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Abstract: The property differences between bacteria produced from solid-state and liquid-state
fermentations have always been the focus of attention. This study analyzed the stress tolerance and
transcriptomic differences of the probiotic Lacticaseibacillus casei Zhang produced from solid-state
and liquid-state fermentations under no direct stress. The total biomass of L. casei Zhang generated
from liquid-state fermentation with MRS medium (LSF-MRS) was 2.24 times as much as that from
solid-state fermentation with soybean meal-wheat bran (SSF-SW) medium. Interestingly, NaCl,
H2O2, and ethanol stress tolerances and the survival rate after L. casei Zhang agent preparation
from SSF-SW fermentation were significantly higher than those from LSF-MRS fermentation.
The global transcriptomic analysis revealed that in L. casei Zhang produced from SSF-SW fermentation,
carbohydrate transport, gluconeogenesis, inositol phosphate metabolism were promoted, that pentose
phosphate pathway was up-regulated to produce more NADPH, that citrate transport and
fermentation was extremely significantly promoted to produce pyruvate and ATP, and that pyruvate
metabolism was widely up-regulated to form lactate, acetate, ethanol, and succinate from pyruvate
and acetyl-CoA, whereas glycolysis was suppressed, and fatty acid biosynthesis was suppressed.
Moreover, in response to adverse stresses, some genes encoding aquaporins (GlpF), superoxide
dismutase (SOD), nitroreductase, iron homeostasis-related proteins, trehalose operon repressor TreR,
alcohol dehydrogenase (ADH), and TetR/AcrR family transcriptional regulators were up-regulated
in L. casei Zhang produced from SSF-SW fermentation. Our findings provide novel insight into the
differences in growth performance, carbon and lipid metabolisms, and stress tolerance between
L. casei Zhang from solid-state and liquid-state fermentations.

Keywords: Lacticaseibacillus casei Zhang; solid-state fermentation; liquid-state fermentation;
stress tolerance; RNA-seq

1. Introduction

Lactic acid bacteria (LAB) have been generally recognized as safe probiotics since they are native
inhabitants of the oral cavity and the digestive tract of humans [1–3]. As the representative LAB,
L. casei has been isolated from a variety of environmental habitats, including raw and fermented dairy
and plant materials as well as the gastrointestinal tracts of humans and animals, and traditionally,
this bacterium is recognized as probiotics and applied in commercial products for promoting nutrition
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and health [4–6]. The probiotic strain, L. casei Zhang, isolated from homemade koumiss in Inner
Mongolia of China, has been commercially used as starter in the manufacture of dairy products [7–10].
To date, L. casei Zhang has been confirmed to have multiple functions including ameliorating the
high-fructose-induced impaired glucose tolerance in hyperinsulinemia rats [11], affecting the gene
expression in hypercholesterolemic rat liver to stimulate lipid metabolism [12], protecting against
the endotoxin- and d-galactosamine-induced liver injury in rats [13], and preventing the intestinal
tumorigenesis in mice [14]. In addition, in humans, L. casei Zhang was found to elevate the fecal
short-chain fatty acid level, stabilize gut microbiota in adults, and decrease gut microbiota age index
in older adults and the total colonic bile acid level [15–17]. However, similar to other LAB, L. casei
Zhang often encounters various stresses both in food preparation, storage, and gastrointestinal tract,
such as high/low temperature, acid and alkaline, high oxidation stress, high hydrostatic pressure
and osmotic pressure, starvation, and antibiotics [18–20]. Therefore, the study of the stress response
mechanism of L. casei Zhang is of great significance for improving its stress tolerance.

Nowadays, the responses of L. casei Zhang to such stresses as acid, antibody, bile salts, and high or
low temperature have been studied. The carbohydrate metabolism of L. casei Zhang plays an important
role under low acid stress [21]. The alterations in membrane fluidity, fatty acid distribution, and cell
integrity are common strategies for L. casei Zhang to withstand severe acidification and to reduce the
deleterious effect of lactic acid [22]. Further study reveals that the exogenous aspartate can improve
the growth performance and acid tolerance of L. casei Zhang under acid stress [23]. L. casei Zhang has
been found to adapt amoxicillin stress and gentamycin stress by activating the metabolism pathways
of carbohydrate, amino acid, and purine, especially alkaline shock protein (ASP23) [24]. The proteins
related to cell protection (DnaK and GroEL), cell membrane modifications (NagA, GalU, and PyrD)
and key components in central metabolism (PFK, PGM, CysK, LuxS, PepC, and EF-Tu) are involved in
a complex physiological response of L. casei Zhang under bile salts stress [25]. Mg2+, the second most
abundant cation in bacteria, has been found to play a significant role in the thermotolerance of L. casei
Zhang [26]. However, the response mechanisms of L. casei Zhang to other stresses including H2O2 and
ethanol remain to be further investigated.

The commonly used medium for most LAB including L. casei is de Man–Rogosa–Sharp (MRS)
medium which can be modified with nitrous acid, sorbitol, galactose, or maltose [27,28]. In addition,
as a cost-efficient fermentation technology for LAB, solid-state fermentation (SSF) using soybean as
substrate is employed to produce the soybean-fermented foods, such as sufu (a Chinese fermented
soybean food), soybean flour, and soymilk [29,30]. Nowadays, the transcriptional analysis of L. casei
Zhang directly exposed to various stresses have been extensively conducted. However, little research
focuses on the differences in stress-tolerance and transcriptome between L. casei Zhang produced
from solid-state fermentation and liquid-state fermentation under no direct stress. Therefore, in this
study, the differences in the transcriptome level and the tolerance of L. casei Zhang from two different
fermentations to NaCl, H2O2, and ethanol stresses were investigated.

