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Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide

array of biological processes. Recently, significant advances have been made in our

understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize

some of the general characteristics of A2BAR, and then we describe the multiple binding

partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how

these associated proteins could modulate A2BAR’s functions, including certain seemingly

paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR

in cancer, renal disease, and diabetes, in addition to its importance in the regulation of

vascular diseases, and lung disease. Here, we also discuss the role of A2BAR in cancer,

renal disease, and diabetes and the potential of the receptor as a target for treating these

three diseases.
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INTRODUCTION

Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological
processes. Most of the extracellular adenosine is derived from the release and metabolism of
adenine nucleotides such as ATP following diverse stimuli, including mechanical stress, osmotic
challenge, inflammation, and tissue injury (Dunwiddie et al., 1997; Fredholm et al., 2001a; Picher
et al., 2003, 2004; Eckle et al., 2007; Grenz et al., 2007; Ohta and Sitkovsky, 2014; Ross et al.,
2014; Fuentes and Palomo, 2015; Kowal et al., 2015; Borea et al., 2016; Covarrubias et al., 2016;
Hamidzadeh and Mosser, 2016). Conversely, extracellular adenosine is eliminated mainly through
twomechanisms: one, transport of adenosine back into the cell by nucleoside transporters; and two,
deamination of adenosine to inosine by adenosine deaminase (ADA; Blackburn and Kellems, 1996)
or phosphorylation of adenosine to AMP by adenosine kinase (Lloyd and Fredholm, 1995; Spychala
et al., 1996). The combined actions of these adenosine generation and elimination mechanisms
regulate extracellular adenosine levels, which range from 10 to 200 nM under homeostatic
conditions but can be elevated to 10–100 µM in hypoxic or stressed environments (Fredholm,
2007).

The biological functions of extracellular adenosine are mediated by four subtypes of adenosine
receptors (ARs), A1, A2A, A2B, and A3, each of which presents a unique pharmacological profile,
tissue distribution, and effector coupling (Fredholm et al., 2001b). Among human ARs, A1AR, and
A3AR share 49% sequence similarity and A2AAR and A2BAR share 59% similarity (Jacobson and
Gao, 2006; Goblyos and Ijzerman, 2009).

Perhaps because A2BAR binds to adenosine with low affinity (EC50 = 24 µM; Beukers et al.,
2000; Fredholm et al., 2001b, 2011a), A2BAR is frequently considered to represent a low-affinity
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version of A2AAR and to be of comparatively lesser physiological
relevance. However, recent advances in pharmacological and
molecular tools have allowed researchers to determine that
A2BAR can be coupled to distinct intracellular signaling pathways
and play physiological roles that differ from those of A2AAR
(Yang et al., 2006, 2010a; Grenz et al., 2012a; Johnston-Cox et al.,
2012; Koupenova et al., 2012; Eckle et al., 2013; Morello and
Miele, 2014; Patel et al., 2014; Tak et al., 2014; Eisenstein et al.,
2015; Tang et al., 2015; Vecchio et al., 2016). In this review,
we discuss our current understanding of the cellular functions
of A2BAR and their implications for the pathogenesis of several
human diseases.

MOLECULAR FUNCTION AND CELLULAR
LOCALIZATION OF A2BAR

A2BAR was first identified and cloned in 1992 by Rivkees and
Reppert and by Pierce et al. from the rat hypothalamus (Rivkees
and Reppert, 1992) and human hippocampus (Pierce et al.,
1992). The proposed structure of A2BAR is the typical G-protein-
coupled receptor (GPCR) structure, and the predicted molecular
mass of A2BAR is 36–37 kDa (Feoktistov and Biaggioni, 1997).

