold changes regressed on probeset z’s, evalu-
ated at the average of the probeset z’s:

â= + ∗




F 2 b Z( )

where Fhat is the predicted fold change at Z, ahat is the intercept and bhat is the slope of the linear model of 
log2(Fp) modeled as a function of Zp.

Combination of gene-specific p-values and fold changes across experiments: The calculation for a hypothetical 
target is shown in Supplementary Information Section 8. For each gene, g, in the consensome, we counted the 
number of experiments, Eg, where the gene has a nominal p-value of 0.05 or less out of Ng experiments where 
gene-specific data are present. The discovery rate (DR) was calculated as Eg/Ng. A consensus p-value, Pg (CPV) 
was calculated as the binomial probability of observing Eg or more successes out of Ng trials, when the true 
probability of success is 0.05. This provided an estimate of the degree to which the fraction of experiments with 
alterations exceed what might be expected by chance. The gene-specific consensus fold change, Fg, is geometric 
mean of the experiment-specific fold changes, expressed as max(Fge, 1/Fge), for the gene of interest. A number of 
factors determine whether a target will be induced or repressed by manipulation of a given signaling node in any 
given experiment. These include: node isoform differential expression58; cell cycle stage59; biosample of study60; 
BSM dose treatment duration; and perturbation type (loss or gain of function). To avoid these opposing altera-
tions canceling each other out at the target transcript level in the meta-analysis, all fold changes were converted to 
max(Fge, 1/Fge), such that both inductive and repressive experimental manipulations counted as ‘altered’, allowing 
us to generate a summary measure of magnitude of perturbation. Genes in the consensome analysis are ranked in 
ascending order by CPV, with average rank reported in the case of tied CPVs.

In summary, transcriptomic consensome analysis is predicated upon three assumptions:

•	 firstly, that borrowing statistical power by binning experiments according to their perturbation of a given 
signaling node is biologically valid;

•	 secondly, that omitting direction of differential expression from the analysis allows for direct interrogation of 
the strength of the regulatory relationship between a node and a target, independent of the nature of the node 
perturbation used in an experiment;

•	 and thirdly, that ranking targets according to the frequency of their significant differential expression, rather 
than by fold change, more accurately reflects the strength of the regulatory relationship between a given node 
and its transcriptional targets.

Generation of cistromic consensomes.  For calculation of ChIP-Seq consensomes, groups of experiments were 
designated whose IP nodes mapped to a defined node family. These classes were further sorted into meta-analysis 
classes based on mapping to the same biosample controlled vocabulary used to annotate the transcriptomic 
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datasets. MACS2 peak calls from the ChIP-Atlas resource7 for all nodes in a defined SPP family were averaged 
and the targets ranked based upon this value.

Maintenance and versioning of consensomes.  SPP is continually expanding its base of data points by adding 
newly biocurated datasets to the resource. Accordingly, a quarterly process identifies all node/family and biosam-
ple category combinations represented by datasets added in the previous quarter and calculates new versions of 
the corresponding consensomes. A statement above the scatterplot and contained in the associated spreadsheet 
identifies the specific combination of pathway node, biosample (physiological system and organ) and species 
represented by the consensome, the version and date stamp, and the total number of data points, experiments and 
datasets on which it is based.

Statistical analysis.  Full descriptions of the statistical analyses for each experiment are included in the 
descriptions of those experiments below and in the Figure Legends.

SPP web application.  The SPP knowledgebase is a gene-centric Java Enterprise Edition 6, web-based appli-
cation around which other gene, mRNA, protein and BSM data from external databases such as NCBI are col-
lected. After undergoing semiautomated processing and biocuration as described above, the data and annotations 
are stored in SPP’s Oracle 12c database. RESTful web services exposing SPP data, which are served to responsively 
designed views in the user interface, were created using a Flat UI Toolkit with a combination of JavaScript, D3.JS, 
AJAX, HTML5, and CSS3. JavaServer Faces and PrimeFaces are the primary technologies behind the user inter-
face. SPP has been optimized for Firefox 24+, Chrome 30+, Safari 5.1.9+, and Internet Explorer 9+, with valida-
tions performed in BrowserStack and load testing in LoadUIWeb. XML describing each dataset and experiment 
is generated and submitted to CrossRef to mint DOIs.

