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Introduction
Breast cancer (BC) is the most common cancer diagnosed 
among women worldwide.1 Most BC-related deaths are caused 
not by the primary tumor but by metastases at distant sites.2 
Breast cells become malignant after acquiring the capacities of 
uncontrolled epithelial proliferation and angiogenesis,3 inva-
sion into surrounding tissues and metastasis to distant organs 
(lymph nodes, lungs, bones, and brain).4 Mechanisms underly-
ing the elevated motility of BC cells and the formation of 
metastases are extensively discussed but remain incompletely 
understood. However, some molecular markers of different BC 
subtypes have been described as strong prognostic and predic-
tive factors. For instance, cell-surface protein human epidermal 
growth factor receptor 2 (HER2), a transmembrane tyrosine 
kinase receptor, augments the metastatic potential of BC cells; 
HER2-expressing cells have greater ability to produce metas-
tases than HER2-negative cells.4-6 In contrast, estrogen recep-
tor (ER), progesterone receptor (PR), and HER2-negative BC, 
also known as triple-negative breast cancer (TNBC), is associ-
ated with significantly increased risk of disease progression and 
tumor cell dissemination.7,8

Glucocorticoids (GCs) are frequently administered as sup-
porting therapy for palliative purposes during BC treatment.9 
However, the effects of GCs in BC therapy could be varied and 
depend on cancer subtype. For example, it has been demon-
strated that GCs suppress ER-positive BC tumor growth via 

increased estrogen sulfotransferase expression and decreased 
production of estradiol in malignant cells.10 At the same time, 
GCs have been shown to decrease cell adhesion and stimulate 
cell motility, resulting in an increased risk of metastasis in 
TNBC.10-16 Moreover, glucocorticoid receptor (GR) activation 
has been found to stimulate proliferation, enhance escape from 
apoptosis, and further disease progression.9,17 This review 
focuses on the roles of GC signaling in BC metastasis and the 
mechanisms underlying the effects of GCs on BC progression. 
In addition, possible alternatives of GC-based BC therapies 
are discussed.

Mechanisms of BC Metastasis
Metastasis is a multistage process that begins with the local 
invasion of cells from the primary tissue into the surrounding 
host tissue and continues until the tumor cells invade the 
bloodstream.18,19 Invasion begins with alterations of cell-cell 
adhesion and cell adhesion to the extracellular matrix (ECM). 
There are several types of connecting junctions: (1) focal adhe-
sions, which are large protein complexes that interact with 
ECM via the binding of integrins with their ligands vinculin, 
collagen, laminin, phybronectin, and so on.20; (2) tight junc-
tions, which occur as a series of very close membrane apposi-
tions of adjacent cells and are formed by transmembrane 
proteins such as occludin, claudins, junctional adhesion mole-
cules ( JAMs), and tricellulin and many scaffold proteins21; (3) 
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adherens junctions, composed of complexes of transmembrane 
cadherins with cytoplasmic catenins and actin cytoskeleton21; 
(4) gap junctions, which are formed by the docking of 2 
hemichannels (or connexons) on the cellular membrane com-
posed of 6 transmembrane proteins called connexins22; and (5) 
desmosomes and hemidesmosomes, which are cadherin-based, 
multiprotein complexes, provide intercellular adhesion via con-
nections of intermediate filaments.23 Focal, tight and gap junc-
tions are the most affected by GC in BC.

The alterations in adhesive properties observed in BC cells 
include changes in the expression and activity of the majority 
of key adherence molecules, which can affect disease progres-
sion negatively or positively. Focal adhesion kinases stimulate 
cell motility and invasion in HER2-positive and ER-positive 
BC and in TNBC.24,25 However, BC cells lose their expres-
sion of tight junction proteins during malignant transforma-
tion.26 Connexin 43 is considered a potential tumor suppressor, 
as Wnt-dependent increases in its expression lead to the for-
tification of gap junctions27; however, connexins 26 and 30 
have been shown to have oncogenic properties.28 The cad-
herin family has been documented to play a large role in 
mediating cell-cell adhesion and plays predominant roles in 
BC metastasis.29 The downregulation of E-cadherin and the 
upregulation of N-cadherin have been reported to reflect pro-
gression and metastasis in BC and to be associated with poor 
prognosis.19