The major signaling pathway of A2BAR is suggested to
be the pathway involving adenylyl cyclase (AC) that leads to
an increase in intracellular cAMP levels and results in the
subsequent activation of PKA and other cAMP effectors such
as Epac (Peakman and Hill, 1994; Murakami et al., 2000;
Sitaraman et al., 2001; Lynge et al., 2003; Fang and Olah,
2007; Darashchonak et al., 2014; He et al., 2014). However, the
A2BAR-Gq-PLC pathway also mediates several crucial functions
of A2BAR (Gao et al., 1999; Linden et al., 1999; Panjehpour et al.,
2005), and A2BAR further couples to the MAPK and arachidonic
acid signaling pathways and regulates membrane ion channels
probably through G-protein βγ subunits (Feoktistov et al., 1999;
Jimenez et al., 1999; Schulte and Fredholm, 2003a,b; Donoso
et al., 2005).

The recent development of A2BAR-knockout/lacZ-knockin
mice has enabled the determination of A2BAR distribution in vivo
(Yang et al., 2006); A2BAR is widely expressed in numerous
tissues and organs, including the vasculature, aortic vascular
smoothmuscle, cecum, large intestine, brain, and urinary bladder
(Yaar et al., 2005; Wang and Huxley, 2006; Yang et al., 2006).
Furthermore, a high level of A2BAR expression has been detected
in diverse types of cells, including various immune cells such as
mast cells (Hua et al., 2007; Ryzhov et al., 2008b), neutrophils
(Eckle et al., 2008a), dendritic cells (Pacheco et al., 2005; Ben
Addi et al., 2008; Novitskiy et al., 2008), macrophages (Yang
et al., 2006), and lymphocytes (Mirabet et al., 1999; Eckle et al.,
2008a), as well as other cell types such as type II alveolar epithelial
cells (Cagnina et al., 2009), endothelial cells (Yang et al., 2006),
chromaffin cells (Casado et al., 1992), astrocytes (Peakman and
Hill, 1994; Jimenez et al., 1999), neurons (Corset et al., 2000;
Christofi et al., 2001; Stein et al., 2001), and taste cells (Nishida
et al., 2014).Moreover, A2BAR expression is influenced by diverse
environmental cues such as inflammation, cell stress, injury, and
hypoxia (Xaus et al., 1999; Fredholm et al., 2001a; Kolachala et al.,

2005; Kong et al., 2006; Hart et al., 2009; Hasko et al., 2009).
For example, previous studies have shown that interferon-γ, a
proinflammatory cytokine, increases the A2BAR transcriptional
level in mouse macrophage cells (Xaus et al., 1999); TNF-α
upregulates A2BAR mRNA and protein levels in human colonic
epithelial cells (Kolachala et al., 2005); and other mediators such
as LPS (Nemeth et al., 2003), IL-1β (Nguyen et al., 2003), free
radicals (St Hilaire et al., 2008), and endogenous adenosine
(Sitaraman et al., 2002) also enhance A2BAR expression.

A2BAR BINDING PARTNERS AND THEIR
CELLULAR FUNCTIONS

Identifying the binding partners of A2BAR is crucial for
understanding the receptor’s function and regulation. As in other
GPCRs, the intracellular portions of A2BAR serve as signal
integrators by providing binding sites for effectors or regulatory
proteins, although other parts of A2BAR might also be involved
in protein interaction. Besides trimeric G proteins and β-arrestin
(Feoktistov and Biaggioni, 1997; Mundell et al., 2000; Klinger
et al., 2002), the two universal binding partners of GPCRs,
numerous other proteins interact with A2BAR. Here, we list these
A2BAR binding partners in the order of interaction discovery,
and discuss how these proteins modulate or mediate A2BAR
functions (Figure 1).

ADA

ADA is an enzyme that catalyzes the hydrolytic deamination
of adenosine to inosine. Apart from being present in the
cytosol and the nucleus, ADA is anchored to the cell surface
by other membrane proteins, including CD26 (Pacheco et al.,
2005) and A1AR (Saura et al., 1998) in various cell/tissue
types such as cultured cortical neurons (Ruiz et al., 2000),
DDT1MF-2 cells (Ciruela et al., 1996), and pig brain cortical
membrane (Saura et al., 1996). In addition to A1AR and CD26,
A2BAR was reported to mediate ADA docking—in CHO and
Jurkat cells—onto the extracellular surface (Herrera et al., 2001);
counterintuitively, the binding of ADA, even when ADA lacked
enzymatic activity, increased the binding affinity of NECA (a
nonselective A2AR agonist) for A2BAR and the subsequent
production of cAMP. The interaction between ADA and A2BAR
was also confirmed in dendritic cells (Pacheco et al., 2005) and
gastric mucosa parietal cells (Arin et al., 2015). In dendritic cells,
the ADA-A2BAR complex triggers a cell adhesion-costimulatory
signal that promotes an immune response, and this is also
independent of ADA enzymatic activity (Pacheco et al., 2005).
Thus, the ADA-A2BAR complex appears to perform multiple
functions, including modulating agonist binding, promoting cell
adhesion/costimulation, and degrading extracellular adenosine.