Bench validation and characterization experiments.  Validation and characterization of TPD52L1 in 
the ERs-Hs-MG consensome.  ER-Hs-MG transcriptomic consensome Q-PCR: MCF-7 cells were maintained 
in DMEM and Ham/F12 Nutrient Mixture (DMEM/F12) supplemented with 8% Fetal Bovine Serum (FBS), 
Sodium Pyruvate (NaPyr) and non-essential amino acids (NEAA) and passaged every 2–3 days. For experi-
ments, cells were plated in media lacking phenol red with 8% charcoal-stripped FBS (CFS; Gemini). Cells were 
plated for 48 hours and then treated for 18 hours with 17BE2 (Sigma), or FULV (Tocris). Total RNA was isolated 
using the Aurum Total RNA Mini-Kit according to the manufacturer’s instructions (Bio-Rad). Total RNA (0.5 μg) 
was reverse-transcribed to cDNA using the iScript cDNA synthesis Kit (Bio-Rad). qPCR was performed using 
1.625 μL of Bio-Rad SYBR green supermix, 0.125 μL of a 10 μM dilution of each forward and reverse primer, 
0.25 μL of water and 1.25 μL of diluted cDNA for a total reaction volume of 3.25 μL. PCR amplification was carried 
out using the CFX384 qPCR system. Fold induction was calculated using the 2−ΔΔCt method61, and normalized 
to 36B4. All data shown is representative of at least three independent experiments. Primer sequences are shown 
in Supplementary Information Section 9.

Subcellular distribution: MCF-7 cells were kept in 5% CD-CS for 48 h prior treatment with 17BE2 10 nM for 
24 h. A previously published immunofluorescence protocol was followed62. Briefly, cells were fixed in 4% formal-
dehyde in PEM buffer (80 mM potassium PIPES [pH 6.8], 5 mM EGTA, and 2 mM MgCl2), quenched with 0.1 M 
ammonium chloride for 10 min, and permeabilized with 0.5% Triton X-100 for 30 min. Cells were incubated at 
room temperature in 5% Blotto for 1 h, and then specific antibodies were added overnight at 4 °C prior to 30 min 
of secondary antibody (AlexaFluor488 conjugated; Molecular Probes, 1:1000) and DAPI staining. Primary anti-
body (rabbit polyclonal, Proteintech 14732-1-AP) was diluted at 1:50. A secondary antibody only control showed 
no appreciable signal (data not shown). Imaging was performed on a GE Healthcare DVLive image restoration 
deconvolution microscope using an Olympus PlanApo 40x/0.95NA with z-stacks (0.25 μm steps covering 12 μm) 
and deconvolved. Images shown are from a maximum intensity projection.

Cell proliferation assay: MCF-7 cells (from BCM Tissue Culture Core via ATCC) were plated at 3 × 105 cells 
per well of a six well plate in phenol red-free DMEM supplemented with 5% charcoal-stripped FBS. Cells were 
transfected with 50 nM of a siGENOME SMARTpool targeting human TPD52L1 (Dharmacon, M-019567-02) 
or 50 nM of a siGENOME non-targeting pool #2 (Dharmacon, D-001206-14-05) using RNAiMAX (Invitrogen). 
After two days of knockdown, the cells were split to a 96-well plate in the same media and subsequently treated 
with (−/+) 10 nM water-soluble 17BE2 (Sigma) for 24 hours. After control or TPD52L1 siRNA transfections 
and (−/+) 17BE2 treatments, cell viabilities were measured by a CellTiter-Glo® Luminescent assay (Promega). 
Total RNA was isolated with an RNeasy kit (Qiagen). cDNA was made using 1 μg total RNA and Superscript III 
reverse transcriptase (Invitrogen) in 20 μl reactions total. To measure the relative mRNA levels, real-time reverse 
transcription- quantitative PCR (RT-qPCR) was performed in an Applied Biosystems Step One Plus real-time 
PCR system (Applied Biosystems, Foster City, CA) using 2 μl cDNA diluted 1:10, 900 nM primers, and 0.1 nM 
Universal Probe designed by the Roche Assay Design Center. Human TPD52L1 primers and probe were forward, 
5′-CAACTGTCACAAGCCTCAAGA-3′; reverse, 5′-AGCCTCCTGCCAAGCTCt-3′; Roche probe #73; human 
β-actin primers and probe were previously described63. Average threshold cycle (Ct) values of human β-actin 
mRNA were subtracted from corresponding average Ct values of TPD52L1 mRNA to obtain ΔCt values. Relative 
mRNA levels were expressed as 2−ΔΔCt compared to the non-targeting siRNA control64. Statistical significance 
was determined using the Student’s t-Test, and p values < 0.05 were considered significant.

