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ABSTRACT Amino acids are key sources of nitrogen for growth of Candida albi-
cans. In order to detect and take up these amino acids from a broad range of differ-
ent and changing nitrogen sources inside the host, this fungus must be able to
adapt via its expression of genes for amino acid uptake and further metabolism. We
analyzed six C. albicans putative general amino acid permeases based on their ho-
mology to the Saccharomyces cerevisiae Gap1 general amino acid permease. We
generated single- and multiple-deletion strains and found that, based on growth as-
says and transcriptional or posttranscriptional regulation, Gap2 is the functional or-
thologue to ScGap1, with broad substrate specificity. Expression analysis showed
that expression of all GAP genes is under control of the Csy1 amino acid sensor,
which is different from the situation in S. cerevisiae, where the expression of ScGAP1
is not regulated by Ssy1. We show that Gap4 is the functional orthologue of ScSam3,
the only S-adenosylmethionine (SAM) transporter in S. cerevisiae, and we report that
Gap4 is required for SAM-induced morphogenesis.

IMPORTANCE Candida albicans is a commensal organism that can thrive in many
niches in its human host. The environmental conditions at these different niches dif-
fer quite a bit, and this fungus must be able to sense these changes and adapt its
metabolism to them. Apart from glucose and other sugars, the uptake of amino ac-
ids is very important. This is underscored by the fact that the C. albicans genome
encodes 6 orthologues of the Saccharomyces. cerevisiae general amino acid per-
mease Gap1 and many other amino acid transporters. In this work, we characterize
these six permeases and we show that C. albicans Gap2 is the functional orthologue
of ScGap1 and that C. albicans Gap4 is an orthologue of ScSam3, an S-adeno-
sylmethionine (SAM) transporter. Furthermore, we show that Gap4 is required for
SAM-induced morphogenesis, an important virulence factor of C. albicans.

KEYWORDS Candida albicans, GAP1, S-adenosyl methionine, general amino acid
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Over the last 20 years, there has been a noticeable increase in life-threatening
fungal infections. The majority of these infections are caused by Candida species,

mainly C. albicans. This fungus typically exists as a harmless commensal in the micro-
flora of the skin, oral cavity, and in the gastrointestinal and urogenital tracts of most
humans and other warm-blooded animals. It can be detected in up to 70% of the
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healthy population (depending on the method of sample collection and the body site)
(1, 2). However, C. albicans frequently causes oral and vaginal infections (thrush) if the
balance of the normal microflora is disrupted by antibiotic usage or when the immune
defenses are compromised, such as in HIV patients or in neonates (3, 4). At the most
serious level, severely immunocompromised individuals can develop life-threatening
systemic infections, such as in the kidney, liver, spleen, or brain (5). Despite the
availability of specialized antifungal drugs, such as azoles, polyenes, and echinocandins,
mortality rates remain high (6). C. albicans is able to infect nearly every site of the
human body and has evolved with quick adaptation to the changing availability of
nutrients. C. albicans is able to utilize various fermentable and nonfermentable carbon
sources. In the absence of glucose, this fungus can even use fatty acids or amino acids
as a source of carbon (7, 8). Moreover, a diverse range of nitrogen sources can be used
by this fungus. Some of them are used preferentially (ammonia, glutamine, asparagine,
and glutamate); however, when these primary nitrogen sources are limited or not
available, C. albicans can also use less-preferred nitrogen sources, like isoleucine,
tyrosine, and tryptophan (9). In the host, the largest proportion of amino acids is fixed
in host proteins, requiring the production of proteolytic enzymes. C. albicans produces
several proteases, all belonging to the secreted aspartyl proteinase (SAP) gene family (10).
They are independently regulated and functionally distinct and allow the fungus to break
down or decompose almost every tissue of the host into suitable nutrients (11, 12).

In the model yeast Saccharomyces cerevisiae, amino acid uptake is mediated by a
family of 20 amino acid permeases. Most of them are specific for one or a few related
L-amino acids. One exception is ScGap1, which has broad substrate specificity, high
capacity, and mediates the uptake of most L- and D-amino acids, nonproteic amino
acids including citrulline and ornithine, and a number of toxic amino acid analogues
(13). The induction of its expression as well as the activity of ScGap1 are tightly
regulated according to both the quality and quantity of the nitrogen sources present
in the medium. The presence of preferred nitrogen sources (ammonium, glutamate,
and glutamine) or of high amino acid levels represses ScGAP1 expression and inacti-
vates the transporter by ubiquitination and internalization for targeting to the vacuole
and subsequent degradation (14–16). The transcription of ScGAP1 is regulated by the
nitrogen catabolite repression (NCR) pathway (17). When cells are growing in medium
with poor nitrogen sources, e.g., proline or urea, ScGAP1 expression is activated by two
GATA-type transcription factors, and neosynthesized ScGap1 accumulates at the
plasma membrane in an active, stable form (18).

In addition to its transport function, ScGap1 was found to play a role as an amino
acid sensor for the rapid activation of protein kinase A (PKA) upon addition of amino
acids to nitrogen-starved cells (19, 20). Little is known about transport and signaling
properties of Gap permeases in C. albicans or about their regulation. Phylogenetic
analysis shows that the C. albicans genome encodes six orthologues of ScGAP1 (21).
Based on findings with complementation experiments in S. cerevisiae amino acid
transporter mutants, we previously showed that Gap2 is the functional ScGap1 ortho-
logue and that the others function as more specific permeases (21). We also showed
that Gap1, Gap2, and Gap6 function not only as amino acid transporters but also,
similarly to ScGap1, as amino acid sensors for activation of the PKA pathway. Never-
theless, all these results were obtained by expressing the C. albicans genes in S. cerevi-
siae mutants lacking their own amino acid transporters.

Apart from ScGap1, another plasma membrane sensor for extracellular amino acids
has been described in S. cerevisiae, Ssy1. It is a unique member of the amino acid
permease family which is not able to transport amino acids but controls amino acid
uptake in exponentially growing cells by inducing the transcription of genes encoding
several amino acid permeases, such as ScDip5 and ScAgp1, but not ScGap1 (22–24). In
C. albicans, it was shown that the expression of GAP1 and GAP2 is under control of the
amino acid sensor Csy1, which is an orthologue of Ssy1 (25). Whereas this is different
from the situation with S. cerevisiae, another level of GAP2 regulation which entails
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upregulation during nitrogen starvation and repression upon subsequent addition of
arginine to the cells is similar to what is observed in S. cerevisiae for ScGAP1 (26).

