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Background. Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major

pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high

concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of

pneumolysin appear to be calcium dependent.

Methods. Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various

concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate

dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by

conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices.

Results. The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased

membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In

acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to

pathophysiologically relevant nonlytic concentrations of pneumolysin.

Conclusions. Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to

increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary

importance for the course of pneumococcal meningitis.

Streptococcus pneumoniae (pneumococcus) is a common

pathogen that causes life-threatening diseases in hu-

mans, including pneumonia and sepsis. This microor-

ganism causes the most common form of bacterial

meningitis and is associated with high lethality and

disability. Disease rates are particularly high in young

children, elderly people, and immunosuppressed patients.

Only 30% of infected patients overcome the disease, and

30% of these survivors are affected by long-term sequelae,

including mental retardation, learning impairment, and

focal neurological deficits (eg, hearing loss) [1].

A major virulence factor of S. pneumoniae is the

cholesterol-dependent cytolysin, pneumolysin (PLY),

which is capable of producing lytic pores when its

concentration is high and apoptosis without acute lysis

at lower concentrations [2]. We have demonstrated that

sublytic concentrations of PLY can modify the cellular

cytoskeleton, leading to increased microtubule stabili-

zation and actin remodeling [3, 4]. Evidence exists that

the presence of PLY aggravates the course of pneumo-

coccal pneumonia andmeningitis [5–7]. In S. pneumoniae

meningitis, the concentration of PLY in the cerebrospi-

nal fluid (CSF) of patients never exceeds 0.2 lg/mL [8].

However, histological analysis of hippocampal slice

cultures treated with PLY at concentrations as high
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as 0.5 lg/mL indicates a lack of acute lytic damage and only

delayed damage in a small fraction of dentate gyrus neurons,

consistent with the lack of extensive cell death in animal

models of bacterial meningitis [7, 9]. Thus, the acute lysis one

notices in cell culture seems to be strongly ameliorated in tissues

where equivalent concentrations of PLY produce clear func-

tional but less obvious lytic effects.

PLY consists of 4 domains arranged in an asymmetric manner.

The pore formation model describes PLY monomers binding to

membrane cholesterol with their C-terminal domain 4 via

a tryptophan (Trp)-rich motif to form a prepore (an annular

cluster of 30–50 monomers). PLY penetrates through the

membrane following the unfolding of the molecule by inserting

domain 3 into the lipid bilayer [10]. Thus, a barrel-structured

pore with a size of �260 Å is formed, causing cell lysis. Ex-

periments with artificial membranes demonstrate the existence

of not only large, presumably lytic, pores, but also smaller pores

with predominant cation selectivity [11, 12]. Divalent cations,

such as calcium (Ca), seem to play a gating role in this smaller

pore population [11]. Furthermore, Ca influx through pneu-

molysin pores has been demonstrated to aggravate inflammatory

responses and enhance delayed cell apoptosis [2, 9, 13]. In co-

chlear cells, however, high concentrations of Ca (10 mM) and

zinc diminished toxin binding to the membrane [14]. There is

little information about the changes in brain Ca concentrations

in the interstitial space during the course of various neurological

diseases. In epilepsy, however, following chronic neuronal de-

polarization, extracellular Ca decreases [15]. Because seizures

often accompany the course of meningitis [1], modulation of

extracellular Ca concentrations should be considered.

In this study, we analyzed the role of extracellular Ca con-

centration on the acute lytic toxicity of PLY, demonstrating that

decreased Ca concentration strongly increases the lytic capacity

of toxins, both in cell culture and tissue modeling systems.

METHODS

Pneumolysin Preparation
Wild-type PLY and N-terminally green fluorescent protein

(GFP)–tagged PLY (GFP-PLY) were expressed in Escherichia coli

BL-21 cells (Stratagene, Cambridge, UK) and purified by metal

affinity chromatography as described previously [16]. The pu-

rified PLY was tested for the presence of contaminating gram-

negative LPS using the colorimetric limulus amebocyte lysate

(LAL) assay (KQCL-BioWhittaker, Lonza, Basel, Switzerland).