2. Materials and Methods

2.1. Bacterial Strain, Media, and Growth Conditions

L. casei Zhang wild-type strain was obtained from the School of Food Science and Engineering,
Inner Mongolia Agricultural University, China. Liquid-state fermentation de Man–Rogosa–Sharp
(LSF-MRS) medium contained 10.0 g/L of peptone, 8.0 g/L of beef extract powder, 4.0 g/L of yeast extract
powder, 20.0 g/L of glucose, 0.2 g/L of MgSO4·7H2O, 5.0 g/L of sodium acetate, 2.0 g/L of sodium citrate,
2.0 g/L of K2HPO4, 0.15 g/L of MnSO4, and 1.0 mL of Tween-80. Solid-state fermentation (SSF-SW)
medium contained 60.0 g soybean meal, 20.0 g wheat bran, and 48.0 mL deionized water. L. casei
Zhang from a −80 ◦C glycerol stock was streaked onto MRS agar plate and cultured for 24 h at 37 ◦C.
A single colony of L. casei Zhang was incubated into 5.0 mL MRS medium for overnight culture at
37 ◦C for further experiments.
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2.2. Preparation of L. casei Zhang Bacterial Suspensions after Solid-State and Liquid-State Fermentation

The overnight cultured L. casei Zhang was inoculated into 128.0 g fresh SSF-SW and 400.0 mL
LSF–MRS media with 1.0% inoculum size and cultured for 14 h at 37 ◦C.

For bacterial collection from SSF-SW medium, 400.0 mL of 0.85% sterilized saline water was
added into the fermentation system and shaken at 200× g for 5 min at 37 ◦C. Then the mixture
was filtrated by 2-layer gauze and the filtrate was centrifuged at 5000× g for 5 min. The obtained
precipitate was washed twice and finally resuspended with 400.0 mL of sterilized 0.85% saline water.
For bacterial collection from LSF-MRS medium, fermentation liquid was centrifuged at 5000× g for
5 min. The obtained precipitate was washed twice and finally resuspended with 400.0 mL of sterilized
0.85% saline water. The concentration of bacterial suspension was calculated by spread plate method
with the following formula.

Total biomass after fermentation (CFU) = Concentration of bacterial suspension (CFU/mL) ×
resuspension volume (mL).

2.3. Sensitivity of L. casei Zhang to NaCl, H2O2, and Ethanol after Solid-State and Liquid-State Fermentations

The OD600 nm of bacterial suspensions was adjusted to 1.50, and the initial bacterial count was
calculated by spread plate method. In NaCl stress test, the bacterial suspensions were centrifuged
at 5000× g for 5 min and resuspended with 15.0%, 20.0%, and saturated (at 30 ◦C) NaCl solutions.
After the resultant bacterial resuspensions were placed at 30 ◦C for 10 min, the bacterial count was
calculated by spread plate method. In H2O2 stress test, the bacterial suspensions were centrifuged at
5000× g for 5 min and resuspended with sterilized 0.85% saline water containing 0.40%, 0.6%, 0.8%,
and 1.0% H2O2, respectively. After the obtained bacterial resuspensions were placed at 30 ◦C for
10 min, the bacterial count was calculated by spread plate method. In ethanol stress test, the bacterial
suspensions were centrifuged at 5000× g for 5 min and resuspended with the sterilized 0.85% saline
water containing 10%, 20%, and 30% ethanol, respectively. After the resuspensions were placed at
30 ◦C for 10 min, the bacterial count was calculated by spread plate method.

Bacterial survival rate (%) = (initial bacterial count − bacterial count after stress treatment)/initial
bacterial count × 100%.

2.4. Bacterial Agent Preparation by Cold-Air Drying and Spray Drying

The concentration (C) of bacterial suspensions was determined by gradient dilution counting.
For cold-air drying, the sterilized wheat bran with 0.8 times bacterial suspension weight was added
into the pre-prepared bacterial suspensions. After being mixed uniformly, the bacterial suspensions
were dried for 6 h at 30 ◦C and 10% humidity with wind gear 8–9 on air drying machine YCFZD-2A
(Ouyi Electric Appliance co. LTD, Hangzhou, China). The resultant mixture was stirred once every
hour to prevent the bacterial agents from hardening. Finally, weight (m) and biomass (b) of bacterial
agents were determined and the survival rates (S) after bacterial agent preparation were calculated.

Survival rate (%) S =
m× b
C×V

× 100%

where C is concentration of the bacterial suspensions (CFU/mL); V is the volume of the bacterial
suspensions (mL); m is weight of the bacterial agents after cold-air drying (g); b is biomass of bacterial
agents after cold-air drying (CFU/g).

For spray drying, the bacterial suspensions were centrifuged at 5000× g for 5 min and resuspended
with sterilized water. Then the skimmed milk powder with 0.2 times bacterial suspension weight was
added into the pre-prepared bacterial suspensions. Concentrations of these bacterial skimmed milk
suspensions were determined by spread plate method. After being mixed uniformly, the suspensions
were dried at a constant air inlet temperature of 140 ◦C and air outlet temperature of 60 ◦C on spray
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dryer YC-015 (Yacheng Instrument & Equipment co. LTD, Shanghai, China). Finally, biomass (b) of the
bacterial agents were determined and the survival rates (S) after spray drying were calculated.

Survival rate (%) S =
b×m
B×V

× 100%

where b is biomass of the bacterial agents after spraydrying (CFU/g); m is the total weight of the
spray-dried powder (g); B is biomass of bacterial skimmed milk suspension (CFU/mL). V is total
volume of the bacterial skimmed milk suspension used for spray drying (mL).