In this study, we systematically analyzed all six members of the C. albicans general
amino acid permease family, and we confirmed Gap2 as the only and real ScGap1
general amino acid permease orthologue, based on its broad substrate specificity and
for its similar transcriptional regulation. Moreover, we show that all GAP genes are
under control of the Csy1 amino acid sensor, which is different from the situation in
S. cerevisiae. In addition to this, we also show that Gap4 is the orthologue of the
S. cerevisiae Sam3 transporter, as Gap4 is required for S-adenosylmethionine (SAM)
transport and SAM-induced morphogenesis.

RESULTS
The C. albicans genome encodes six ScGap1 orthologues. A BLAST analysis with the
ScGap1 protein sequence as a query against the two available C. albicans databases,
CGD (27) and CandidaDB (28), resulted in the identification of six putative orthologues
(21). A reciprocal BLAST analysis of these six putative Gap protein sequences against the
S. cerevisiae SGD database (29) always resulted in the ScGap1 permease as the closest
orthologue (21). Phylogenetic analysis of the six C. albicans Gap protein sequences as
well as all the other C. albicans amino acid permease protein sequences with all the
S. cerevisiae amino acid permease protein sequences showed that all Gap permeases
belong to the same cluster as ScGap1, a cluster that also includes ScHip1 (histidine
permease) and ScTat2 (tryptophan/tyrosine permease) (Fig. 1). Gap2 constitutes the
closest ScGap1 orthologue, while Gap4 is the most distantly related permease in the
phylogenetic tree. Using Gap4 as a query, we found ScSam3 was the second best
orthologue. ScSam3 is the high-affinity permease that mediates transport of SAM across
the plasma membrane of S. cerevisiae (30). While we have characterized all six genes
from the GAP gene family, these in silico results prompted us to focus mainly on Gap2
and Gap4. Gene names and systematic names of all the CaGAP genes are listed in
Table 1.

GAP2 is the only orthologue of ScGAP1, but important differences with the
S. cerevisiae protein exist. (i) GAP2 has broad substrate specificity. We gener-
ated GAP single-deletion strains by using the fusion PCR method (31, 32). Previous
results showed that several of the permeases have overlapping amino acid transport
capacities (21). Therefore, we also generated double and triple GAP deletion strains,
gap1�/gap1� gap2�/gap2�, gap2�/gap2� gap6�/gap6�, and gap1�/gap1� gap6�/
gap6�, and also gap1�/gap1� gap2�/gap2� gap6�/gap6�, using the SAT1 flipper
cassette (33, 34). The triple-deletion strain was generated because the three permeases
can each transport leucine, methionine, and phenylalanine (21). All strains were con-
firmed by PCR analysis and Southern blotting (data not shown).

To determine whether any of the mutant strains had a defect in the uptake of amino
acids, we tested growth for all of them on yeast nitrogen base (YNB) agar plates
containing 300 �g/ml of one single specific amino acid. As a positive control, we used
wild-type strain SN87 that had been made prototrophic for leucine and histidine (strain
BSC1). We tested all amino acids that showed a growth phenotype for the S. cerevisiae
mutant strains expressing single GAP genes (21). Only the gap2�/gap2� strain showed
a growth defect on medium containing phenylalanine (Fig. 2A, left panels) or valine,
leucine, or methionine (see Fig. S1 in the supplemental material) as sole nitrogen
source. As a general control for growth, we used YNB plus 300 �g/ml of ammonium
sulfate plates (Fig. 2A, right panels).

Despite the clear growth defect of the gap2�/gap2� strain, growth was not com-
pletely abolished on medium with phenylalanine as the N source. This finding may
point to the ability of other transporters to take up the tested amino acid. We therefore
tested the involvement of Gap1 and Gap6, which we previously showed that, upon
expression in S. cerevisiae, are able to take up methionine, leucine, and phenylalanine
(21). However, additional deletion of GAP1 or/and GAP6 did not further decrease the
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capacity to grow on single amino acids as the sole source of nitrogen (Fig. 2A, left
panels for phenylalanine; see Fig. S1 for results with valine, leucine, and methionine).

Similar results were obtained in liquid media (Fig. 2B). Growth assays in the presence
of YNB supplemented with specific amino acids showed that Gap2 is required for
growth on phenylalanine (Fig. 2B, left panels) and on methionine, valine, leucine,

FIG 1 Phylogenetic tree of amino acid permeases. All known amino acid permeases in S. cerevisiae, the
six-member C. albicans Gap family, and all other putative amino acid permeases in C. albicans were analyzed
using the software package MEGA (version 4). Distances between the permeases are related to the degree of
divergence between sequences. Evolutionary distances were computed using the maximum composite like-
lihood method. The scale bar indicates 0.2 amino acid substitutions per site.

TABLE 1 CaGAP genes used in this study

Gene name Systematic namea Length (bp)

CaGAP1 orf19.11780 1,749
CaGAP2 orf19.6993 1,767
CaGAP3 orf19.10706 1,800
CaGAP4 orf19.11936 1,824
CaGAP5 orf19.9365 1,857
CaGAP6 orf19.6659 1,707
aAccording to the Candida Genome Database.
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FIG 2 Gap2 is required for growth on phenylalanine as the sole source of nitrogen. Cells from an overnight grown culture on YPD plates were
resuspended and diluted to an OD600 of 1 for drop tests or to an OD600 of 0.002 for liquid growth assays. (A) Three microliters of 10-fold dilutions were
spotted on YNB medium with phenylalanine (300 �g/ml) or ammonium sulfate (5 mg/ml) as the sole source of nitrogen. Pictures were taken after 2 days.
(B) For the liquid growth assays, YNB medium (supplemented with 300 �g/ml of phenylalanine or ammonium sulfate [5 mg/ml] as the sole source of
nitrogen) was used, and 100-�l aliquots were incubated at 30°C in 96-well microtiter plates in an absorbance microplate reader. The optical density in
each well was measured over a period of 24 h. All strains that had a deletion in GAP2 were unable to grow in medium containing phenylalanine as the
sole source of nitrogen. The inset in the lower left panel shows the absence of growth (OD from 0.07 to 0.08 over a period of 24 h).
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tyrosine, tryptophan or lysine (Fig. S1) as sole source of nitrogen. On the other hand,
Gap2 is not required for growth on medium containing ammonium sulfate (Fig. 2B,
right panels), glutamine, arginine, or proline (Fig. S1) as the sole source of nitrogen.
These results showed that Gap2 is the only amino acid permease with very broad
substrate specificity. None of the other Gap permeases was able to transport (based on
growth assays) such a variety of amino acids (21). Reintegration of GAP2 in the
gap2�/gap2� strain restored growth on media containing specific amino acids (data
not shown), hence linking the phenotype to the absence of Gap2.