Validation and characterization of MBOAT2 in the AR-Hs-prostate consensome.  Cell culture siRNA transient 
transfections and R1881 treatments: LNCaP cells (ATCC; Baylor College of Medicine Tissue Culture Core) were 
plated in 12-well dishes (for gene expression analyses) or 6-well dishes (for cell viability assays) at 1 × 106 and 
2 × 106, respectively, in charcoal stripped RPMI 1640 media (supplemented with 10% stripped-stripped fetal 
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calf serum, penicillin/streptomycin) and transfected in triplicate with 50 nM of an MBOAT2 targeting siRNA or 
a non-targeting siRNA using TransIT-TKO transfection reagent for 5 days. For gene expression analyses, 1 nM 
R1881 was added to cells on day 4. For cell viability assays, 0.1 nM R1881 was added to cells on day 2. All samples 
were then harvested on day 5.

Gene expression analyses by RT-qPCR: On day 5, the RNA from the 12-well plate LNCaP cell sam-
ples was harvested using Tri-reagent, following the manufacturer’s instructions. The RNA concentra-
tions were quantitated by Nanodrop (ThermoFisher Nanodrop Lite). 1 µg of each RNA sample was used 
to make cDNAs by First-Strand cDNA Synthesis using SuperScript II Reverse Transcriptase, follow-
ing the manufacturer’s protocol. cDNAs were then diluted with 180 µl of DEPC-treated water. To ana-
lyze gene expression, 2 µl of cDNAs were used in the RT-qPCR reactions along with Taqman Universal MM 
II, 200 nM primers (using Roche Diagnostics Universal ProbeLibrary System Assay Design ACTB: forward 
5′-CCAACCGCGAGAAGATGA-3′, reverse 5′-CCAGAGGCGTACAGGGATAG-3′, probe #64; MBOAT2, for-
ward 5′-TCAGACAGCTCTTTGGCTCA-3′, reverse 5′-ACACCCCTGTTAGAAACGTTAGAT-3′, probe #53; 
KLK3, forward 5′-CCTGTCCGTGACGTGGAT-3′, reverse 5′-CAGGGTTGGGAATGCTTCT-3′, probe #75; 
and FKBP5, forward 5′-ACAATGAAGAAAGCCCCACA-3′, reverse 5′-CACCATTCCCCACTCTTTTG-3′, 
probe #55), on a StepOnePlus machine (Applied Biosystems). Expression levels of MBOAT2, KLK3, and FKBP5 
were normalized to ACTB and determined by the ΔCt method. PRISM software was used for statistical analyses.

Cell viability assay: On day 5, the 6-well plate LNCaP cells were briefly trypsinized and collected. Cell viability 
was then determined using CellTiter-Glo Luminescent Cell Viability Assay, following the manufacturer’s instruc-
tion, and a Berthold 96 well plate reading luminometer. PRISM software was used for the statistical analyses.

Validation and characterization of Ppp1r3c in the GR-Mm-Metabolic consensome.  Hepa1c cells were grown 
in DMEM with 10% fetal bovine serum and penicillin, streptomycin and gentamycin (Life Technologies) and 
treated with vehicle (ethanol) or 250 nM DEX (Sigma) for 48 h. Cells were lysed in TriZOL and total RNA was 
purified by a PureLink RNA Kit. 250 μg of RNA was reverse transcribed into cDNA using a High Capacity cDNA 
Reverse Transcription Kit (Life Technologies). Genes were quantified using SYBR Green following the manufac-
turer’s instructions on an QuantStudio 5 qPCR instrument (Applied Biosystems). Gene expression was normal-
ized to an internal control (Rplp0; after evaluating several normalization genes to ensure they were unchanged 
by treatment). Each experiment was standardized to its own vehicle treatment. Primer sequences are shown in 
Supplementary Information Section 9.

Validation and characterization of Prkab2 in the ERRs-Mm-Metabolic consensome.  Animals: All animal 
protocols were approved by the Institutional Animal Care and Use Committee at City of Hope. The ERRα/
Esrra−/− mice have been described and were maintained as a hybrid strain (C57BL/6/SvJ129)65,66. For baseline 
comparisons, littermate wild-type and ERRα/Esrra−/− mice were generated from heterozygous breeders to con-
trol for strain background. Skeletal muscle (quadriceps) was isolated from 12 week old mice fed wild-type and 
ERRα/Esrra−/− mice during the daytime (1000 to 1200 h), flash frozen and stored at −80 °C until RNA isolation 
was performed.