2.5. RNA Extraction, RNA-Seq, Transcriptomic Data Processing, and RNA-Seq Data Accession Number

RNA extraction, RNA-seq, and transcriptomic data processing were accomplished by BGI
Technology Services Co., LTD (Shenzhen, China).

The bacterial cells were collected through centrifugation at 5000× g and 4 ◦C for 10 min. The cell
precipitates were flash-frozen in liquid nitrogen and then treated with trizol at −80 ◦C. Total RNA was
isolated by using TRIzol reagent (Invitrogen, Waltham, MA, USA) and purified by using the Rio-Zero
rRNA Removal Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions.
Degradation and contamination of the as-prepared RNA was monitored on 1.5% agarose gels.
Then, RNA concentration was measured with Qubit® RNA Assay Kit in Qubit® 3.0 Flurometer
(Life Technologies, Carlsbad, CA, USA). RNA integrity was assessed with the RNA Nano 6000 Assay
Kit in Agilent 2100 Bioanalyzer system (Agilent Technologies, Santa Clara, CA, USA) (RIN > 9.0).
Every experimental group set three independent biological replicates in this study.

A total amount of 3 µg RNA per sample was used as input material for the RNA sample
preparations. The RNA samples were added into Fragmentation Buffer to conduct PCR for thermal
fragmentation into 130–160 nt. First-strand cDNA was generated by First Strand Mix, and second-strand
cDNA was generated by Second Strand Mix. Afterwards, the purified fragmented cDNA was combined
with End Repair Mix and incubated with A-Tailing Mix for adding “A” to the end of the cDNA.
Then, the resultant Adenylate 3’Ends DNA was incubated with RNA Index Adapter and Ligation Mix
to be linked to adapter. PCR amplification was performed with PCR Mix to enrich the cDNA fragments,
and then the PCR products were purified with Ampure XP Beads (AGENCOURT, Beverly, MA,
USA). Library was validated with the Technologies 2100 bioanalyzer (Agilent, Santa Clara, CA, USA)
for quality control. The double-stranded PCR products were heat denatured and circularized by the
splint oligo sequence. The single-stranded circle DNA (ssCir DNA) was formatted as the final library.
The final library was amplified with phi29 (Thermo Fisher Scientific, Waltham, MA, USA) to make
DNA nanoball (DNB), and in this final library, every molecule had more than 300 copies. DNBs were
loaded into the patterned nanoarray, and single-end 50-base reads were generated on BGISEQ500
platform (BGI, Shenzhen, China).

The sequencing raw data were filtered by SOAPnuke v1.5.2 [31] to remove the reads with low
quality, reads with adapter pollution, and reads with unknown base (N) (content greater than 10%),
and then these processed data were saved as FASTQ format. All the clean data were aligned to
the genome of L. casei Zhang (firmicutes) (GenBank Accession No. NC_014334.2 and NC_011352.1).
Then, these clean data were aligned to the reference gene sequence by Bowtie2 [32], and then the
expression levels of genes and transcripts were calculated by RSEM [33]. Differential expression (DE)
analysis was performed by using the DEseq2 (Fold Change >= 2 and Adjusted p-value <= 0.001) [34].
The genes with p-value < 0.001 (adjusted in the Benjamini and Hochberg’s approach) and fold change
>2.0 were defined as differentially expressed. The differentially expressed genes (DEGs) were classified
and enriched by Gene Ontology (GO) and KEGG PATHWAY annotation.

RNA-seq data were deposited in Sequence Read Archive under the accession numbers
SRR12378022 (SSF-SW-1), SRR12378030 (SSF-SW-2), SRR12378029 (SSF-SW-3), SRR12378025
(LSF-MRS-1), SRR12378024 (LSF-MRS-2), and SRR12378023 (LSF-MRS-3).
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2.6. Determination of Organic Acids

For L. casei Zhang fermented with LSF-MRS medium, samples (2.0 mL) were centrifuged at 5000× g
for 10 min to obtain cell-free cultured supernatants. The supernatants were diluted 10 times and
then filtered through disposable syringe filters (Millipore, 0.22 µm). For L. casei Zhang fermented
with SSF-SW medium, samples (10.0 g) were added into 90.0 mL of 5 mM H2SO4 solution and then
mixed in shaker at 180 rpm for 20 min. The mixture was centrifuged at 5000× g for 10 min to obtain
cell-free cultured supernatants. The supernatants were also diluted 10 times and then filtered through
disposable syringe filters (Millipore, 0.22 µm). Finally, 20 µL of the obtained solutions were analyzed
by HPLC (LC-20A, Shimadzu, Japan) on a Bio-Rad HPX-87H ion-exclusion column (300 × 7.8 mm).
Organic acids (lactate and acetate) were detected by a differential refraction detector and mobile phase
was 5 mM H2SO4 that was pumped through the column at a flow rate of 0.6 mL/min at column
temperature 40 ◦C. The peak area was used to calculate the concentrations of lactate and acetate
according to corresponding standard curves.

2.7. Statistical Analysis

All presented data were the average of at least three biological replicates. Statistical analysis was
carried out using SPSS 19.0 software. The statistically significant difference was determined using the
Student’s t-test. p-value < 0.05 was considered as statistically significant.