(ii) In contrast to S. cerevisiae, in which citrulline is only transported by
ScGap1, several amino acid permeases exist in C. albicans that are able to
transport citrulline. Citrulline is an amino acid that has been used frequently in

studies of S. cerevisiae’s transport and signaling capacities via ScGap1. At concentrations
lower than 5 mM, citrulline can only be transported appreciably by ScGap1 (13, 35). It
was previously described that deletion of GAP1 has an effect on citrulline uptake in
C. albicans under nitrogen-poor conditions (36). In our hands, however, a single
deletion of the GAP1 gene, or single deletions of either GAP3, GAP4, GAP5, or GAP6, had
no effect on citrulline uptake under nitrogen-poor conditions, whereas citrulline uptake
was significantly lower in the gap2�/gap2� strain than in the wild type (P � 0.001)
(Fig. 3A). Citrulline transport was even more reduced in the triple-deletion mutant,
gap1�/gap1� gap2�/gap2� gap6�/gap6�, than in the single-deletion gap2/gap2�

mutant. Since 20% of citrulline transport remained in the triple-deletion strain, other
transporters for citrulline must be present in C. albicans.

To confirm the growth experiment results with different amino acids, we also
measured the rate of uptake of 2 mM leucine, phenylalanine, and glutamine. Whereas
uptake of leucine and phenylalanine showed similar trends as uptake of citrulline
(significant differences between the wild-type and gap2�/gap2� or gap1�/gap1�

gap2�/gap2� gap6�/gap6� strains), none of the tested strains showed differences in
glutamine uptake, which was in accordance with the results of the growth experiments
(Fig. S1).

In S. cerevisiae, the general amino acid permease system is strongly repressed under
nitrogen-rich conditions (37). To investigate this in C. albicans, we determined citrulline,
leucine, phenylalanine, and glutamine uptake in cells grown in the presence of am-
monium sulfate. Gap2 was clearly not involved in amino acid uptake under these
conditions, pointing to repression under these conditions (see below). Surprisingly, the
gap1�/gap1� strain and the gap1�/gap1� gap2�/gap2� gap6�/gap6� triple mutant
exhibited mildly decreased uptake of citrulline, leucine, and phenylalanine (Fig. 3B). For
glutamine, we could not observe any difference between the BSC1 control strain and
any of the tested strains. In summary, the uptake measurements confirmed the results
obtained in the growth assays and clearly showed that only Gap2 can be considered a
functional orthologue of ScGap1. It is also interesting that the repression of Gap2
transport activity in nitrogen-containing medium almost mimics the effect of a deletion
of this gene.

(iii) Expression of all CaGAP genes is under control of the Csy1 amino acid
sensor. S. cerevisiae and C. albicans each express an amino acid transporter homo-

logue, Ssy1 and Csy1, respectively, which in both cases lost the capacity to transport.
However, in the presence of histidine, they function as sensors to detect amino acids
in the medium, resulting in the induction of specific amino acid transporter genes (23,
25). The specific transporter genes controlled by this sensor are different between
S. cerevisiae and C. albicans. ScGAP1 expression is not regulated by Ssy1. Previous gene
expression analysis in C. albicans showed that both GAP1 and GAP2 are under control
of Csy1 (25). Here, we confirmed this and showed that the expression of all GAP genes
is under control of Csy1 (Fig. 4A). This is one of the main regulatory differences between
GAP2 and ScGAP1. We observed slightly different regulation for GAP4 and GAP5
compared to the others, as the fold change difference was bigger after 15 min than
after 30 min, whereas this was clearly not the case for the other GAP genes.
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(iv) Expression of CaGAP2 is regulated by nitrogen sources, similar to
ScGAP1. We performed quantitative real-time PCR (qRT-PCR) to quantify gene expres-

sion of the different GAP genes when cells were shifted from medium without any
source of nitrogen (nitrogen starvation conditions) to yeast extract-peptose-dextrose
(YPD) medium or to YNB medium with ammonium sulfate as nitrogen source (Fig. 4B).
Expression of the GAP2 gene was rapidly and strongly repressed when cells were
shifted to YPD, whereas the expression of the other GAP genes (mainly GAP1, GAP3, and
GAP6) was induced (Fig. 4B). Transfer of the cells from nitrogen starvation medium to
YNB with ammonium sulfate led to similar results, only the values were lower for all
investigated genes (data not shown).

When performing the opposite shift (from YPD to nitrogen starvation), we observed
a very strong induction of the GAP2 gene (Fig. 4C), whereas the other GAP genes were

FIG 3 Uptake of amino acids by C. albicans. The wild type and strains lacking one of the GAP gene
family members or lacking 3 GAP genes (GAP1, GAP2, and GAP6) were used. Transport of 2 mM
citrulline (black bars), leucine (dark gray bars), phenylalanine (light gray bars), or glutamine (white
bars) was measured using cells which were incubated under nitrogen starvation conditions (without
any source of nitrogen) (A) or growing under nitrogen-rich conditions (with ammonium sulfate as
nitrogen source) (B). The level of transport is expressed as nanomoles of amino acid transported per
minute per milligram of protein, and statistical significance (*) was determined by comparison with
the wild type.
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FIG 4 Expression of all the GAP genes is under control of the Csy1 sensor and regulated by nitrogen
sources. (A) Expression of the six GAP genes was analyzed in the BSC1 (wild type) and the csy1
(CAEB-5) mutant strain. Nitrogen-starved cells were resuspended in YNB medium supplemented with
5 mg/ml of ammonium sulfate supplemented with 100 �g/ml histidine, and samples were taken after
15 (gray bars) or 30 min (white bars). The fold change in gene expression of the GAP genes in the csy1
mutant relative to expression in the wild-type strain is shown. (B) The fold changes in gene
expression levels between GAP genes when cells were shifted from nitrogen starvation medium to
YPD medium. (C) Fold changes in gene expression levels between GAP genes when cells were shifted
from YPD medium to nitrogen starvation medium. Gray bars show expression at 15 min and white
bars show levels at 30 min, on the basis of shifting to the new medium (for panels B and C). The
comparative CT method to calculate relative changes in gene expression was used, with TEF1 as
the housekeeping gene. Error bars show the range of possible relative quantity values defined by the
standard errors of the ��CT values. All experiments were evaluated for at least three RNA preparations.
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transiently upregulated to a very low extent, except for GAP6, which was more strongly
upregulated upon a shift to nitrogen starvation (Fig. 4C).