DELETED IN COLORECTAL CARCINOMA
(DCC) AND NETRIN-1

DCC has been proposed to function as a netrin-1 receptor
and thus mediate netrin-1-induced axon outgrowth. Corset and
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FIGURE 1 | A2BAR binding partners and their cellular functions.

collaborators identified A2BAR as one of the proteins that directly
binds to DCC and functions as a netrin-1 coreceptor, because
netrin-1 activated A2BAR and induced cAMP production, and
further suggested that A2BAR is the central mediator of netrin
signaling in the regulation of the outgrowth of dorsal spinal
cord axons (Corset et al., 2000). However, a subsequent study
argued against this view (Stein et al., 2001): the DCC ectodomain
was found to interact directly with netrin-1 and mediate
netrin signaling to regulate axon growth, and the results of
pharmacological analyses suggested that A2BAR function was
not required for netrin-1-induced axon growth and guidance.
Thus, DCC was proposed to mediate netrin signaling in axon
growth and guidance independently of A2BAR activation (Stein
et al., 2001). Intriguingly, more recent studies have reported
that netrin-1 attenuates neutrophil transmigration and hypoxia-
induced inflammation (Rosenberger et al., 2009), alveolar fluid
clearance (He et al., 2014), and diabetic nephropathy (Tak et al.,
2013) and induces cancer-cell invasion (Rodrigues et al., 2007)
in an A2BAR-dependent manner. These results appear to support
the general notion that A2BAR mediates the function of netrin-
1 at least in certain tissues. Further investigation is required to
clarify the discrepancy between the aforementioned studies.

E3KARP-EZRIN-PKA AND SNARE

Sitaraman and colleagues demonstrated that the majority of
A2BAR localizes intracellularly in quiescent cells and is recruited

to the plasma membrane upon agonist stimulation (Sitaraman
et al., 2002). The SNARE protein SNAP-23 directly interacts with
human A2BAR and participates in A2BAR recruitment to the
plasma membrane (Wang et al., 2004), and following SNARE-
dependent translocation to the plasma membrane, human
A2BAR directly associates with E3KARP (NHERF2) and ezrin
and forms a multiprotein complex (Sitaraman et al., 2002).
Ezrin is a PKA-anchoring protein, or AKAP, that associates with
the actin cytoskeleton (Sun et al., 2000), and this multiprotein
complex not only anchors A2BAR to the plasma membrane,
but also stabilizes A2BAR expression in the plasma membrane.
Furthermore, compartmentalized PKA is effectively activated by
A2BAR-induced cAMP production, and the PKA thus activated
stimulates CFTR-mediated chloride secretion; this model is
consistent with the functional evidence obtained in an early study
(Huang et al., 2001).

Interestingly, at its C-terminal end, human A2BAR contains
a type 2 PDZ-binding motif (X8X8), GVGL, but not a
type 1 PDZ-binding motif (XS/TXV/L). Sitaraman et al.
speculated that a PDZ-binding-motif-like sequence in the 3rd
intracellular loop in A2BAR might mediate the interaction
with E3KARP, a PDZ-domain-containing protein (Sitaraman
et al., 2002). However, recent studies indicate that the
GVGL sequence of A2BAR participates in the trafficking
and surface expression of A2BAR (Watson et al., 2011,
2016), possibly by binding to a PDZ-domain-containing
protein. Further investigation is required to determine whether
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GVGL binds to E3KARP or another PDZ-domain-containing
protein.