All purified proteins had ,0.6 endotoxin unit (EU)/lg protein.

Cultures, Vital Staining, and Live Imaging
Primary astrocytes were prepared from the brains of newborn

C57BL/6 mice in a mixed culture as previously reported [17],

grown in Dulbecco’s modified Eagle’s medium (DMEM; Gibco-

BRL, Invitrogen GmbH, Karlsruhe, Germany) supplemented

with 10% fetal bovine serum (FBS; PAN Biotech GmbH, Ai-

denbach, Germany) and 1% penicillin/streptomycin (GibcoBRL)

in 75-cm2 poly-L-ornithine–coated (Sigma-Aldrich Chemie

GmbH, Schnelldorf, Germany) cell culture flasks (Sarstedt AG

& Co., Nuembrecht, Germany). At days 10–14 after seeding, the

astrocytes were trypsinized and seeded into chamber slides

coated with poly-L-ornithine.

Acute brain slices were prepared from PD 10–14-day-old

C57BL/6 mice by decapitation and vibratome sectioning (Vi-

broslice NVSL, World Precision Instruments, Berlin, Germany)

in artificial cerebrospinal fluid continuously oxygenized with

carbogen gas (95% O2, 5% CO2) at 4�C. The slices were allowed
to adapt in carbogenated Eagle’s basal medium (BME; GibcoBRL)

with 1% penicillin/streptavidin and 1% glucose at 37�C for 1 hour

before being challenged with PLY in 5% CO2-buffered medium

(pH 5 7.3) containing 119 mM NaCl, 26 mM NaHCO3,

1 mM NaH2PO4, 5 mM KCl, 2 mM CaCl2, and 5 mM

glucose. In these acute slices, cell lysis never exceeded 7% within

12 hours.

For live imaging experiments, the cells were incubated in

imaging buffer containing 135 mM NaCl, 2 mM CaCl2, 2.5 mM

MgCl2, 4 mM KCl, and 5 mM Hepes (all from Carl Roth,

Karlsruhe, Germany), at a pH of 7.3 at 37�C, with propidium

iodide in the medium to stain permeabilized cells and Hoechst

33342 to stain the nuclei of all cells (all stains were diluted 1:1000

from 1 mg/mL stocks, Invitrogen). All variations of Ca con-

centration are indicated in the text. Osmolarity was adjusted

using NaCl concentration changes. Both NaCl-adjusted and

nonadjusted buffers were tested, and no difference was observed.

The cells were visualized on anOlympus Cell^M imaging system

at 37�C, using 310 and 320 dry objectives (Olympus

Deutschland GmbH, Hamburg, Germany). In all experiments,

cells and tissues were treated with PLY in serum-free medium.

Lactate Dehydrogenase Test
The lactate dehydrogenase (LDH) detection kit (Roche Diag-

nostics GmbH,Mannheim, Germany) was used according to the

manufacturer’s instructions to assess toxicity and cell lysis.

Planar Lipid Bilayer Experiments
The planar lipid bilayer (PLB) experiments were carried out as

previously described [18]. Membranes were formed from a 1%

(w/v) solution of oxidized cholesterol in n-decane. This artificial

lipid was used instead of diphytanoylphosphatidylcholine (PC)

because it facilitates the insertion of porin and PLY pores into

the lipid bilayer very easily [19]. The toxin (0.5 lg/mL) was

added to the aqueous phase after the membrane had turned

black. The membrane current was measured with a pair of

Ag/AgCl electrodes with salt bridges switched in series by a

voltage source and a highly sensitive current amplifier (Keithley

427, Keithley Electronics, Garland, TX) in a buffer containing

100 mM KCl, 10 mM Hepes, and various concentrations of
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CaCl2 (Carl Roth). The temperature was maintained at 20�C
throughout.

Evaluation and Statistics
Image processing and image analysis were performed using

Image J software (version 1.43 for Windows, National Institute

of Health, Bethesda, MD). Statistical analysis was performed on

GraphPad Prism 4.02 for Windows (GraphPad Software Inc., La

Jolla, CA). Statistical tests included a Mann–Whitney U test

(comparing 2 groups, changing 1 parameter at a time) or 1-way

analysis of variance (ANOVA) with Bonferroni posttest (com-

paring 3 or more groups, changing 1 parameter at a time).