Apart from transcriptional regulation, ScGap1 is also posttranslationally regulated.
When ScGap1 is in the plasma membrane (during nitrogen starvation or during growth
on nitrogen-poor sources), addition of ammonium, glutamine, or glutamate causes
internalization of the ScGap1 permease (37). To determine the cellular localization and
to follow the fate of the different Gap permeases under the different nitrogen source
conditions, we generated strains where one of the endogenous GAP genes was tagged
with the GFP. This allowed us to determine the presence of the different Gap proteins
and their location in the cell during growth under nitrogen-poor or nitrogen-rich
conditions (Fig. 5). The strong induction of GAP2 when cells were shifted from YPD to
nitrogen starvation medium was confirmed with the GFP construct, as clear plasma
membrane-localized expression was observed. At later time points (12 h), the permease
was no longer in the membrane but seemed to be degraded in the vacuole (Fig. 5A).
This was a second major difference with the situation in S. cerevisiae, where ScGap1
remained in the plasma membrane under nitrogen starvation conditions. To follow the

FIG 5 Fluorescence microscopy of Gap-GFP fusion constructs under different environmental con-
ditions. (A) Cells were grown in YNB medium supplemented with 5 mg/ml of ammonium sulfate (AS)
to exponential phase and then transferred to nitrogen starvation medium (NS). Fluorescence and DIC
(Nomarski) images were taken after 1 h, 3 h, or 12 h. (B) Cells were placed in NS for 12 h and then
transferred to YPD or YNB medium supplemented with 5 mg/ml of AS. Fluorescence and DIC
(Nomarski) images were taken after 6 h or 18 h. (C) Cells were incubated in nitrogen starvation
medium for 12 h and then transferred to YNB medium supplemented with 100 �g/ml of a single
amino acid as the sole source of nitrogen. Fluorescence and DIC (Nomarski) images were taken after
5 to 6 h. The pictures shown are representative for all living cells in our experiments.
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expression of the other GAP genes, the cells were shifted from YNB with ammonium
sulfate to nitrogen starvation medium. Similar to the qRT-PCR data, these permeases
were expressed at low levels, and they were all rapidly degraded. We also performed
GFP expression analysis for the opposite shift. Cells from nitrogen starvation conditions
were transferred to YPD or YNB with ammonium sulfate, and pictures were taken after
6 h and 18 h (Fig. 5B). Gap2 was rapidly degraded, whereas all other Gap proteins
(except Gap5, for which expression was not changed) were stably expressed in the
plasma membrane, in accordance with the qRT-PCR experimental findings (Fig. 5B). We
then studied the expression of the Gap proteins after shifting the cells from nitrogen
starvation medium to YNB medium supplemented with a single amino acid as the sole
source of nitrogen (Fig. 5C). As was expected from the previous results, the Gap2
protein was present in the plasma membrane under all tested conditions except YNB
with ammonium sulfate or glutamine, similar to the findings with ScGap1. The other
investigated proteins were all present in the plasma membrane in medium with
ammonium sulfate, arginine, or glutamine, with minor differences in expression pat-
terns. For Gap1, the presence at the plasma membrane was observed also when
methionine, phenylalanine, or proline was present in the medium as the sole nitrogen
source. For Gap4, this was the case when histidine, leucine, methionine, or proline was
present in the medium as the sole source of nitrogen. In addition, while Gap5 was also
localized at the plasma membrane when leucine was present in the medium as the sole
source of nitrogen, Gap6 was detected when methionine or proline was the sole source
of nitrogen.

Gap4 is involved in SAM transport and is required for SAM-induced mor-
phogenesis. We tested the different gap mutants for defects/changes in colony
morphology and hypha formation. Strains were grown on several solid media known to
induce the morphological switch (Spider, SLAD, LEE medium, and medium containing
N-acetylglucosamine) (38–42) and on SLD and YNB media containing NH4 as a control.
In addition, we tested the influence of methionine and SAM on colony morphology. On
the control media, all our investigated strains showed smooth colonies (Fig. 6A and B).
Under hypha-inducing conditions, all strains clearly showed comparable hyphal mor-
phogenesis (Fig. 6A to D), including the gap1�/gap1� mutant, which was previously
shown to have a defect in morphogenesis in Spider medium (36). Only the GAP3
deletion strain was slightly defective in hypha formation in Spider medium; hyphae
started to grow 2 days later than in all other deletion and wild-type strains (Fig. 6A). The
same phenotype was shown for three independent gap3�/gap3� mutants. The gap4�/
gap4� strain showed a strong defect in morphogenesis on SLD plus SAM medium.
Colonies of this strain were smooth, and they did not start to create hyphae even after
prolonged incubation (7 days) (Fig. 6B).

As our phylogenetic tree showed that Gap4 is homologous not only to ScGap1 but
also to ScSam3, the S. cerevisiae high-affinity SAM transporter (Km of 3.3 �M), we
hypothesized that Gap4 may be responsible for the transport of this metabolite in
C. albicans (30). To determine whether Gap4 is a SAM transporter, we expressed the
GAP4 gene in an S. cerevisiae sam3� strain. The expression was under control of the
SAM3 promoter and terminator sequences, and expression of SAM3 itself was used as
a positive control. SAM transport assays clearly showed that Gap4 is a SAM transporter
(Fig. 7; Fig. S2).

DISCUSSION

C. albicans lives in the human body as a commensal and under specific conditions as
a pathogen. Under both conditions, the cells must be able to sense and take up the
available nutrients present in a specific niche. To allow the uptake of amino acids,
C. albicans cells secrete a large number of hydrolase enzymes (mainly belonging to the
secreted aspartyl proteinase gene family) that convert proteins into peptides and
amino acids that can be taken up by peptide transporters or amino acid permeases,
respectively (26, 43). Previously, it was shown that the capacity to take up amino acids
is strongly linked with virulence. Deletion of the endoplasmic reticulum-localized
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packaging chaperone Csh3 results in a defect in the expression of amino acid per-
meases, and a strain with such a deletion showed virulence defects (44). C. albicans
expresses 28 putative amino acid transporters and 1 amino acid sensor (Csy1) (21, 25,
27, 45, 46). Phylogenetic analysis of the C. albicans permeases indicates that there are