A2AAR

The function and trafficking of several GPCRs are affected
by the heterooligomerization of these receptors. Moriyama
and Sitkovsky reported that A2AAR coexpression with A2BAR
improves the cell-surface expression of A2BAR, which is normally
poor because A2BAR lacks a dominant forward-transport signal
for export from the ER to the cell surface (Moriyama and
Sitkovsky, 2010). The study further suggested that the functional
interaction between A2AAR and A2BAR might be a consequence
of their physical association (Moriyama and Sitkovsky, 2010),
but how these two receptors interact was not explored. Because
both A2AAR and A2BAR were shown to interact with actinins
in one previous study (in which the specific actinin isoform
was not identified; Burgueno et al., 2003) or with α-actinin-1
in another study (Sun et al., 2016), the α-actinin-1 homodimer
or a heterodimer of α-actinin-1 with another actinin isoform
might mediate the dimerization of A2AAR and A2BAR and thus
promote the surface expression of A2BAR. This mechanism is
clearly not mutually exclusive with the mechanism by which
α-actinin-1 mediates A2BAR interaction with actin filaments
and thereby modulates the trafficking and surface expression of
A2BAR (Sun et al., 2016).

TRANSCRIPTION FACTOR NFκB1/P105

NFκB1/p105 is a member of the NFκB family of proteins that
perform regulatory functions in diverse biological processes such
as inflammation and cell survival and differentiation, as well
as in various diseases, including cancer (Barkett and Gilmore,
1999; Hatada et al., 2000; Perkins and Gilmore, 2006). Sun
et al. reported that the C-terminal tail of A2BAR binds to
NFκB1/p105 independently of ligand activation (Sun et al., 2012).
Intriguingly, A2BAR binding to specific sites on p105 prevents the
polyubiquitination and degradation of p105 protein and thereby
inhibits NFκB activation and reduces inflammation (Sun et al.,
2012). In previous studies, both pro- and anti-inflammatory
activities have been associated with A2BAR (Blackburn et al.,
2009), and the work by Sun et al. potentially sheds light on
this paradox: although A2BAR activation by adenosine produces
proinflammatory effects, A2BAR can also induce adenosine-
independent downregulation of the proinflammatory response
by associating with p105. Such receptor bifunctionality displayed
by A2BAR—mediation of diametrically opposite effects in the
presence and absence of ligand—is reminiscent of dependence
receptors (Thibert and Fombonne, 2010). GPCRs other than
A2BAR have previously been shown to signal through G-
protein-independent pathways, including pathways involving
transcription factors (Nehring et al., 2000;White et al., 2000). The
study of Sun et al. further suggests that the C-terminus of A2BAR
potentially provides a target for developing peptidemimetic drugs
that block NFκB signaling, which could be used for treating
NFκB-related diseases such as inflammation and cancer (Sun
et al., 2012).

α-ACTININ-1

Actinins, or α-actinins, represent a family of ubiquitously
expressed actin-filament-crosslinking proteins. In addition to
performing their critical function of actin-filament crosslinking,
actinins link membrane receptors, and cell adhesion proteins to
actin filaments and thereby modulate the function and trafficking
of these membrane proteins (Oikonomou et al., 2011; Foley and
Young, 2014). A recent study by Sun and colleagues suggested
that α-actinin-1 binds to the A2BAR C-terminus and stabilizes
the receptor’s global and cell-surface expression (Sun et al., 2016),
which revealed a previously unidentified molecular mechanism
for controlling the cellular levels of A2BAR. Because the actinin-
1 isoform investigated in the study was the Ca2+-sensitive
exon19a splice variant, an intriguing question is whether actinin-
1-dependent regulation of A2BAR is also Ca2+ sensitive under
physiological conditions.

In contrast to α-actinin-1, actinin-4, another highly
homologous non-muscle actinin isoform, did not interact
with A2BAR (Sun et al., 2016). Interestingly, actinin-4 has been
suggested to interact with the NFκB subunits p65 and p50 and
function as a coactivator of the transcription factor NFκB (Zhao
et al., 2015). Thus, future studies could investigate whether
actinin-1 also associates with NFκB proteins, including p105,
and how this association affects the interaction between p105
and A2BAR.