RESULTS AND DISCUSSION

Recently, we demonstrated that sublytic concentrations of PLY

can permeabilize a certain small population of cells in culture.

Permeabilization occurs exponentially and remains constant

within the first 20–30minutes [20]. Here, we challenged primary

mouse glial cells with 0.1 lg/mL PLY in physiological calcium

concentrations (2 mM). Permeabilization increased exponen-

tially, up to�7%, in the presence of toxin compared with�0.5%

for the mock-treated control (Figure 1A). The permeabilization

was evaluated by propidium iodide (PI) chromatin staining of

the cells [4, 20] and by LDH release. When Ca was eliminated

from the extracellular buffer, the toxicity of 0.1 lg/mL PLY

dramatically increased (Figure 1A and B). Furthermore, Ca

depletion conferred lytic capacity to nonlytic concentrations of

PLY (Figure 1B). As the medium also contained Mg, we de-

pleted Mg to test whether the lack of another divalent cation

could have complementary effects. Lack of Mg, in contrast to

Ca depletion, did not influence permeabilization kinetics

(Figure 1C). Thus, Mg was neither antagonistic nor synergistic

with Ca, implying a selective effect of Ca on the kinetics of PLY-

induced permeabilization. The complete lack of Ca had pro-

found effects on the lytic capacity of PLY. In pathophysiological

conditions, however, complete depletion is rarely observed.

Therefore, we analyzed the lytic capacity of PLY in reduced Ca

conditions (1 mM). Again, the lytic capacity of PLY was en-

hanced compared with 2 mM Ca but much less than in Ca-free

buffer (Figure 1D). To clarify the exact mechanism of the in-

creased lytic capacity at low Ca conditions, we analyzed the

binding capacity of the toxin utilizing a recombinant GFP-PLY

protein [16]. The GFP intensity of the cells was measured

10 minutes after challenge with GFP-PLY. Lowering the Ca

concentration from 2 to 1 mM and 1 to 0 mM Ca propor-

tionally increased the binding capacity of PLY (Figure 2A).

The fluorescence increase was not due to an increase in GFP

Figure 1. A, Increased permeabilization (PI staining) with 0.1 lg/mL PLY in Ca-free buffer. B, Increased LDH release by equivalent PLY amounts
in Ca-rich and Ca-free buffer. C, Depletion of Mg from the Ca-free buffer does not alter the toxicity of 0.1 lg/mL PLY, implying that the effects are
Ca specific. D, Reduction of extracellular Ca from 2 to 1 mM enhanced the lytic capacity of 0.1 lg/mL PLY. ** P , .01, Mann–Whitney U test (see
Methods). All values in the figures represent mean 6 SEM, n 5 5; PI, propidium iodide; Mg, magnesium.
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fluorescence when Ca was absent (Figure 2B). Although in-

creased binding could obviously explain our results, we also

studied the role of Ca on the size and conductance of the

membrane pores produced by PLY using artificial lipid bilayers

(Figure 3). Analysis of single-channel conductance in the

presence of 1 or 2 mM Ca or in Ca-free conditions demon-

strated identical populations of ion channels, with peak

conductance in the range of 20–25 nS (Figure 3). Thus, the

change in Ca concentrations did not affect the size or prop-

erties of individual PLY channels when conductance was used

as a marker.