Degradation of the ECM is an essential step before inva-
sion and is carried out mainly through matrix metalloprotein-
ases (MMPs) and the urokinase plasminogen activator (uPA) 
system. The expression of uPA is used as prognostic marker of 
distant metastases in BC patients.19,30

Epithelial-mesenchymal transition (EMT) is a critical 
pathway in the movement of tumor cells and a central driving 
force of cancer cell dissemination.19,29 The initial steps of EMT 
are the disintegration of cell-cell adhesion followed by an alter-
ation in cell polarity from apical-basal to front-rear and activa-
tion of proteolytic enzymes such as MMPs.31 The EMT 
program in BC cells is associated with the upregulation of 
signaling pathways involved in tumor progression, such as the 

tumor growth factor (TGF)-β, Wnt, Notch, Hedgehog, esti-
mated glomerular filtration rate (EGFR), platelet-derived 
growth factor receptor (PDGFR), and PI3K/AKT pathways, 
and poor prognosis.19 The mechanical force used is generated 
by active myosin/actin contractions and cortical actin via Rho 
small GTPase signaling.32,33

A suitable microenvironment is required to establish tumor 
growth and progression in both primary and metastatic sites. 
The establishment of such an environment involves specialized 
cells, including fibroblasts, immune cells, endothelial cells, and 
tissue-associated macrophages, which are capable of influenc-
ing tumor invasion, angiogenesis, immune evasion, and migra-
tory behavior.19 Specific profiles of gene expression affect the 
target of BC metastasis (Table 1).

Glucocorticoids in BC Metastasis
Glucocorticoids are administered in various doses before, dur-
ing, and after chemotherapy in BC patients because of their 
benefits in improving patient quality of life and their antiemetic 
effects.9,34,35 However, the use of GCs in BC treatment contin-
ues to be debated. It has been reported in multiple studies that 
GCs can suppress tumor progression and metastasis,34,36 but 
other studies have demonstrated the ability of GCs to protect 
cancer cells from apoptosis and to diminish the cytotoxic 
effects of main chemotherapeutics.37,38 The role of the GR in 
BC biology appears to be dependent on ER expression and 
activity,37 suggesting that it likely varies between BC subtypes. 
A high expression level of GR correlates with good prognosis 
in ER-positive BC and poor prognosis in TNBC.14,39,40 
Furthermore, it has been shown in several in vitro models of 
basal-like BC that GCs suppress cell migration and invasion by 
inhibiting the expression of RhoA or by inducing E-cadherin 
expression.41 In contrast, another study demonstrated that in 
both in vitro and in vivo models of TNBC, dexamethasone 
increased the metastatic potential of BC cells, possibly via the 
enhanced expression of receptor tyrosine kinase (RTK)-like 
orphan receptor 1 (ROR1), which is associated with increased 
colonization of metastatic niches, aggressive disease, and poor 
outcome.14,42

Table 1.  Organotropism of BC metastasis.

Target organ BC subtype Associated molecules/pathways

Lung TNBC, Luminal B MMP1a, MMP2, ID1, CXCL1, EREG, COX-2, TGF-beta, LOX

Brain TNBC, Luminal B, HER2+ ST6GALNAC5, HBEGF, COX-2, IL8, L1CAM

Liver Luminal A and B, HER2+ E-selectine, CXCR4, CD44, E-, N-cadherins

Bone Luminal B PTHRP, RANKL, SHH, ITGAV, NOTCH, TGF-beta, VCAM-1

Abbreviations: BC, breast cancer; CD44, CD44 molecule (Indian blood group); COX2, cyclooxygenase 2; CXCL1, chemokine (C-X-C motif) ligand 1; CXCR4, C-X-C 
motif chemokine receptor 4; EREG, epiregulin; HBEGF, heparin-binding epidermal growth factor; HER2, human epidermal growth factor receptor 2; ID1, inhibitor of DNA 
binding 1; IL8, interleukin 8; ITGAV, integrin subunit alpha V; L1CAM, L1 cell adhesion molecule; LOX, lysyl oxidase; MMP, matrix metalloproteinase; PTHRP, parathyroid 
hormone like hormone; RANKL, TNF superfamily member 11; SHH, sonic hedgehog signaling molecule; ST6GALNAC5ST6, N-acetylgalactosaminide alpha-2,6-
sialyltransferase 5; TGF beta, tumor growth factor beta; TNBC, triple negative breast cancer; VCAM, vascular cell adhesion molecule 1.
aGenes in bold have strong association with GR activity.
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Mechanism of GR action and its effect on cell 
motility and adhesion

Glucocorticoids exert their biological effects by binding to the 
intracellular GR, a well-known transcription factor expressed 
in normal, preinvasive, and invasive cancers.43 Upon hormone 
binding, GR translocates to the nucleus, where it regulates 
gene expression by either (1) transactivation (TA) via GR 
homodimer binding to GC-responsive elements (GRE) or (2) 
transrepression (TR), which is frequently mediated by negative 
interactions between GR and other TFs, including proinflam-
matory nuclear factor kappa beta (NF-κB)44-47 (Figure 1).