FIG 6 Morphological analysis of the GAP deletion mutants under different hypha-inducing condi-
tions. Wild-type and GAP deletion strains were grown on YPD plates and then diluted in PBS, and
approximately 10 cells were plated on different solid growth media. Time of incubation and
temperature were as follows. (A) YNB plus ammonium sulfate, 4 days at 30°C; SPIDER, 6 or 8 days at
37°C; YNB plus GlcNAc, 7 days at 37°C; LEE, 9 days at 30°C. (B) SLD or SLD plus 5 �g/ml methionine,
5 days at 37°C; SLD plus 5 �g/ml SAM, 5 or 7 days at 37°C. (C) SLAD, or SLAD plus 5 �g/ml
methionine, or SLAD plus 5 �g/ml SAM, 5 days at 37°C. (D) SLD plus 5 �g/ml SAM, 5 days at 37°C.
Pictures of representative colonies were taken using a binocular microscope. Results for the wild-type
strain BSC1, the Cagap deletion strains, and the gap4/GAP4-R reintegrant strain are shown.
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six orthologues of the S. cerevisiae Gap1, which is the general amino acid permease and
is able to transport most amino acids. The fact that there are six ScGAP1 orthologues
underscores the importance of amino acid uptake for this human fungal pathogen.
Several more specific amino acid permeases are also expressed under different condi-
tions. We have previously characterized the transport capacities of these six permeases
by expressing them in yeast mutant permease strains (21). Gap2 turned out to be the
permease with the broadest transport capacities, resembling that of ScGap1. Here we
confirmed, based on growth and transport assay results, that Gap2 can be considered
the functional orthologue of ScGap1. Deletion of only GAP2 showed a growth defect
when single amino acids were present in the medium, such as leucine, phenylalanine,
valine, or methionine, and the gap2�/gap2� mutant showed a lower transport capacity
for certain amino acids. The other single mutants did not show any major defect in
growth or transport capacities, indicating that they probably share redundant substrate
specificities or that these transporters are not expressed or are not localized to the
plasma membrane under the experimental conditions. The results obtained with the
GFP-tagged genes (Fig. 5) confirmed that these genes are differentially expressed
and/or localized, depending on the environmental conditions. This suggests that in the
human body, the different GAP genes may be differentially expressed depending on
the location. This would not be surprising, as Candida colonizes many different niches
in and on the body and can live in several niches both commensally and as a pathogen.

In S. cerevisiae, ScGap1 is not only an amino acid transporter but also a sensor for
rapid activation of the PKA pathway when nitrogen-starved cells are provided with
amino acids (19, 47). We previously showed that expression of three C. albicans Gap
permeases (Gap1, Gap2, and Gap6) in S. cerevisiae resulted in activation of trehalase, the
PKA signaling pathway target, upon addition of specific amino acids to nitrogen-
starved S. cerevisiae cells (21). However, in C. albicans we are not able to show an effect
of specific amino acid transporters on the activation of trehalase. We previously showed
that addition of glucose to glucose-starved cells also did not result in activation of
trehalase (48). It is still possible that some of the Gap proteins in Candida activate the
PKA pathway, but we are currently unable to prove this.

Real-time PCR analysis and GFP-protein fusion constructs showed a clearly distinct
expression pattern between GAP2 and the five other GAP permease genes. GAP2 is not

FIG 7 SAM transport by Gap4 in S. cerevisiae cells. Transport of SAM in wild-type cells, the sam3�
strain transformed with the empty vector, the sam3� strain complemented with ScSAM3, or the
sam3� strain complemented with GAP4 is shown. Results of one representative experiment are
shown, and the error bars show the standard deviations of three different transformants. All
transformants were statistically significantly different from the wild type, and expression of both
SAM3 and GAP4 showed a statistically significant difference from the strain transformed with the
empty plasmid.
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expressed in rich medium, but upon transfer of cells into nitrogen starvation medium
expression is strongly induced, and the protein is plasma membrane localized. Maximal
membrane localization persists only for a few hours, as longer incubation periods
showed the GFP signal in intracellular vesicles and no longer localized to the mem-
brane. This is clearly different from S. cerevisiae. The other Gap permeases are expressed
and plasma membrane localized when cells are growing in rich medium. Transfer to
nitrogen starvation medium results in their relocalization to the vacuole or intracellular
vesicles. They may undergo a complicated regulation under different specific condi-
tions in the host.

In C. albicans, there is a direct connection between the sensing of amino acids by the
Csy1 sensor and the expression of SAP2, which encodes a secreted aspartyl proteinase,
and the expression of Gap2. This is because the transcription factors Stp1 and Stp2 are
proteolytically activated upon sensing of amino acids by Csy1 and they subsequently
induce the expression of SAP2 and GAP2, respectively (49). The GATA transcription
factors Gln3 and Gat1, which are involved in nitrogen catabolite repression, are
required for the expression of STP1 when proteins are the only nitrogen source
available (50, 51). Possibly, SAP2 must first be expressed before the GAP genes are
induced, and that is why they are only transiently localized at the plasma membrane.
Whereas S. cerevisiae lives in environments with fluctuating concentrations of nitrogen
sources, C. albicans lives in a more stable environment in the host, whose cells also
require nitrogen, so the rapid signaling pathways reacting to the presence of nitrogen
sources might not be mediated by activation of the PKA pathway but rather as the
result of normal metabolism.

An interesting finding was the role of Gap4 in the uptake of SAM. Based on the
heterologous expression of GAP4 in a yeast sam3 mutant, we found that Gap4 is a SAM
transporter. Moreover, deletion of GAP4 results in a complete defect in SAM-induced
morphogenesis. Both results suggest that Gap4 transports SAM, which is subsequently
used inside the cells to trigger morphogenesis. When we deleted GAP4, SAM transport
was only reduced by about 20% compared to that of the wild-type strain (data not
shown). This suggests that other transporters may be the reason why transport is only
reduced by 20%. Alternatively, it is possible that a small reduction in SAM transport
strongly affects a metabolic or signal transduction pathway involved in morphogenesis.
We are currently further investigating SAM-induced morphogenesis in C. albicans. SAM
is known to function as a methyl donor, and therefore it may affect methylation of DNA,
histones, or other proteins that may result in the yeast-to-hypha transition. Whereas for
C. albicans there are few data, for S. cerevisiae results have been obtained that clearly
link histone methylation with pseudohyphal growth (52). Previously, we showed that
methionine is a strong inducer of morphogenesis (38). SAM is also known as an acyl
acceptor, where an acyl group is placed on the methionyl amine of SAM, a reaction that
results in the production of homoserine lactones, which are important quorum-sensing
molecules in some bacteria (53). So far, a role of SAM regarding quorum sensing in
C. albicans or, for example, during mixed bacterium-fungus biofilm infections, has not
been studied. As SAM is a bacterial product and SAM induces morphogenesis in
C. albicans, it is possible that Gap4 may be an interesting protein that is involved in
mixed infections. It will also be interesting to see in the future what the role of the
different Gap permeases may be under in vivo conditions. We already generated a triple
deletion strain, but it would be interesting to have strains where only one of the six
permeases is present. With the use of CRISPR-Cas9, generating such strains may be
more convenient compared to the current classical gene disruption strategies.