3. Results and Discussions

3.1. Total Biomasses of L. casei Zhang after Fermentation with SSF-SW and LSF-MRS Media and Survival
Rates of L. casei Zhang after Cold-Air Drying and Spray Drying

The effects of the SSF-SW and LSF-MRS fermentations on the total biomass of L. casei Zhang and
survival rates of L. casei Zhang after cold-air drying and spray drying were investigated (Figure 1).
The total biomass of L. casei Zhang fermented with LSF-MRS medium was found to be 6.01 × 1011 CFU,
which was significantly higher than (2.24 times) that fermented with SSF-SW medium (2.68 × 1011 CFU)
(p-value < 0.05) (Figure 1A). The differences in total biomass may be due to the lower level of nutrient
substance in SSF-SW medium than in LSF-MRS medium. Surprisingly, in the bacterial agents after
cold-air drying, the survival rate of L. casei Zhang fermented with LSF-MRS medium (22.13 ± 4.02%)
was significantly lower than that fermented with SSF-SW medium (32.93 ± 6.25%) (p-value < 0.05)
(Figure 1B). Similarly, in the bacterial agents after spray drying, the survival rate of L. casei Zhang
fermented with LSF-MRS medium (0.12 ± 0.01%) was significantly lower than that fermented with
SSF-SW medium (0.21 ± 0.05%) (p-value < 0.05) (Figure 1B). In order to examine the survival rate
difference, the NaCl-, H2O2-, and ethanol- stress tolerances of L. casei Zhang fermented respectively
with SSF-SW medium and LSF-MRS medium were determined.

3.2. Effects of NaCl, H2O2, and Ethanol Stresses on the Survival Rates of L. casei Zhang after Fermentation
with SSF-SW and LSF-MRS Media

To test the sensitivity of L. casei Zhang after different fermentations to NaCl, H2O2, and ethanol,
the survival rates of bacterial suspensions after fermentation with SSF-SW and LSF-MRS media were
detected (Figure 2). Under the treatments respectively with 15.0%, 20.0%, and saturated NaCl (wt %),
the survival rates of L. casei Zhang after fermentation with SSF-SW medium were 99.06 ± 2.89%,
96.55 ± 1.46%, and 69.58 ± 4.94%, whereas those of L. casei Zhang after fermentation with LSF-MRS
medium were 99.64 ± 2.83%, 93.17 ± 3.06%, and 14.89 ± 7.14%, respectively. Under the treatment with
saturated NaCl, the survival rate of L. casei Zhang after the fermentation with SSF-SW medium was
significantly higher (4.67 times) than that after the fermentation with LSF-MRS medium (p-value < 0.05)
(Figure 2A). Under the treatments respectively with 0.40%, 0.60%, 0.80% and 1.00% of H2O2, the survival
rates of L. casei Zhang after fermentation with SSF-SW medium were 70.28 ± 16.76%, 44.57 ± 13.98%,
11.42 ± 4.86%, and 1.82 ± 0.97%, whereas those after fermentation with LSF-MRS medium were
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52.20 ± 10.33%, 26.36 ± 16.54%, 2.17 ± 1.17%, and 0.13 ± 0.01%, respectively. Under the treatments with
0.80% and 1.00% of H2O2 (wt %), the survival rates of L. casei Zhang after fermentation with SSF-SW
medium were significantly higher (5.26 times and 14.00 times) than those after fermentation with
LSF-MRS medium (p-value < 0.05) (Figure 2B). Under the treatments with 10.0%, 20.0%, and 30.0%
of ethanol (vol %), the survival rates of L. casei Zhang after fermentation with SSF-SW medium were
90.99 ± 5.08%, 90.22 ± 6.08%, and 54.56 ± 15.67%, whereas those after fermentation with LSF-MRS
medium were 69.55 ± 11.89%, 60.37 ± 10.16%, and 2.14 ± 1.50%, respectively. Under the treatments
with 10.0%, 20.0%, and 30.0% of ethanol (vol %), the survival rates of L. casei Zhang after fermentation
with SSF-SW medium were significantly higher (1.31 times, 1.49 times, and 25.50 times) than those
after fermentation with LSF-MRS medium (p-value < 0.05) (Figure 2C). Taken together, NaCl-, H2O2-,
and ethanol- stress tolerances of L. casei Zhang after fermentation with SSF-SW medium were higher
than those after fermentation with LSF-MRS medium.
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Figure 2. Effects of NaCl (A), H2O2 (B), and ethanol (C) on survival rates of L. casei Zhang
after fermentation with solid-state fermentation (in SSF-SW medium) and liquid-state fermentation
(in LSF-MRS medium). * Statistically significant differences were determined using Student’s t-test.

3.3. Overview of L. casei Zhang Transcriptomic Response to Fermentation with SSF-SW and LSF-MRS Media

The BGISEQ-500 platform was used to investigate the transcriptome level changes of L. casei Zhang
after fermentation with solid-state fermentation (in SSF-SW medium) and liquid-state fermentations
(in LSF-MRS media). The numbers of clean reads before and after trimming are shown in Table
S1. The information on reads mapping to the reference genome and genes are shown in Table S2.
Pearson correlation analysis was performed to investigate correlation of gene expression levels between
the independent biological replicates (Figure S1). In addition, principal component analysis (PCA)
showed that gene expression levels exhibited high similarities among three independent biological
replicates within a certain group, whereas great differences were observed between the different
groups (Figure S2). As shown in Figure 3, differential expression analysis through volcano plot (fold
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change > 2.0, p-value < 0.001) showed that a total of 1106 differentially expressed genes (DEGs) were
identified, which consisted of 340 up-regulated genes and 766 down-regulated genes (SSF-SW vs.
LSF-MRS). Those genes with different putative functions were classified into different categories by
the gene ontology (GO) (Figure S3) and KEGG Pathway analyses (Figure S4). The DEGs involved
in various biological processes such as carbohydrate transport, carbohydrate metabolism (including
glycolysis/gluconeogenesis, pentose phosphate pathway, inositol phosphate metabolism, and pyruvate
metabolism), and fatty acid metabolism, and the DEGs related to NaCl-, H2O2-, and ethanol- stress
tolerances and some hypothetical proteins are shown in Table S3 and Figure 4.
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represents no change; green color indicates down-regulation at mRNA level.
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3.4. Enhancement of Carbohydrate Transport in L. casei Zhang Fermented with SSF-SW Medium