The anti-inflammatory effects of GCs are mediated via GR 
TR, whereas the undesirable side effects (insulin resistance, 
skin atrophy, osteoporosis, and GC resistance) are thought to 
occur mainly via the activation of gene transcription (GR 
TA).44 Since some genes closely related to BC metastasis (ILs, 
COX-2, TNFα) are involved in inflammation, GCs can simul-
taneously affect metastasis and inflammation.

The nongenomic effects of GCs on cell junctions in BC are 
poorly understood. It has been shown in primary keratinocytes, 
that GR localizes on plasma membrane in complex with 
a-catenin,48 but the exact mechanism remains unknown. The 
genomic mechanisms underlying the effects of GR involve the 
expression regulation either via TR or TA of multiple adhesion 
molecules, including occludins, claudins, E-cadherin, β-catenin, 
plakoglobin,49 and proteins from the Rho family.40 GR effects on 
the cell-cell adhesion of BC cells vary depending on cell subtype 
and microenvironment conditions. Glucocorticoid-receptor-
dependent restoration of claudin-1 expression was observed in 
three-dimensional BC spheroids but not in cell monolayer.50 
Glucocorticoids induce the expression of key genes of tight con-
tacts in tumor cells as well as in the tissue microenvironment. 
Glucocorticoids can modulate the properties of the vascular 
endothelial barrier via increased occludin and claudin-5 expres-
sion.51 In rat BC cell line Con8, GC was found to stimulate the 
formation of tight and adherens junctions via the inhibition of 
small GTPase RhoA.40 In a zebrafish model, it was shown that 

the GC prednisolone contributes to the downregulation of itga10 
and itgbl1 genes, which are involved in collagen binding and cell-
matrix adhesion.52 These findings are consistent with the observa-
tion that a GC-induced decrease of BC metastatic potential was 
associated with E- or N-cadherin transition from the cytoplasmic 
to transmembrane localization as well as increased expression of 
these genes. Enhanced expression of GC-regulated IL-6 in cells 
of the ER-positive ZR-75-1 and T-47D cells, derived from ductal 
carcinoma, induced a shift to the fibroblastoid morphology, 
enhanced motility, increased cell-cell separation, and decreased the 
stability of adherens-type junctions.53 Another mechanism of sta-
bilization of the E-cadherin-β-catenin complex by GC is the 
downregulation of the actin-binding protein fascin, a negative 
regulator of adherens junctions.54 Glucocorticoid effects on gap 
junction formation have been described mainly for nontumor tis-
sues and are debated. For example, the expression of connexins 26 
and 32 in primary hepatocytes was found to be increased after GC 
treatment in rat model of pancreas adenocarcinoma, whereas the 
expression of connexin 30 has been shown to be decreased follow-
ing GC treatment in gliomas and healthy brain tissue as well as in 
osteoblasts.55,56 However, effects of GCs on gap junctions in BC 
cells remain unknown.

Moreover, the GR gene produces multiple transcriptional 
and translational GR isoforms. Fully functioning GRα protein is 
encoded by 9 exons in the GR gene; other GR isoforms lack 
some functions and could be another reason for GC resistance.57 
A study of cell junction formation and functioning, it was dem-
onstrated that GRβ, which lacks the ligand-binding domain for 
GCs and has been shown to be inhibitory to GRα, increases the 
migration of human bladder cancer cells.58 A diversity of GR 
isoforms is associated with alternative translation initiation, as 
multiple AUG start codons exist in the GRα mRNA sequence.57 
These GRα isoforms have distinct cellular localization and gene 
regulatory profiles.57 Additional posttranslational modifications 
of GR include ubiquitination, acetylation, and SUMOylation. 
These modifications can alter receptor activity and enhance the 
functional diversity of the receptors and thus profoundly impact 