MATERIALS AND METHODS
Sequence analysis. For BLAST analysis, protein sequences from the C. albicans database (CGD; http://
www.candidagenome.org/) and the S. cerevisiae database (SGD; http://www.yeastgenome.org/) were
used. Phylogenetic analysis of all known amino acid permeases in S. cerevisiae, the six-member CaGap
family, and all other known amino acid permeases in C. albicans was performed by using of the MEGA
software (Molecular Evolutionary Genetics Analysis; version 4), using the neighbor-joining method (54)
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with 500 bootstrap replicates (the bootstrap consensus tree was inferred from 500 replicates). Distances
between the permease names are related to the degree of divergence between sequences.

Strains and growth conditions. All strains used in this work are listed in Table 2. All strains were
routinely grown in YPD medium (1% yeast extract, 2% peptone, 2% glucose) or in YNB medium (0.17%

TABLE 2 C. albicans and S. cerevisiae strains used in this study

Species and strain
Parental
strain Relevant genotype or characteristic(s) Reference

S. cerevisiae
GV287 JT 4500 Sigma 1278b MAT� This work
GV230 JT 4500 Sigma 1278b MAT� sam3::KanMX ura3-52 This work

C. albicans
SC5314 Wild-type strain 63
SN87 SC5314 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434 32
CAEB-5 BWP17 ura3::imm434/ura3::imm434 HIS1::his1::hisG/his1::hisG arg4::hisG/arg4::hisG

csy1::ARG4/csy1::URA3
25

BSC1 SN87 LEU2/leu2� HIS1/his1� URA3/ura3::imm434 IRO1/iro1::imm434 This study
LK1H
(gap1/GAP1)

SN87 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434 GAP1/gap1::CmLEU2 This study

LK1 (gap1) LK1H leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap1::CdHIS1/gap1::CmLEU2

This study

LK2H
(gap2/GAP2)

SN87 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434 GAP2/gap2::CmLEU2 This study

LK2 (gap2) LK2H leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap2::CdHIS1/gap2::CmLEU2

This study

LK3H
(gap3/GAP3)

SN87 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434 GAP3/gap3::CmLEU2 This study

LK3 (gap3) LK3H leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap3::CdHIS1/gap3::CmLEU2

This study

LK4H
(gap4/GAP4)

SN87 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434 GAP4/gap4::CmLEU2 This study

LK4 (gap4) LK4H leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap4::CdHIS1/gap4::CmLEU2

This study

LK5H
(gap5/GAP5)

SN87 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434 GAP5/gap5::CmLEU2 This study

LK5 (gap5) LK5H leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap5::CdHIS1/gap5::CmLEU2

This study

LK6H
(gap6/GAP6)

SN87 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434 GAP6/gap6::CmLEU2 This study

LK6 (gap6) SN87 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap6::CdHIS1/gap6::CmLEU2

This study

LK12 (gap1/2) gap1 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap1::CdHIS1/gap1::CmLEU2 gap2::FRT/gap2::FRT

This study

LK16 (gap1/6) gap1 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap1::CdHIS1/gap1::CmLEU2 gap6::FRT/gap6::FRT

This study

LK26 (gap2/6) gap2 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap2::CdHIS1/gap2::CmLEU2 gap6::FRT/gap6::FRT

This study

LK126 (gap1/2/6) gap1/2 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap1::CdHIS1/gap1::CmLEU2 gap2::FRT/gap2::FRT gap6::FRT/gap6::FRT

This study

LK2R (GAP2-Ri) gap2 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap2::GAP2::FRT::CdHIS1/gap2::CmLEU2

This study

LK4R (GAP4-Ri) gap4 leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap4::GAP4::FRT::CdHIS1/gap4::CmLEU2

This study

LK1HG GAP1-GFP LK1H leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434 gap1::GAP1-
GFP::CaHIS1/gap1::CmLEU2

This study

LK2HG GAP2-GFP LK2H leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap2::GAP2-GFP::CaHIS1/gap2::CmLEU2

This study

LK3HG GAP3-GFP LK3H leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap3::GAP3-GFP::CaHIS1/gap3::CmLEU2

This study

LK4HG GAP4-GFP LK4H leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap4::GAP4-GFP::CaHIS1/gap4::CmLEU2

This study

LK5HG GAP5-GFP LK5H leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap5::GAP5-GFP::CaHIS1/gap5::CmLEU2

This study

LK6HG GAP6-GFP LK6H leu2�/leu2� his1�/his1� URA3/ura3::imm434 IRO1/iro1::imm434
gap6::GAP6-GFP::CaHIS1/gap6::CmLEU2

This study
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YNB without amino acids and without ammonium sulfate) supplemented when indicated with BSM
(Brent supplement mixture) and/or with 5 mg/ml of ammonium sulfate, 300 �g/ml of ammonium sulfate,
or single amino acids as the sole source of nitrogen. For transport experiments or for GFP fluorescence
microscopy experiments, strains were starved of nitrogen (NS; 0.17% YNB without amino acids and
without ammonium sulfate). All media were supplemented when indicated with 2% glucose, except that
nitrogen starvation medium was supplemented with 4% glucose and SLD medium was supplemented
with 0.1% glucose. Solid media were supplemented with 2% agar. For induction of morphology, different
hypha-inducing media were used: Spider medium (1% nutrient broth, 0.2% K2HPO4, 1.35% agar, and 1%
mannitol as a carbon source; pH 7.2) (42); Lee medium (described previously [41]); YNB with GlcNAc
(0.17% YNB without amino acids or ammonium sulfate and with 100 �g/ml N-acetylglucosamine);
synthetic low ammonium (SLAD) medium (0.17% YNB without amino acids or ammonium sulfate and
with 50 �M ammonium sulfate and 2% glucose) (55); synthetic low-dextrose (SLD) medium (0.17% YNB
without amino acids or ammonium sulfate and with 5 mg/ml of ammonium sulfate and 0.1% glucose;
pH adjusted to 6.5) (38).