A2BAR IN HUMAN DISEASES

Numerous studies have demonstrated a critical role of A2BAR in
the regulation of vascular diseases (Martin, 1992; Dubey et al.,
1996; Yang et al., 2008, 2010a), chronic lung disease (Sun et al.,
2006; Wilson et al., 2009; Zhou et al., 2009; Zaynagetdinov et al.,
2010), and acute lung injury (Eckle et al., 2008a,b; Schingnitz
et al., 2010), and several excellent reviews have summarized these
studies (Spicuzza et al., 2006; Hasko et al., 2009; Aherne et al.,
2011; Headrick et al., 2013). Therefore, in this review, we discuss
only the potential functions of A2BAR in three other common
human diseases, cancer, renal disease, and diabetes (Figure 2).

A2BAR IN CANCER

Growing evidence indicates that A2BAR potentially plays a
pathophysiological role in human cancer and might serve as a
target for novel therapies or cotherapies for cancer. The possible
functions of A2BAR in tumor progression and metastasis are
discussed here.

First, A2BAR is highly expressed in various types of tumor
cells or tissues and promotes tumor-cell proliferation. For
instance, A2BAR was found to be overexpressed in colorectal
carcinoma cells and tissues, and inhibition of A2BAR blocked the
proliferation of colon cancer cells (Ma et al., 2010). In prostate
cancer, A2BAR increased cancer-cell proliferation in both ligand-
dependent, and ligand-independent manners (Wei et al., 2013;
Vecchio et al., 2016). In human oral cancer, A2BAR was shown
to be upregulated in oral squamous carcinoma cells, and A2BAR
knockdown reduced the proliferation of oral cancer cells through
HIF-1α activation (Kasama et al., 2015). Moreover, A2BAR was
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FIGURE 2 | Schematic presentation of the role of A2BAR in various human diseases.

reported to foster bladder and breast tumor growth in syngeneic
mice (Cekic et al., 2012).

Second, A2BAR modulates tumor-cell metastasis. A2BAR was
implicated in promoting breast cancer cell migration in vitro
and lung metastasis in vivo (Stagg et al., 2010; Desmet et al.,
2013), although the underlying molecular mechanism was not
fully elucidated. However, the results of a subsequent study
suggested a possible explanation: A2BAR activation suppressed
the prenylation of the small GTPase Rap1B and diminished
Rap1B-mediated cell adhesion, which promoted cell migration
(Ntantie et al., 2013).

Third, A2BAR might regulate the tumor microenvironment,
including the surrounding blood vessels, immune cells,
fibroblasts, and the extracellular matrix. Ryzhov and colleagues
provided the first genetic evidence indicating that A2BAR
regulates vascular endothelial growth factor (VEGF) production
from tumor-infiltrating host immune cells and thereby promotes
tumor growth (Ryzhov et al., 2008a). Concomitantly, other
groups suggested that A2BAR alters angiogenesis by regulating
the production of a wide array of pro- or anti-angiogenic factors
such as basic fibroblast growth factor (bFGF), angiopoietin2, and
a subset of cytokines (Feoktistov et al., 2002, 2003; Merighi et al.,

2009). In addition to affecting angiogenesis, A2BAR regulates
dendritic-cell differentiation and function (Novitskiy et al., 2008;
Yang et al., 2010b) and alternative macrophage activation (Csoka
et al., 2012) and thus contributes to cancer progression.

Thus, A2BAR exerts various effects on tumor progression
and metastasis. Notably, most of the aforementioned evidence
was collected using in vitro systems, and it is critical to further
confirm the role of A2BAR in cancer by using in vivo models
before A2BAR is used as a potential cancer therapeutic target.