Figure 1.  Mechanism of GR activation by GC and by SEGRA. FKBP indicates FK506 binding protein; GC, glucocorticoids; GR, glucocorticoid receptor; 

GRE, glucocorticoid responsive element; HSP, heat shock protein; nGRE, negative GRE; SEGRA, selective glucocorticoid receptor agonists; TF, 

transcription factor; TF-RE, complex of TF with responsive element.
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subsequent signaling. For example, GRs are modified by acetyla-
tion at Lys-494 and Lys-495 in response to GCs. This modifica-
tion impairs the ability of GR to interfere with NF-κB 
signaling.59 Since some NF-kB-dependent genes are closely 
related to BC metastasis, this posttranslation modification of 
GR can affect BC cell migration and invasion, but the exact 
mechanisms remain unknown.

Effect of GR on EMT

The consequences of cross-talk between GR and the signaling 
pathways involved in EMT in BC vary depending on the 
molecular subtype of disease (Table 2). For example, it has been 
shown in the GFP-ERa:PRL-HeLa array cell line, consisting 
of multicopy integration of an estrogen-responsive transcrip-
tional reporter gene and also stably expresses GFP-ERa (green 
fluorescent protein-tagged) at levels comparable with MCF-7 
BC cells, that GR binds to ER promoters, displacing ER and 
repressing proliferative activity.60 These effects depend on both 
ER and GR function and may have important implications for 
GC influence on the global ER program and specifically on 
EMT in ER-positive cancers. Regarding ER-negative cancers, 
dysfunctional GR signaling has been described in tumors with 
BRCA mutations,15 and EMT promotion in TNBC cells with 
BRCA1 dysfunction may be independent of GR. Nevertheless, 
EMT was also identified as one of the primary processes regu-
lated by GR in a ChIP-seq study of ER-negative cells.39 In 
addition, annotated transcriptome studies have shown that the 
prognostic information of GR expression differs between 
ER-positive and ER-negative patients. In ER-negative BC 
patients, upregulated GR results in increased activity of multi-
ple members of the Wnt and Hippo pathways and is associated 
with worse prognosis, whereas in ER-positive BC patients, 
high levels of GR expression in tumors are significantly associ-
ated with better outcome.14,15 Consistent with these observa-
tions, it was reported that GR-induced tumor invasion, EMT, 
and lung metastasis in vivo. Glucocorticoid-receptor-mediated 
suppression of insulin receptor substrate-1 followed by activa-
tion of the ERK2 MAP kinase pathway was shown to play the 
key role in GR-induced EMT.61 However, GR has been found 

to attenuate invasion of ER-negative BC cells via the induction 
of CCN5/WISP-2 expression and transcriptional repression of 
EMT-associated genes, in particular, the mesenchymal marker 
vimentin and the mesenchymal transcription factor ZEB1.62

Selective Activation of GR in BC Metastasis
It is well accepted that GR TR plays an important role in the 
anti-inflammatory effects of GCs. However, many side effects 
of steroids (glucose metabolism, steroid diabetes, osteoporosis, 
skin and muscle atrophy) strongly depend on GR TA.44,47 
Although some concepts in the GR field have been revised, it 
remains well accepted that selective glucocorticoid receptor 
agonists (SEGRAs) that shift GR activity toward TR have a 
better therapeutic index than classical glucocorticoids.47,63-67 
Selective glucocorticoid receptor agonists that do not support 
GR dimerization and GR-mediated TA have better therapeu-
tic index than classical GC.44,47 The therapeutic anti-inflam-
matory and anticancer efficacy of different SEGRAs has been 
confirmed in multiple studies.44,47,68,69 However, data on the 
possible implications of SEGRAs in the treatment of meta-
static BC are insufficient. It has been shown that a SEGRA of 
natural origin, CpdA, effectively inhibited the growth and pro-
liferation of MDA-MB-231 and MCF7 cells, did not promote 
drug resistance and did not attenuate the cytotoxicity of the 
main therapeutics.68,69 Similar observations were described for 
another SEGRA, rigid steroid 21-hydroxy-6,19-epoxyproges-
terone.70 However, no data are yet available on the specific 
SEGRA effects on key components of cell motility, migration, 
EMT, and metastatic potential.