Cell culture and reagents: C2C12 (ATCC, cell line CRL-1772, Manassas, VA) myoblasts (MB) were cultured 
in growth media (DMEM (Corning Cellgro, Manassas, VA) containing 10% FBS and differentiated in DMEM 
containing 2% horse serum (Atlanta Biologicals, Lawrenceville, GA) when MB reached confluence. All exper-
iments were performed in cells below passage number 35. C2C12 myocytes were treated with 5 μM XCT790 
(Sigma-Aldrich, St. Louis, MO), 0.1 μM DY4067 or DMSO in growth media or differentiation media prepared 
with charcoal-stripped serum.

Plasmids and transcriptional activity assays: The Prkab2.-2.82.Luc promoter-reporter contains the region of 
the mouse Prkab2 gene encompassing −2815 to +27 bp relative to the predicted TSS. The region was amplified 
from C57B6/J mouse genomic DNA using primers, 5-CTCGGTACCTGAGCACATTAAACCAGTAGTCC-3; 
5-GAGAAGCTTTACAAGGCCCGCGACGAGGTAC-3′ (KpnI and HindIII sites in the forward and reverse 
primers, respectively, denoted in italics) and cloned directly into KpnI/HindIII sites of the pGL3-Basic vector. 
The entire cloned region was sequenced and confirmed against the corresponding region of the reference Prkab2 
gene sequence in NCBI (release 106). The pcDNA3.1-Flag-Esrrg, pSG5-HA-Esrra and pcDNA-myc/his-PGC-1α 
have been previously described68. Transient transfection in C2C12 myocytes using the calcium phosphate 
method and the plasmid concentrations used have been described69. Luciferase activity was assayed in MB 48 h 
post-transfection or in day 4 MT after changing confluent cells to 2% HS/DMEM. To assess IGF1 activation, MB 
were changed to SFM −/+ 10 nM recombinant IGF1 one day following transfection and activities were measured 
after 24 h treatment. Luciferase activity was assayed using Dual-Glo reagents (Promega, Madison, WI) on a Tecan 
M200 plate reader (Männedorf, Switzerland). Firefly luciferase activity was normalized to that of Renilla lucif-
erase, which was expressed downstream of the minimal thymidine kinase promoter from the pRL-TK-Renilla 
plasmid.

Quantitative real-time PCR: Real-time PCR was performed to quantify relative transcript levels in RNA 
collected from skeletal muscle isolated from mice or from day 3 MT using TRIzol reagent (Life Technologies, 
Carlsbad, CA), as described69. RNA (1 μg) was reverse transcribed in 20 μl reactions using the BioRad iScript 
cDNA Synthesis Kit (BioRad Laboratories) with 1:1 mixture of oligo-dT and random hexamers for 30 min at 42 °C. 
Resulting cDNA is used in PCR reactions (15 μl) performed in 96-well format in triplicate contained 1X SYBR 
green reagent (BioRad iQ SYBR Green Supermix), 0.4 μM gene specific primers and 0.5 μl of first strand reaction 
product (diluted 1:2) as previously described69. Cycling and detection was performed using BioRad IQ5 Real Time 
PCR system. Experimental transcript levels were normalized to 36B4 (Rplp0) ribosomal RNA analyzed in sepa-
rate reactions. The following mouse-specific primer sets were used to detect specific gene expression: AMPKα2 
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(Prkab2) forward, 5-ACCATCTCTATGCACTGTCCA-3; reverse, 5-CAGCGTGGTGACATACTTCTT-3; 36B4 
(Rplp0) forward, 5-ATCCCTGACGCACCGCCGTGA-3; reverse, 5-TGCATCTGCTTGGAGCCCACGTT-3.

Statistical analysis: All cell experiments were performed in three independent trials with 3 replicates per trial. 
Data are presented as mean (±S.E.M.) relative activity or expression normalized to control (empty vector or vehi-
cle treated condition). Differences between mean values for luciferase activities and real-time PCR analysis were 
analyzed by a one-way ANOVA followed by Fisher’s LSD post test or by unpaired Student’s t test using PRISM 
software (GraphPad Software, San Diego, CA). A p-value of ≤0.05 was considered significantly different.