A2BAR IN RENAL DISEASE

Renal diseases are estimated to affect millions of people
worldwide, whose numbers are growing at a rate of
approximately 5–8% annually (Hamer and El Nahas, 2006).
Several studies have indicated a critical role of A2BAR in
mediating the progression of diabetic nephropathy. Patel
et al. and Valladares et al. observed that inhibition of A2BAR
activation suppressed VEGF production in glomeruli and
further attenuated renal dysfunction in diabetic nephropathy;
these data suggested a protective role of A2BAR antagonists in
VEGF-induced diabetic nephropathy (Valladares et al., 2008;
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Patel and Thaker, 2014). However, this view was challenged
by Tak et al., who reported elevated VEGF levels in diabetic
A2BAR-knockout mice (Tak et al., 2014); concordantly, diabetic
nephropathy was highly severe in mice with global or vascular
endothelial tissue-specific A2BAR deletion, but not in mice
with tubular-epithelial A2BAR deletion. Therefore, Tak et al.
suggested that vascular A2BAR signaling is the key mediator
of kidney protection during diabetic nephropathy (Tak et al.,
2014). The methods used and the specific tissues studied by
the aforementioned groups were distinct, which might explain
their conflicting observations on the role of A2BAR during
diabetic nephropathy. Moreover, the different time windows in
which A2BAR inhibition was induced pharmacologically and
genetically might also contribute to the discrepancy in the results
(Eisenstein et al., 2015).

In addition to playing a role in diabetic nephropathy,
A2BAR has been suggested, based on studies on several mouse
models, to protect against renal fibrosis. In ADA-deficient
mice, a high level of adenosine in kidney tissues resulted
in proteinuria and renal fibrosis, and treatment with A2BAR
antagonists attenuated renal dysfunction and fibrosis (Dai
et al., 2011). Moreover, genetic deletion of A2BAR protected
against renal fibrosis in both mice infused with angiotensin
II and mice subjected to unilateral ureteral obstruction (Dai
et al., 2011). Furthermore, renal biopsy samples from patients
with chronic kidney disease (CKD) showed higher levels of
A2BAR expression than did samples from patients without CKD
(Zhang et al., 2013). All of these data suggest that A2BAR
could serve as a potential therapeutic target in the treatment
of CKD.

Acute kidney injury, a devastating kidney disease, is often
caused by renal ischemia. Rigorous studies from different
laboratories have suggested a pivotal role of A2BAR in acute
kidney injury. For example, Grenz et al. used genetic and
pharmacological approaches to reveal a role of A2BAR in
protecting against renal injury resulting from ischemia, although
the underlying molecular mechanism was not fully clarified
(Grenz et al., 2008). Subsequently, the same group proposed
two possible explanations for how A2BAR might provide renal
protection: one, A2BAR reduces neutrophil-dependent TNF-α
production and suppresses inflammation (Grenz et al., 2012b);
and two, A2BAR promotes optimal postischemic blood flow
within the kidney and thereby ensures the maximal return
of blood flow, tissue oxygenation, and removal of waste
products from the ischemic kidney through the A2BAR-ENT1
(equilibrative nucleoside transporter) pathway (Grenz et al.,
2012a).

A2BAR IN DIABETES

Diabetes mellitus (DM) is the most common endocrine disorder;
in 2014, 9% of all adults aged 18+ years were estimated to
have diabetes (WHO, 2014), and by 2025, 300 million people
worldwide will have the disease (Mane et al., 2012). Adenosine
has long been recognized to affect insulin secretion and glucose
homeostasis by activating the four AR subtypes (Dong et al.,

2001; Nemeth et al., 2007; Fredholm et al., 2011b; Koupenova and
Ravid, 2013; Andersson, 2014; Antonioli et al., 2015). Recently,
A2BAR in particular has been suggested to function as a critical
regulator in DM (Rusing et al., 2006; Johnston-Cox et al., 2012,
2014; Eisenstein et al., 2015;Merighi et al., 2015;Wen et al., 2015).

In a type I DMmodel, the nonselective receptor agonist NECA
blocked diabetes development, and this appeared to be mediated
by A2BAR-dependent suppression of proinflammatory cytokine
production (Nemeth et al., 2007). These data suggest that A2BAR
represents a potential target for the treatment of type I diabetes.