An alternative approach yielding safer GR-targeted therapies 
could be the combination of GCs with compounds that can pro-
tect tissues against GC side effects. Recently, we identified 
REDD1 (regulated in development and DNA damage response 
1), a negative regulator of mTOR/Akt signaling and a marker of 
cellular stresses, including hypoxia, DNA damage and GCs,71 as a 
key regulator of the development of atrophic complications in 
skin.72 In studies by ourselves and others, REDD1 was strongly 
induced during GC-dependent atrophy in skin and muscle, and 
REDD1-knockout animals were protected against steroid-
induced skin atrophy and muscle waste.72,73 Moreover, the lack of 

Table 2. D ifferences of GCs functions in ER+ and ER-BC.

BC subtype GC effects Result

Luminal (ER+) TR of AKT/mTOR, CCND1, CDK2, CDK6 Block the cytoskeleton organizations and 
cell migrations, inhibition of proliferation

Basal (TNBC) TA of ROR1, CDK1, MKP1, SGK1, PDK4, TSC22D, 
CCN5/WISP-2 and KLF9.
TR of Bid, CD95 L, TRAIL, Bcl-xL, IRS-1, PRAG1, 
PLK2, CDH11, HGF, ZNF703 and SOX9

Increase survival, proliferation, metastatic 
potential, tamoxifen resistance

Abbreviations: BC, breast cancer; Bcl-xL, BCL2-like 1; Bid, BH3 interacting domain death agonist; CCND1, cyclin D1; CCN5/WISP-2, cellular communication network 
factor 5; CDH11, cadherin 11; CDK1, cyclin-dependent kinase 1; CDK2, cyclin-dependent kinase 2; CDK6, cyclin-dependent kinase 6; CD95L, Fas ligand; ER, estrogen 
receptor; GC, glucocorticoid; HGF, hepatocyte growth factor; IRS1, insulin receptor substrate 1; KLF9, Kruppel-like factor 9; MKP1, mitogen-activated protein kinase 
phosphatase 1; mTOR, mammalian target of rapamycin; PDK4, pyruvate dehydrogenase kinase 4; PLK2, polo-like kinase 2; PRAG1, PEAK1-related, kinase-activating 
pseudokinase 1; ROR1, receptor-tyrosine-kinase-like orphan receptor 1; SGK1, serum/glucocorticoid-regulated kinase 1; SOX9, SRY-box transcription factor 9; TA, 
transactivation; TNBC, triple-negative breast cancer; TR, transrepression; TRAIL, TNF superfamily member 10; TSC22D, TSC22 domain family, member 3; ZNF703, zinc 
finger protein 703.
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REDD1 did not affect the anti-inflammatory effects of GC.72 We 
demonstrated that the compounds from the PI3K/Akt/mTOR 
modulator class inhibited GC-induced REDD1 expression and 
strongly attenuated GR TA along with GR TR acceleration in 
keratinocytes and transformed lymphocytes. However, the effects 
of the inhibition of GC-induced REDD1 expression have not yet 
been studied in BC cells and require investigation. Nevertheless, a 
combination of GC with REDD1 inhibitors could potentially 
ameliorate some of the metabolic adverse effects of GС, suggest-
ing clinical applications for a wide range of diseases and disorders 
treated with GС.74 Little is known about the role of REDD1 in 
the regulation of the proliferation of BC cells, and the data to date 
have yielded mixed results. For example, several studies have 
shown that an increase of REDD1 expression after treatment 
with different chemotherapeutics is associated with a decreased 
viability of BC cells.75,76 Furthermore, in HER2-positive BC and 
in TNBC, tumor cell proliferation and survival in the hypoxic 
tumor environment might be promoted by disinhibition of the 
mTOR pathway and HIF-1α stabilization by the downregulation 
of REDD1.77 On the contrary, Pinto and colleagues demonstrated 
that REDD1 expression was associated with poor outcome in 
TNBC.78 Evidently, even selective activation of GR can lead to 
different outcomes in different molecular subtypes of BC, which 
indicates that the molecular interactions that underlie the rela-
tionships between GR and the processes in BC are complex.

Conclusion
Overall, the roles of GR signaling in cell adhesion, EMT, inva-
sion, and metastasis in BC remain unclear. The effects of GC 
depend on BC subtype, tumor microenvironment, and GR 
transcriptional activity. Selective glucocorticoid receptor ago-
nists might provide the option to shift GR function toward 
antimetastatic activity.
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