Two genes (malX and crr) belonging to maltose/glucose-specific phosphotransferase system (PTS) in
L. casei Zhang fermented with SSF-SW medium were respectively 59.23-fold and 6.39-fold up-regulated,
relative to these two genes in L. casei Zhang fermented with LSF-MRS medium. Maltose/glucose-specific
PTS was responsible for transforming the extracellular D-glucose and maltose into the intracellular
α-D-Glu-6-P and maltose-6-P. Meanwhile, gene glvA encoding maltose-6’-phosphate glucosidase that
could further catalyze maltose-6-P to form α-D-Glu-6-P and D-glucose was 25.75-fold up-regulated.
Ten genes (4 manX, 3 manY, and 3 manZ) involved in mannose-specific PTS responsible for transforming
the extracellular D-mannose into the intracellular mannose-6-P were 2.38-fold to 198.44-fold
up-regulated. Mannose-6-P can be further catalyzed by the manA gene encoding mannose-6-phosphate
isomerase to form Fru-6-P. Three genes (srlA, srlB, and srlE) involved in glucitol/sorbitol-specific
PTS responsible for transforming the extracellular D-sorbitol into the intracellular sorbitol-6-P
were 9.40-fold, 13.08-fold, and 16.21-fold up-regulated, respectively. Two srlD genes encoding
sorbitol-6-phosphate 2-dehydrogenase that could further catalyze sorbitol-6-P to form Fru-6-P were
4.61-fold and 9.94-fold up-regulated, respectively. Four genes (2 fruA and 2 fruB) involved in
fructose-specific PTS which can transform the extracellular D-fructose into intracellular fructose-1-P
exhibited 8.41-fold to 12.96-fold up-regulation. Two fruK genes encoding 1-phosphofructokinase
that could further catalyze fructose-1-P to form FBP displayed 2.26- and 5.19-fold up-regulation.
Twelve genes (4 celA, 4 celB, and 4 celC) involved in cellobiose-specific PTS which could transform the
extracellular cellobiose into the intracellular cellobiose-P exhibited 2.24- to 6.00-fold up-regulation.
Four bglA genes encoding 6-phospho-beta-glucosidase responsible for further catalyzing cellobiose-P to
form α-D-Glu-6-P and α-D-Glucose were up-regulated 2.60- to 102.00-fold. One scrA gene involved in
sucrose-specific PTS capable of transforming the extracellular sucrose into the intracellular sucrose-6-P
was 3.72-fold up-regulated. The sacA gene could encode beta-fructofuranosidase that can further
catalyze sucrose-6-P to form α-D-Glu-6-P and D-fructose. Furthermore, D-fructose could form
D-fructose-1-P and further form FBP through dual phosphorylation. Three mtlA genes involved
in mannitol-specific PTS capable of transforming the extracellular mannitol into the intracellular
mannitol-1-P exhibited 2.20- to 3.40-fold up-regulation. The mtlD encoding mannitol-1-phosphate
5-dehydrogenase which can further catalyze mannitol-1-P to form β-D-Glu-6-P displayed 2.01-fold
up-regulation. Two bglF genes involved in beta-glucoside-specific PTS responsible for transforming
the extracellular arbutin (β-glucoside) into the intracellular arbutin-6-P were 31.95-fold and 240.76-fold
up-regulated, respectively. Four bglA genes encoding 6-phospho-beta-glucosidase which could further
catalyze arbutin-6-P to form β-D-Glu-6-P were 2.60- to 102.00-fold up-regulated. Therefore, in L. casei
Zhang fermented with SSF-SW medium, the transport of D-fructose, sucrose, D-mannose, D-sorbitol,
D-glucose, maltose, cellobiose, arbutin, and D-mannitol into glycolysis, gluconeogenesis, and pentose
phosphate pathways were promoted, which conferred this strain a competitive survival advantage.

One citrate transporter gene in L. casei Zhang fermented with SSF-SW medium was 608.04-fold
up-regulated, compared with that fermented with LSF-MRS medium. In addition, In L. casei Zhang
fermented with SSF-SW medium, five genes (citC, citD, citE, citF, and citX) encoding a citrate lyase and
involved in two-component system (citrate fermentation) that can catalyze citrate to form oxaloacetate
and acetate [35] exhibited 213.04-, 167.88-, 136.28-, 101.75-, and 79.40-fold up-regulation, respectively.