Deletion and reintegration. We generated single GAP deletion strains by using the fusion PCR
method (31, 32) (see Table 2 for the different strains that were obtained). The SN87 strain was used as
a starting strain. We also generated double and triple GAP deletion strains: gap1�/gap1� gap2�/gap2�,
gap2�/gap2� gap6�/gap6�, gap1�/gap1� gap6�/gap6�, and gap1�/gap1� gap2�/gap2� gap6�/
gap6�, using the SAT1 flipper cassette (32, 33). Single GAP deletion strains created with the fusion PCR
method were used as starting strains. For creation of CaGAP2 and CaGAP4 reintegrants, the pSFS2A
plasmid with the SAT1 cassette was used (34), starting with the single GAP deletion strains gap2�/gap2�
and gap4�/gap4�. The CaGAP2 or the CaGAP4 gene with approximately 500 bp of promoter sequence
and approximately 500 bp of terminator sequence was integrated between the KpnI and the XhoI
restriction sites of the pSFS2A plasmid, and the HIS1 marker was integrated between the NotI and the
SacII restriction sites of the pSFS2A plasmid. The reintegration cassette was cut out of the plasmid with
KpnI and SacII and used for homologous recombination into the gap2�/gap2� and gap4�/gap4� strains
(Candida maltosa LEU2 and Candida dubliniensis HIS1 are present at the loci of the GAP alleles).
Reintegrants were selected on YPD medium plus 200 �g/ml nourseotricin, and afterwards the SAT1
cassette was removed as described elsewhere (34). The reintegrants were verified by PCR. All primers
used for construction and diagnosis of reintegrants are listed in Table S1 in the supplemental material.

Growth curve measurements. To test the growth capacities of our strains, a microplate reader
technique was applied (56). Freshly grown cells (on YPD plates) were suspended in sterile PBS
(phosphate-buffered saline: 0.8 g/liter NaCl, 0.2 g/liter KCl, 1.44 g/liter Na2HPO4, 0.24 g/liter KH2PO4;
pH 7.4) to obtain an optical density at 600 nm (OD600) of 1 and used to inoculate liquid YNB medium
(supplemented with 300 �g/ml of ammonium sulfate or single amino acids as sole sources of nitrogen,
unless otherwise indicated) and grown to an OD600 of 0.002. Aliquots (100 �l) were transferred to a
96-well plate. The cell cultures in the plate were incubated at 30°C in an ELx808 absorbance microplate
reader, and the optical density in each well was measured at 595 nm over a period of 24 h under
continuous shaking. Growth curve measurements were repeated at least twice, each time with four
identical parallel cultures for each strain and each set of tested conditions.

Growth assays. The growth rate in the presence of different nitrogen sources was assayed by a
classical drop test. Freshly grown cells (on YPD plates) of each tested strain were suspended in sterile PBS
and adjusted to the same initial OD600 of 1. Tenfold serial dilutions were prepared, and 3-�l aliquots were
spotted on a series of plates containing YNB with 300 �g/ml of ammonium sulfate or a single amino acid
as sole source of nitrogen (unless otherwise indicated). Plates were incubated at 30°C for 3 days, and
digital gray-scale images of growing colonies were obtained using a Nicon Coolpix4500 digital camera.
Representative results are reported.

Measurement of transport activity. Candida cells for amino acid uptake measurements were grown
to exponential phase in liquid YNB medium supplemented with BSM and ammonium sulfate, harvested
by centrifugation, resuspended in nitrogen starvation medium, and further cultivated either for 24 h for
nitrogen-poor condition transport experiments or for only 12 h and then harvested again by centrifu-
gation and resuspended in YNB supplemented with BSM and 5 mg/ml of ammonium sulfate. The second
type of cultures were grown for another 5 to 6 h for nitrogen-rich condition transport experiments.
S. cerevisiae cells for SAM uptake measurements were grown in complete synthetic medium (MP
Biomedicals) at 30°C overnight, then diluted in YNB medium (5 mg/ml ammonium sulfate) and grown at
30°C overnight.

Cells for amino acid or SAM uptake were cooled on ice for 20 min, harvested by centrifugation,
washed with 5 ml 10 mM morpholineethanesulfonic acid (MES) buffer (pH 6.5; containing 0.1 mM EDTA
for transport of Candida), and resuspended at a cell density of 80 mg (wet weight)/ml in corresponding
fresh medium. Thereafter, 40 �l of the cell suspension was preincubated at 30°C in a shaking water bath
for 10 min, then 10 �l of a mixture of unlabeled (2 mM final concentration for amino acid transport and
0.1 mM for SAM transport) and 14C-labeled L-amino acid (2 mM unlabeled amino acid [final concentra-
tion] plus 14C-labeled L-amino acid, to obtain a specific activity of 3,000 cpm/nmol) or 3H-labeled
S-adenosyl methionine (0.1 mM unlabeled SAM [final concentration] plus 3H-labeled SAM, to obtain a
specific activity of 3,000 cpm/nmol) was added to the cells, and the resulting mixture was incubated at
30°C for 1 min. The reaction was stopped by cooling via addition of 5 ml ice-cold water. The obtained
suspension was filtered through a glass microfiber filter (Whatman GF/C; retention particle size, 1.2 �m)
prewet with 2 mM unlabeled amino acid or 0.1 mM unlabeled SAM and immediately washed twice with
4 ml ice-cold water. Afterwards, the filter was deposited in a scintillation tube which contained 4 ml
scintillation liquid (Lumagel Safe; PerkinElmer). Radioactivity was measured in a liquid scintillation

Candida albicans General Amino Acid Permease Family

Volume 1 Issue 6 e00284-16 msphere.asm.org 15

msphere.asm.org


counter (model LS6500; Beckman Coulter, Inc.). For each determination, three samples and two blanks
were taken (addition of ice-cold water followed by addition of the labeled amino acid). In addition, 500 �l
of the cell suspension was used to determine the protein content based on the Bradford method (57).
The labeled amino acid or SAM solution in a total volume of 10 �l was used for the determination of
specific activity. The transport activity was calculated from the measured radioactivity and estimated
protein content in the samples, and it was expressed as nanomoles transported per minute per milligram
of protein. Three independent experiments were performed, and either the standard deviation was
calculated between these experiments (for amino acid transport assay) or between different transfor-
mants in one representative experiment (for SAM transport in S. cerevisiae assay). A two-sided t test was
used to determine statistical significance between transport rates of different strains.