The lack of effect of Ca on ion conductance was surprising

because other studies have indicated the gating sensitivity of

cation-selective PLY pores at higher-than-physiological divalent

ion concentrations (1–5 mM Zn21 and 10–20 mM Ca). This

suggests that pore characteristics may be modulated by divalent

cations [11]. High Ca may also inhibit toxin binding, although

at concentrations of about 10 mM [21]. The molecular mech-

anisms leading to increased toxin binding in our system remain

unclear. One possibility is a direct effect on domain 4 of PLY

(the cholesterol-binding domain), leading to improved choles-

terol interaction. Alternatively, changes in Ca levels could alter

the biophysical properties of the membrane. Reduction of ex-

tracellular Ca is known to increase the membrane fluidity of

cortical neurons [22], and the biggest change of about 40% is

observed when reducing Ca under 1 mM. We observed the

largest increase in the lytic activity of PLY during the transition

from 1 mM to Ca-free conditions (Figures 1A and 1D). In our

artificial lipid bilayer system, we were able to accelerate pore

formation by the addition of a small amount of oxidized cho-

lesterol to the lipids in the bilayer [23] (see Methods). This is

a well-known approach, but the exact molecular steps involved

in improving the pore formation remain unclear. It is known,

however, that the oxidized cholesterol dramatically improves

both the elastic properties of artificial membranes [23] and

membrane fluidity [24]. Thus, it is possible that the enhanced

binding of PLY to membranes at low Ca conditions involves

a similar change in membrane fluidity.

Figure 2. A, Increase of GFP fluorescence intensity of the cells
following exposure to 0.5 lg/mL GFP-PLY (10 minutes after challenge)
as the concentration of the extracellular Ca falls. *P , .05, ***P , .001,
one-way ANOVA with Bonferroni posttest (see Methods). B, Ca depletion
in the imaging buffer does not substantially affect the GFP fluorescence
of PLY-GFP in the cuvette. All values represent mean 6 SEM, n 5 5.

Figure 3. Effect of calcium on pore conductance in planar lipid bilayers.
The panels show histograms (frequency distributions) of the single-
channel conductance of PLY pores measured in Ca-free solution or in the
presence of 1 or 2 mM CaCl2. The membranes were formed from 1%
oxidized cholesterol dissolved in n-decane. The aqueous phase contained
100 mM KCl, 10 mM Hepes, and 0.5 lg/mL PLY. The applied voltage was
20 mV; T 5 20�C. The histograms suggest virtually unchanged
populations of PLY pores with a maximum conductance peak between
20 and 25 nS.
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There is ample evidence that cell damage by PLY is Ca-

dependent [9, 13, 21], which does not contradict our findings.

Still, most of these studies investigate inflammatory markers or

analyze delayed lytic cell death effects rather than delayed cell

damage, as evidenced by events such as apoptosis. It is not

surprising that increased intracellular Ca has a detrimental effect

on cell survival because it is known to be cytotoxic in various

models. Our findings, however, support the concept that apart

from the beneficial effect of blocking Ca influx, maintenance of

normal extracellular calcium should also be considered essential.

Depletion of extracellular Ca has been shown to inhibit en-

docytosis in frog motoneuronal terminals [25]. Thus, one could

speculate that the lack of extracellular Ca would affect mem-

brane component turnover and, thus, membrane adaptation.

Our binding experiments, however, demonstrated a dramatic

increase in membrane binding in Ca-free conditions, which

cannot be explained by inhibition of endocytosis. Ca is known

to affect membrane fluidic properties [26]. Furthermore, Ca

binding can affect the conformation of multiple cellular mole-

cules, many of which may demonstrate Ca-binding properties.

To analyze the innate Ca-binding properties of PLY, we exposed

it to ethylene glycol tetraacetic acid (EGTA) before challenging

cells in Ca-free buffer to deplete the toxin of any previously

bound Ca before exposure to Ca-free buffer. These experiments

showed a completely identical toxicity curve in Ca-free buffer

independent of preincubation of PLY with a Ca chelator, thus

excluding any interfering Ca-binding properties of PLY (data

not shown).

Next, we studied the acute lytic capacity of 0.2 lg/mL PLY

(the mean concentration observed in the cerebrospinal fluid of

patients with pneumococcal meningitis [8]) in an acute mouse

brain slice model of continuous tissue oxygenation with carb-

ogen (95% O2 and 5% CO2). This system yielded minimal cell

lysis (never exceeding 8%), which we concluded to be associated

with acute tissue damage induced by slicing, as it occurred

immediately during the first minutes after tissue preparation

and remained unchanged for at least 12 hours (data not shown).