3.5. Enhancement of Gluconeogenesis and Suppression of Glycolysis in L. casei Zhang after Fermentation with
SSF-SW Medium

Two fbaA genes encoding fructose-bisphosphate aldolase which could catalyze the reversible
reaction between FBP and DAHP or GAP, and one fbp3 gene encoding fructose-1,6-bisphosphatase
which could catalyze FBP to form Fru-6-P exhibited 2.76- to 5.01-fold up-regulation. However, gene tpiA
encoding triosephosphate isomerase which could catalyze the reversible reaction between DAHP
with GAP, gene gapA encoding glyceraldehyde 3-phosphate dehydrogenase which could catalyze the
reversible reaction between GAP and 1,3-PG, gene pgk encoding phosphoglycerate kinase capable
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of catalyzing the reversible reaction between 1,3-PG and 3-PG, and two eno genes encoding enolase
responsible for catalyzing the reversible reaction between 2-PG and PEP were found to be 2.07-fold
to 5.74-fold down-regulated. Therefore, glycolysis was suppressed, but partial gluconeogenesis was
enhanced in L. casei Zhang cultured with SSF-SW medium, compared with L. casei Zhang cultured
with LSF-MRS medium. As a result, accumulation of α-D-Glu-6-P and Fru-6-P enhanced pentose
phosphate pathway to produce more NADPH. This metabolic regulation could be a response to a
starvation condition. Like L. casei differentially regulated enzymes relate to glycolysis under lactose
starvation [36], L. casei Zhang enhanced the transport of a variety of carbohydrates, expanded the
carbon source spectrum, and enhanced gluconeogenesis to make the use of various substances in cells
more flexible to deal with starvation stress.

3.6. Enhancement of Pentose Phosphate Pathway in L. casei Zhang Cultured with SSF-SW Medium

Gene gnd encoding 6-phosphogluconate dehydrogenase capable of catalyzing 6-phospho-D-
gluconate to form D-ribulose 5-P and further produce NADPH, gene hxlB encoding 6-phospho-3-
hexuloisomerase, gene hxlA encoding 6-phosphoarabinohexulose which could convert Fru-6-P into
6-phosphoarabinohexulose and further into D-Ribulose 5-P, gene rpe encoding ribulose-phosphate
3-epimerase capable of catalyzing the reversible reaction between D-ribulose 5-P and D-xylulose 5-P,
and gene prsA encoding ribose-phosphate pyrophosphokinase responsible for catalyzing the reversible
reaction between D-Ribose 5-P and PRPP were 2.38- to 5.11-fold up-regulated. Therefore, relative to that in
L. casei Zhang cultured with LSF-MRS medium, pentose phosphate pathway in L. casei Zhang cultured
with SSF-SW medium was enhanced to produce more NADPH which can further provide reducing power
for stress response [37,38].

3.7. Enhancement of Inositol Phosphate Metabolism and Suppression of Fatty Acid Synthesis in L. casei Zhang
Cultured with SSF-SW Medium

Eight genes (mmsA, iolB, iolC, iolD, two iolG, iolE, and iolJ) related to inositol phosphate
metabolism were 3.03- to 9.91-fold up-regulated, which could convert (+)-inositol and myo-inositol
into acetyl-CoA and DAHP. Meanwhile, in L. casei Zhang cultured with SSF-SW medium, fatty acid
metabolism-related gene accB encoding acetyl-CoA carboxylase biotin carboxyl carrier protein which
could catalyze acetyl-CoA to form malonyl-CoA was 3.06-fold down-regulated. In addition, fatty acid
biosynthesis-related seven genes (fabF, fabG, fabD, fabK, fabH, and two fabZ) were also found to be
down-regulated (2.19- to 4.90-fold). Taken together, inositol phosphate metabolism was enhanced,
but fatty acid synthesis was suppressed so that acetyl-CoA was accumulated and the further relating
metabolism based on acetyl-CoA might be stimulated in L. casei Zhang cultured with SSF-SW medium.

3.8. Enhancement of Pyruvate Metabolism in L. casei Zhang Cultured with SSF-SW Medium

Two genes (oadA and oadB) encoding the subunits of oxaloacetate decarboxylase were 58.50-fold,
and 345.19-fold up-regulated, respectively, and this oxaloacetate decarboxylase could convert
oxaloacetate into pyruvate, thus producing ATP. However, gene pyc encoding pyruvate carboxylase
which could convert pyruvate into oxaloacetate and consume ATP was only 2.03-fold up-regulated.
Meanwhile, gene pckA encoding phosphoenolpyruvate carboxykinase which could catalyze the
reversible reaction between oxaloacetate and PEP was 2.08-fold up-regulated. The PEP could be further
converted into pyruvate by gene pyk encoding pyruvate kinase to form ATP. Correspondingly, gene
ppdK encoding pyruvate orthophosphate dikinase was 3.10-fold up-regulated, and this enzyme could
convert pyruvate into PEP and consume ATP. As a result, in L. casei Zhang cultured with SSF-SW
medium, pyruvate formation from oxaloacetate was enhanced.

Genes ldh and ldhA were 5.59-fold and 3.02-fold up-regulated, and these two genes were responsible
for encoding L-lactate dehydrogenase and D-lactate dehydrogenase to catalyze the conversion from
pyruvate into lactate. Meanwhile, genes maeA, fumC, and frdA were respectively 0-fold, 2.23-fold,
and 2.08-fold up-regulated, and these three genes were responsible for encoding malate oxidoreductase,
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fumarate hydratase, and fumarate reductase flavoprotein subunit to convert pyruvate into (S)-malate,
fumarate, and succinate. Three pdhBCD genes were 2.02-fold, 2.26-fold, and 2.54-fold up-regulated,
respectively, and these three pdhBCD genes encoded the subunits of pyruvate dehydrogenase to convert
pyruvate into acetyl-CoA. Meanwhile, gene pflD encoding formate C-acetyltransferase was 38.86-fold
up-regulated, and this formate C-acetyltransferase catalyzed the reversible reaction between pyruvate
and acetyl-CoA. Overall, the generation of lactate, succinate, and acetyl-CoA from pyruvate in L. casei
Zhang after fermentation with SSF-SW medium was enhanced. Furthermore, gene adhE encoding
acetaldehyde dehydrogenase/alcohol dehydrogenase and gene adh encoding alcohol dehydrogenase
were 2.27-fold and 2.95-fold up-regulated, respectively, and these gene-encoded enzymes catalyzed the
conversion from acetyl-CoA into acetaldehyde, and further into ethanol.