Validation and characterization of Mcrip2 in the ERRs-Mm-Metabolic and PPARGC-Mm-Metabolic consen-
some.  C2C12 myotube cultures: C2C12 myoblasts (ATCC) were plated at low density in 12-well tissue culture 
plates in complete DMEM (10% FBS), and switched to differentiation medium (DMEM supplemented with 2% 
horse serum) when cultures approached confluence. For Esrra knockdown experiments, myotubes were infected 
with adenoviruses expressing Ad-shERRα or vector control at m.o.i of 200 on day 4 of differentiation, and an 
additional dose of Ad-shERRα or vector control (at m.o.i of 100) together with adenoviruses expressing LacZ 
(control), Ppargc1a or Ppargc1b (at m.o.i of 50) on day 6 of differentiation. 24 h later, RNA or DNA were har-
vested for RT-qPCR gene expression or ChIP analyses, respectively. For expression of the constitutively active 
Esrra (VP16-ERRα), Esrrb or Esrrg, day 6 myotubes were infected with MOI 50 of adenoviruses expressing LacZ 
(control), VP16-ERRα, ERRβ or ERRγ32,70. RNA was harvested 24 h later.

Primary brown adipocyte cultures: Pre-adipocytes were isolated from the BAT depot of mice with floxed ERR 
alleles, as previously described71 and cultured in DMEM supplemented with 20 mM HEPES and 20% FBS prior to 
differentiation. To induce recombination of floxed ERR loci, pre-adipocytes at 70% confluency were incubated for 
16 h with GFP- (control) or CRE- expressing lentiviruses in media containing 4 μg/ml polybrene71. Upon conflu-
ency (day 0), cells were switched to DMEM supplemented with 10% FBS, 20 nM insulin, 1 nM triiodothyronine, 
0.5 mM IBMX, 2 μg/ml DEX and 0.25 mM indomethacin to differentiate. On day 2 of differentiation, cells were 
switched to DMEM supplemented with 10% FBS, 20 nM insulin, and 1 nM triiodothyronine. For overexpression 
assays, mature adipocytes were infected on day 5 of differentiation with adenoviruses expressing Ppargc1a or 
Gadd45g at an m.o.i of 20. RNA was harvested 24 h later.

Q-PCR: Quantitat ive RT-PCR was performed using the fol lowing gene-specif ic  prim-
ers :  Rplp0  (36B4) ,  CTGTGCCAGCTCAGAACACTG and TGATCAGCCCGAAGAGAAG; 
Mc r i p 2 ,  G C C T G T G C AG TAT G T G G AG A  a n d  G G G T C C AC TAT G G C A AC AT T:  Mc r i p 1 , 
AAGAGAATGTGCGCTTCATTTA and CTAGGCACCGCTCACCAC; Pdk4, GTTCCTTCACACCTTCACCAC 
a n d  C C T C C T C G G T C A G A A AT C T T G ;  T f a m ,  C A A A G G AT G AT T C G G C T C A G  a n d 
AAGCTGAATATATGCCTGCTTTTC. Relative mRNA expression was normalized using Rplp0 (36B4) as ref-
erence gene.

ChIP: C2C12 myotubes were crosslinked for 10 min at 37° in 1% formaldehyde in PBS. After quenching, 
sonication to ~500 bp fragments, and pre-clearing by treatment with protein A/G sepharose, soluble chro-
matin was immunoprecipitated with antibodies against Esrra or FLAG. Immunoprecipitated DNA was 
quantified by real-time PCR, using primers for the Mcrip2 ERRE (TGAGTACTTGCGGTCCTTGA and 
ACCTTGGAGAAGGTTGATGG), or primers for a region distal to the Esrra promoter that lacks ERREs (neg-
ative control; primers described in72). Data shown are the mean and standard deviation of three experimental 
replicates.

Data Availability
SPP is freely accessible at https://ww.signalingpathways.org. Programmatic access to all underlying data 
points and their associated metadata are supported by a RESTful API at https://www.signalingpathways.org/
docs/. All SPP datasets are biocurated versions of publically archived datasets, are formatted according to the 
recommendations of the FORCE11 Joint Declaration on Data Citation Principles73, and are made available under 
a Creative Commons CC 3.0 BY license. The original datasets are available are linked to from the corresponding 
SPP datasets using the original repository accession identifiers. These identifiers are for transcriptomic datasets, 
the Gene Expression Omnibus (GEO) Series (GSE); and for cistromic/ChIP-Seq datasets, the NCBI Sequence 
Read Archive (SRA) study identifier (SRP).

Code availability
The full SPP source code is available in the SPP GitHub account under a Creative Commons CC 3.0 BY license at 
https://github.com/signaling-pathways-project/ominer/.
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