To verify the intact morphology of neurons in these conditions,

we also routinely studied their microtubule-associated protein 2

(MAP2) immunostaining, which could indicate mild tissue

damage even when no clear lysis increase was observed. The

slices survived at least 12 hours without any sign of neurite

damage in a buffer with 1 or 2 mM Ca (Figure 4A). Next, we

challenged these slices for 4 hours with 0.2 lg/mL PLY and

analyzed the amount of acute lysis by assaying the release of

LDH. In such conditions, LDH did not increase following toxin

exposure, confirming the sublytic nature of the toxin at these

concentrations (Figure 4B). As soon as the Ca concentration in

the perfusion buffer was reduced from 2 to 1 mM, PLY revealed

its lytic capacity, inducing �4% higher LDH release above the

control levels (Figure 4B). With this data, we proved that toxin

concentrations that normally are sublytic in brain tissue can be

lytic when extracellular levels of Ca are decreased. Still, our slice

system has several characteristics that could ameliorate the ef-

fects of PLY such that they are less drastic than those seen in

clinical cases of severe pneumococcal meningitis. Specifically, we

exposed cells and tissues to PLY in a single sublytic dose.

However, during clinical progression of meningitis, it is con-

tinuously released for more than 4 hours; other bacterial factors,

continuously released in the course of bacterial lysis, such as

bacterial CpG-DNA and peroxide, could further compromise the

defense capacity of brain tissue [2, 5, 17]. The extracellular con-

centration of Ca in the human brain, as measured in the CSF,

is one-fourth of that in the serum (CSF �0.6 mM vs �2.4 mM

in the plasma [27, 28]). Thus, the true damaging potential of

PLY in diseased brains should be higher than that observed in

classical experimental cell culture and slice culture conditions.

However, the concentration of Ca in the CSF of newborn rats is

similar to their plasma levels (�2 mM) [28], demonstrating an

important difference from humans. Thus, researchers have to

carefully interpret the experimental evidence of the role of PLY

in rodents, humans, and cell culture conditions, considering

Figure 4. A, Verification of the MAP2 immunostaining of pyramidal
neurons in the cortex of mice 8 hours after preparation of acute slices in
ACSF with both 1 and 2 mM Ca shows completely intact neurite
morphologies. Scale bars: 20 lm. B, LDH release from brain slices,
incubated for 4 hours with or without 0.2 lg/mL PLY in the presence of
1 and 2 mM extracellular Ca. * P, .05 vs all, Mann–Whitney U test (see
Methods). Values represent mean 6 SEM, n 5 6 experiments (5 slices/
condition/experiment). ACSF, artificial cerebrospinal fluid.
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that, by default, the human brain is likely more vulnerable to

the lytic effects of PLY due to a lower Ca content.

The level of Ca in the CSF of patients with brain infections has

not been studied in detail. A mild reduction of Ca was observed

in a small study group of patients with various brain infections

(including tuberculosis and viral infections). The patients in the

group that were comatose had the largest changes in Ca [29].

Much more information is available concerning the level of

serum Ca in systemic infections. Hypocalcemia is common in

patients with streptococcus group A bacteremia and sepsis, and

this correlates with an aggravated course of the disease [30, 31].

It is interesting to note that the group A streptococci also pro-

duce a cholesterol-dependent cytolysin (streptolysin O) [32].

Furthermore, reduction of serum Ca also occurs in septic con-

ditions of nonstreptococcus origin [33]. Our work suggests that

attention should be paid to maintaining physiological Ca levels

in cases where S. pneumoniae is suspected or present.

In conclusion, we provide evidence for the dependence of the

lytic capacity of PLY on the extracellular concentration of Ca.

Reduction of Ca concentration could have profound effects on

PLY neurotoxicity enhancement. Reduction of Ca concentration

can transform sublytic pathophysiological concentrations into

lytic concentrations, worsening the course of the disease. Un-

fortunately, there is no systematic evidence for the dynamic

changes of Ca concentration in the brain during the clinical

course of pneumococcal meningitis. Further work is needed to

verify whether these findings might have prognostic and thera-

peutic importance throughout the course of pneumococcal

meningitis.
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