Gene poxL encoding pyruvate oxidase and gene pta encoding phosphate acetyltransferase were
respectively 6.74-fold and 5.63-fold up-regulated, and these two enzymes catalyzed the conversion
from pyruvate and acetyl-CoA into acetyl-P. Meanwhile, gene ackA encoding acetate kinase was
4.16-fold up-regulated, and acetate kinase converted acetyl-P into acetate, further producing ATP.
Since glycolysis was suppressed in L. casei Zhang fermented with SSF-SW medium, ATP compensatory
mechanism probably lay in conversion from oxaloacetate into pyruvate and conversion from acetyl-P
into acetate, which was different with ATP formation from glycolysis in Lactobacillus plantarum CAUH2
in response to hydrogen peroxide stress [37].

3.9. Up-Regulation of Stress-Tolerance genes in L. casei Zhang Cultured with SSF-SW Medium

Relative to the genes in L. casei Zhang cultured with LSF-MRS medium, in L. casei Zhang cultured
with SSF-SW medium, two genes which encoded aquaporins (GlpF) and aldo/keto reductase related to
NaCl stress-tolerance were 30.02-fold and 2.34-fold up-regulated, respectively. As the transmembrane
channel proteins, aquaporins exhibited 10- to 100-fold up-regulation in L. plantarum, and aquaporins
were responsible for the transfer of water molecule, glycerol, and lactic acid through the cell membrane
to maintain cellular osmotic pressure in bacteria and plant [39,40]. In addition, previous study
demonstrated that the aldo/keto reductase-1 (AKR1) protected cellular enzymes from salt stress by
detoxifying reactive cytotoxic compounds [41].

The H2O2 stress tolerance-related genes which encoded iron homeostasis proteins, nitroreductase,
superoxide dismutase, transcriptional regulator Spx, MarR family transcriptional regulator, and
trehalose operon repressor TreR were found to be 2.27-fold to 94.03-fold up-regulated in L. casei
Zhang cultured with SSF-SW medium, relative to those cultured with LSF-MRS medium. L. plantarum
CAUH2 [37] and Giardia intestinalis [42] made response to oxidative stress by enhancing expression of
NADH peroxidase, thiol peroxidase, thioredoxin, glutathione peroxidase, and glutathione reductase.
However, relative to those cultured with LSF-MRS medium, only two genes encoding nitroreductase
(one of O2-consuming nitric oxide detoxification enzymes) and superoxide dismutase (SOD) (one of
reactive oxygen species (ROS) scavenging enzymes) were found to be up-regulated by 4.00 fold and 3.72
fold in L. casei Zhang cultured with SSF-SW medium. In the cytoplasm, iron homeostasis can maintain
intracellular “free” ferrous irons at a low concentration to limit Fenton reaction. In low-G + C-content
gram-positive bacterium, the transcriptional regulator Spx is a major and highly conserved oxidative
stress regulator. Moreover, MarR family transcriptional regulator can exert a global regulatory role
on oxidative stress response by cysteine oxidation. The up-regulation of these three genes in L. casei
Zhang cultured with SSF-SW medium was similar to that in L. plantarum CAUH2 in response to
H2O2 stress [37]. In Streptococcus mutans, trehalose operon repressor TreR, which was up-regulated in
L. casei Zhang cultured with SSF-SW medium, not only acted as the local regulator to govern trehalose
utilization, but was also related to response to H2O2 stress [43].

Relative to the genes in L. casei Zhang cultured with LSF-MRS medium, in L. casei Zhang cultured
with SSF-SW medium, seven genes encoding alcohol dehydrogenase (Adh), cold-shock protein,
TetR/AcrR family transcriptional regulator, and DeoR/GlpR transcriptional regulator related to ethanol
stress-tolerance were 2.12-fold to 19.93-fold up-regulated, respectively. The high up-regulation of
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alcohol dehydrogenases catalyzed the reversible reaction between ethanol and acetaldehyde, which
might play important roles in detoxifying ethanol. Meanwhile, TetR/AcrR family regulator AcrR in
L. plantarum NF92 was reported to participate in sorbitol or mannitol utilization by up-regulating the
aldehyde-alcohol dehydrogenase encoding gene adhE [44]. In L. plantarum, the cold shock proteins
acting as chaperons protected peptide synthesis from cold stress, and they were adapted to ethanol
stress by down-regulating the transcriptional factor ctsR [45].

In comparison with L. casei Zhang cultured with LSF-MRS medium, in L. casei Zhang cultured
with SSF-SW medium, the base excision repair system and homologous recombination were activated
to relieve the DNA damage caused by adverse stress, which was consistent with the response of
L. plantarum CAUH2 to adverse stress [37]. In base excision repair system, the DNA/RNA non-specific
endonuclease and the uracil-DNA glycosylase were 2.94- and 2.10-fold up-regulated. In addition,
for homologous recombination system, the DNA polymerase III subunit alpha DnaE and DNA repair
protein RecF, RadC, and RadA were 2.11- to 4.22-fold up-regulated.