RNA extraction and quantitative real-time PCR. Cells for RNA extraction were grown to exponen-
tial phase in liquid YPD medium, harvested by centrifugation, and either (i) resuspended in nitrogen
starvation medium and samples taken after 15 or 30 min or (ii) resuspended in nitrogen starvation
medium, cultivated for a further 12 h, harvested by centrifugation, and resuspended in YPD or YNB with
5 mg/ml of ammonium sulfate supplemented with 100 �g/ml single amino acid (for csy1 qRT-PCR
experiments), and samples were taken after 15 or 30 min. The samples were cooled by addition of
ice-cold water, centrifuged at 4°C, and washed once with 1 ml ice-cold water, and the pellet was
flash-frozen in liquid nitrogen and stored at �80°C. Total RNA was extracted from yeast cells with Trizol
reagent (Invitrogen). RNA purity was determined with a NanoDrop Technologies ND-1000 spectropho-
tometer. After digestion with RNase-free DNase (Promega) to eliminate genomic contamination, cDNA
was synthesized from 1 �g of total RNA with the Bio-Rad iScript cDNA synthesis kit according to the
manufacturer’s instructions. The relative gene expression was determined by quantitative PCR on a
StepOnePlus real-time PCR system (Applied Biosystems) using the KAPA fast kit (KAPA Biosystems). This
kit uses SYBR green, which is a fluorogenic dye that shows little fluorescence in solution but emits a
strong fluorescent signal upon binding to double-stranded DNA, resulting in increased fluorescence as
the PCR product accumulates. The fold change was calculated using the comparative threshold cycle (CT)
method, and error bars showing the range of possible relative quantity values were defined by the
standard error of the ΔΔCT values (see http://www.science.smith.edu/cmbs/wp-content/uploads/sites/
36/2015/09/Analyzing-your-QRT-for-relative-2%5E-%E2%88%86%E2%88%86Ct.pdf). (58, 59). All data
were normalized to TEF1, which was used as the reference housekeeping gene. The data presented in
Fig. 4 are the summary of three independent experiments. The sequences of the primers used in this
assay are provided in Table S1 in the supplemental material.

GAPx-GFP strain construction. To tag GAP genes with GFP (optimized for C. albicans [60]), GAP
gene-specific sequences (approximately 70 nucleotides in length) were added to the universal primer
sequences (Table S1; lowercase and uppercase letters, respectively) in the pGFP-HIS1 plasmid (61).
CaGAPx-GFP strains were created from gapx/GAPx His� heterozygous strains (where only one copy of
CaGAP is still present) by homologous recombination of GFP sequences into the 3= end of the CaGAPs
open reading frames. CaGAP-GFP mutants were selected by growth on medium without histidine and
verified by PCR afterwards (see Table S1 for a list of the primers used).

Fluorescence microscopy. Cells for fluorescence microscopy were grown to exponential phase in
YNB medium supplemented with 5 mg/ml of ammonium sulfate, harvested by centrifugation, and either
(i) resuspended in nitrogen starvation medium and further cultivated for 1, 3, or 12 h, or (ii) resuspended
in nitrogen starvation medium, further cultivated for 12 h, harvested by centrifugation, and resuspended
in YPD or YNB supplemented with ammonium sulfate (5 mg/ml), grown for another 6 or 18 h,
resuspended in YNB medium supplemented with a single amino acid (100 �g/ml) as the nitrogen source,
and grown for another 5 to 6 h. Nitrogen-starved cells grown for 1, 3, 5 to 6, 12, or 18 h were collected
by centrifugation and used directly without fixation, visualized by fluorescence microscopy (the fluores-
cence signal in the cells was observed under an Olympus AX70 microscope using a U-MWB cube with
a 450- to 480-nm excitation filter and 15-nm barrier filter) and differential interference contrast (DIC)
optics (Nomarski). Various exposure times for different media were used (as indicated in the figure
legends). Multiple images of representative cells (almost the whole population behaved similarly under
our conditions) were captured with a DP70 digital camera using the program DP Controller. Subsequent
processing was done using Adobe Photoshop.

Colony morphology. To determine the ability to undergo the yeast-to-hypha transition, freshly
grown C. albicans cells (on YPD plates) were suspended in sterile PBS to obtain an OD600 of 0.1. This
suspension was diluted 1/1,0000 in four steps, leading to a cell suspension containing approximately
100 cells/ml. Afterwards, 100 �l of the suspensions was plated on the indicated media. In some cases,
SLD and SLAD media were supplemented with 5 �g/ml of methionine or SAM. Plates were incubated at
30°C or 37°C. Pictures of representative colonies were taken using a binocular microscope.

Complementation of ScSAM3 with GAP4. The ScSAM3 construct with restriction sites (PstI and
BamHI) was made through PCR of 1,000 bp of promoter sequence, the ScSAM3 gene, and 500 bp of
terminator sequence by using the primers SAM3promF-PstI and SAM3terR-BamHI.

The CaGAP4 construct was made by fusion PCR between the 1,000-bp ScSAM3 promoter, the CaGAP4
gene, and the 500-bp ScSAM3 terminator. To make this construct, the following primers were used:
SAM3promF-PstI, SAM3promR-fusion, GAP4F-fusion, GAP4Revfusion, SAM3terR-BamHI, and SAM3terF-
fusion. Both constructs were ligated into the multiple cloning site of the YCplac33 vector upon restriction
digestion with PstI and BamHI. The S. cerevisiae sam3� strain GV230 was transformed with the newly
created plasmids and empty YCplac33 vector, using the Gietz transformation method (62). Three of the
transformants and the wild-type strain GV287 were grown in 50 ml of YNB plus 5 mg/ml ammonium
sulfate medium at 30°C overnight. Afterwards, the cultures were centrifuged and cells were washed with
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5 ml MES buffer (pH 6). The pellet was resuspended in YNB plus ammonium sulfate medium to achieve
a concentration of 80 mg/ml. The transport experiment was carried out as stated above (SAM concen-
tration, 0.5 mM).

Reproducibility of results. All experiments were performed at least three times with independent
deletion strains and/or cultures. The results always showed consistent trends, i.e., differences between
strains and mutants were highly reproducible.

The results of single time point measurements (e.g., uptake rate of amino acid, mRNA expression
levels) are based on three independent measurements, and standard deviations are indicated by the
error bars in the graphs in the figures.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSphere.00284-16.

Figure S1, TIF file, 1.4 MB.
Figure S2, TIF file, 0.2 MB.
Table S1, XLSX file, 0.01 MB.

ACKNOWLEDGMENTS
We thank Willy Verheyden for assistance with the transport experiments, Nico Van
Goethem for help with the preparation of the figures, Suzanne Noble for the kind gift
of strains and plasmids, and Elisa Brega for the kind gift of strain CAEB-5.

This work was supported by the Flanders-Czech Republic bilateral project BIL05/54,
the Fund for Scientific Research Flanders (G.0242.04), the Research Fund of KU Leuven
(Concerted Research Actions), and the GA ČR project 16-03398S. S.S. was supported by
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