Conversely, some of the evidence obtained using a type II DM
model indicated that A2BAR plays a pro-diabetic role. Figler et al.
suggested that A2BAR activation increases insulin resistance by
elevating the production of proinflammatory mediators such as
IL-6 and C-reactive protein (Figler et al., 2011). Deletion of the
A2BAR gene and selective blockade of A2BAR in mice reduced
hepatic glucose production and enhanced glucose disposal into
skeletal muscle and brown adipose tissue (Figler et al., 2011).
By contrast, other studies suggested an anti-diabetic role of
A2BAR. Johnston-Cox and colleagues showed that A2BAR plays
an essential role in high fat diet (HFD)-induced insulin resistance
in mice, and mice lacking A2BAR displayed diminished glucose
clearance and elevated insulin resistance and inflammatory
cytokine production (Johnston-Cox et al., 2012). The underlying
cellular mechanism here is mediated by A2BAR expressed in
macrophages: reinstatement of macrophage A2BAR expression
in A2BAR-null mice restored HFD-induced insulin tolerance and
tissue insulin signaling to the level in control mice. Themolecular
mechanism involves A2BAR altering cAMP signaling and the
levels of macrophage cytokine expression and secretion, and
this regulates the levels of insulin receptor-2 and downstream
insulin signaling (Johnston-Cox et al., 2014). Similar results were
obtained by Csoka et al. (2014), who suggested that A2BAR plays
a crucial role in sustaining glucose homeostasis and preventing
insulin resistance under normal dietary conditions by regulating
alternative macrophage activation. Insulin- and glucose-induced
glucose clearance was impaired in A2BAR-knockout mice that
were fed chow diet, and these knockout mice also exhibited a
low level of physical activity, whichmight contribute to decreased
insulin sensitivity in skeletal muscles. Csoka et al. also highlighted
the complex role of A2BAR in regulating liver metabolism (Csoka
et al., 2014).

CONCLUSION

In this review, we have discussed certain general characteristics
of A2BAR and have described multiple binding partners of the
receptor, including α-actinin-1 and p105, whose interactions
with the receptor were discovered recently. This identification
of A2BAR-binding proteins will undoubtedly help enhance our
understanding of the molecular and cellular functions of A2BAR;
however, to date, fewer binding partners have been reported
for A2BAR than for other AR subtypes. Several reasons might
account for this: (1) Little attention was previously devoted to
A2BAR because the receptor was long assumed, inaccurately, to
be of lesser physiological relevance as compared with other ARs;

Frontiers in Chemistry | www.frontiersin.org 6 August 2016 | Volume 4 | Article 37

http://www.frontiersin.org/Chemistry
http://www.frontiersin.org
http://www.frontiersin.org/Chemistry/archive


Sun and Huang Adenosine A2B Receptor

(2) studies onA2BARwere hampered by a lack of useful biological
tools such as specific agonists; and (3) novel experimental
approaches such as mass spectrometry were not used to identify
A2BAR binding partners.

Recent studies have considerably advanced our understanding
of the critical role of A2BAR in the pathogenesis of human
diseases, and this raises the possibility that A2BAR could be
used as a potential target in the treatment of cancer, diabetes,
or other diseases. However, opposing functions of A2BAR have
been identified in several diseases. For example, A2BAR activation
produces pro- and anti-tumoral effects and the receptor performs
pro- and anti-inflammatory functions. These paradoxical effects
are least partly contributed by the incompletely explored, agonist-
independent activities of A2BAR, including its interactions with
p105 (Sun et al., 2012), netrin-1 (Corset et al., 2000), ADA
(Herrera et al., 2001; Pacheco et al., 2005), or other effector
proteins in specific contexts. Moreover, the discrepant effects
might be ascribed to different systems and conditions used for
studying them, including cell types, animal models, time window
of modulation of A2BAR activity, and the potential side effects
of given agonists or antagonists. From a clinical perspective,
these opposite effects of A2BAR make it highly challenging

to decide whether agonists or antagonists should be used in
pharmacological interventions for a given disease. Therefore, to
effectively use A2BAR as a therapeutic target, studies must be
conducted to elucidate precisely how A2BAR agonist-dependent
and -independent functions modulate a particular pathological
condition in a specific cellular setting and time window.
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