In G. intestinalis, some hypothetical proteins with Trx-like domains were significantly up-/down-
regulated in response to oxidative stress, indicating that hypothetical proteins might play important
roles in response to stress [42]. Compared to those cultured with LSF-MRS medium, in L. casei
Zhang cultured with SSF-SW medium, the expression of six hypothetical proteins (LCAZH_0096,
LCAZH_0137, LCAZH_1915, LCAZH_1916, LCAZH_2327, and LCAZH_2630) were up-regulated by
10.95 to 76.21 fold, which might be associated with the regulation of stress-tolerance, and the new
functional proteins remains to be further explored in the future.

3.10. The Contents of Lactate and Acetate of L. casei Zhang after Fermentation with SSF-SW and LSF-MRS Media

For lactate, the total yield of L. casei Zhang fermented with LSF-MRS medium was found to be
5.27 × 10−12

± 4.55 × 10−14 g/CFU, which was significantly higher than that fermented with SSF-SW
medium (2.40× 10−12

± 1.97× 10−13 g/CFU) (p-value < 0.05). Similarly, for acetate, the total yield of L. casei
Zhang fermented with LSF-MRS medium was found to be 1.76 × 10−12

± 5.41 × 10−14 g/CFU, which was
significantly higher than that fermented with SSF-SW medium (6.42 × 10−13

± 1.82 × 10−13 g/CFU)
(p-value < 0.05) (Figure 5). The productions of lactate and acetate of L. casei Zhang fermented with
SSF-SW medium were less than those of cells fermented with LSF-MRS medium, which seems to be
the opposite of the transcriptome result. This may be because the SSF-SW medium is composed of
bran and soybean meal, which is more difficult to use, so there may be fewer raw materials for acid
production than LSF-MRS medium.
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3.11. Total Biomasses of L. casei Zhang after Fermentation with SSF-SW Medium Supplemented with Different
Carbon Sources

As mentioned above, the stress-tolerance of L. casei Zhang after fermentation with SSF-SW medium
was obviously higher than that after fermentation with LSF-MRS medium. However, the biomass
of L. casei Zhang after fermentation with LSF-MRS medium was 2.24 times as much as that after
fermentation with SSF-SW medium. In addition, the nutrient content of SSF-SW medium was indeed
lower than that of LSF-MRS medium. Interestingly, compared to that after fermentation with LSF-MRS
medium, the carbohydrate transport of L. casei Zhang after fermentation with SSF-SW medium was
greatly enhanced. Therefore, we speculated that the supplementation with carbon source whose
transport-related genes were up-regulated into medium would enhance the total biomasses of L. casei
Zhang after fermentation with SSF-SW medium. As expected, compared to the blank control, after
supplementation with 1.0% (wt %) of mannose, cellobiose, glucose, citrate, and fructose, the total
biomass of L. casei Zhang after fermentation with SSF-SW medium was significantly increased by
40.08%, 45.75%, 37.65%, 54.25%, and 52.63%, respectively (Figure 6). Surprisingly, compared to the
blank control, after supplementation with 1.0% (wt %) of sorbitol, maltose, and sucrose, the total
biomass of L. casei Zhang after fermentation with SSF-SW medium exhibited no significant difference,
which might be due to the unknown regulatory mechanisms. The maximum total biomass of L. casei
Zhang fermented with SSF-SW medium (3.81 × 1011 CFU) was observed after supplementation with
1.0% (wt %) of citrate, which was still lower than that of L. casei Zhang fermented with LSF-MRS
medium (6.01 × 1011 CFU). The medium composition and saccharides supplementation amount remain
to be further explored in future research.
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4. Conclusions

The NaCl, H2O2, and ethanol stress tolerance and the bacterial survival rate after bacterial
agent preparation of L. casei Zhang were significantly improved after fermentation with SSF-SW
medium, relative to fermentation with LSF-MRS medium. However, the biomass of L. casei Zhang
fermented with SSF-SW medium was lower than that when fermented with LSF-MRS medium.
Fortunately, mannose, cellobiose, glucose, citrate, and fructose were found to promote the total
biomass of L. casei Zhang fermented with SSF-SW medium. The global transcriptomic analysis
revealed a total of 1106 differentially expressed genes. By comparing LSF-MRS fermentation and
SSF-SW fermentation, we found the changes in the following biological processes. Carbohydrate
transport and gluconeogenesis were enhanced, and pentose phosphate pathway was up-regulated
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to produce more NADPH. Inositol phosphate metabolism was enhanced to produce acetyl-CoA and
DAHP, citrate transport and fermentation was extremely up-regulated to produce more pyruvate and
ATP, and pyruvate metabolism was widely up-regulated to generate more lactate, acetate, ethanol,
and succinate. However, glycolysis was suppressed, and fatty acid biosynthesis was also suppressed to
decrease the utilization of acetyl-CoA. Some stress tolerance-related genes which encoded aquaporins
(GlpF), superoxide dismutase (SOD), nitroreductase, four iron homeostasis-related proteins, trehalose
operon repressor TreR, alcohol dehydrogenase (ADH), two TetR/AcrR family transcriptional regulators,
and six hypothetical proteins, were found to be up-regulated in L. casei Zhang after fermentation
with SSF-SW medium. Our findings provide novel insight into the differences in L. casei Zhang from
solid-state and liquid-state fermentations and prove that the culture medium can enhance the resistance
of food starter to certain environmental conditions. This study will be useful for improvement
of bacterial stress tolerance and bacterial agent biomass in fermented food and feeding industry.
In addition, future works will evaluate the resistance of lactic acid bacteria to acid, heat, and antibiotic
stress after solid-state fermentation, and a deeper investigation of the metabolites produced after
solid-state fermentation by L. casei Zhang is necessary.
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medium) by KEGG pathway enrichment, Table S1: The number of reads before and after the trimming step;
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