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A B S T R A C T   

In the field of computational oncology, patient status is often assessed using radiology-genomics, which includes 
two key technologies and data, such as radiology and genomics. Recent advances in deep learning have facili-
tated the integration of radiology-genomics data, and even new omics data, significantly improving the 
robustness and accuracy of clinical predictions. These factors are driving artificial intelligence (AI) closer to 
practical clinical applications. In particular, deep learning models are crucial in identifying new radiology- 
genomics biomarkers and therapeutic targets, supported by explainable AI (xAI) methods. This review focuses 
on recent developments in deep learning for radiology-genomics integration, highlights current challenges, and 
outlines some research directions for multimodal integration and biomarker discovery of radiology-genomics or 
radiology-omics that are urgently needed in computational oncology.   

1. Introduction 

Cancer is one of the most complex and challenging diseases, the 
second leading cause of death and a significant global public health 
problem. Its progression involves a series of complex changes at both 
microscopic and macroscopic levels, but the underlying functional in-
teractions and mechanisms are not yet fully understood [1,2]. This 
complexity of tumorigenesis is reflected in the diversity of data collected 
during a patient’s diagnosis and treatment. These data span multiple 
modalities, from radiology, histology, molecular profiling to family 
history, each providing unique insights into the patient’s condition [3, 
4]. The complex and heterogeneous nature of cancer requires an equally 
comprehensive approach to diagnosis, treatment and management, 
which recognize the critical role of multimodal data in understanding 
this disease [5]. 

Among these various modalities, radiology and genomics stand out 
as cornerstones of modern oncology, providing deep insights into the 
nature of cancer at both macroscopic and microscopic levels. Radiology 
is a crucial tool in clinical detection and decision-making in cancer 

treatment, with radiological imaging serving as a non-invasive and cost- 
effective method that takes into account functional characteristics and 
heterogeneity [6]. Tissue-scale imaging allows radiology to examine not 
only the regions affected by the disease, but also the surrounding 
structures, such as the peritumoral region. In particular, computed to-
mography (CT), magnetic resonance imaging (MRI), and radiographs 
can detect premalignant lesions based on the three-dimensional images 
they produce. These images are used in various models for cancer 
diagnosis, prognosis and treatment response prediction. 

Compared to imaging in radiology, genomic data analysis deals with 
molecular and cellular activities at the microscopic level. Advances in 
high-throughput sequencing technologies have enabled the establish-
ment of large-scale cancer research platforms, including projections of 
paired multi-omics cancer datasets from the Cancer Genome Atlas 
(TCGA) [7] and the International Cancer Genome Consortium (ICGC) 
[8] across different cancer types. These datasets provide comprehensive 
information for understanding the pathogenesis and progression of 
cancers, but also present challenges for integrated analysis of 
multi-omics in precision oncology studies [4]. Notably, these datasets 
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focus primarily on genomic analysis of tumor tissue samples, which 
focuses on somatic mutations occurring in tumor cells by pathologists 
and molecular biologists. This is different from germline mutations, 
which are inherited present in every cell of the body and typically 
analyzed by geneticists. Interestingly, several studies have shown that 
medical images can help infer visual phenotypes that serve as proxies or 
biomarkers for molecular phenotypes (e.g., epidermal growth factor 
receptor mutations in lung cancer) [9–12]. An emerging field called 
‘radiology-genomics’, aims to link imaging features to underlying mo-
lecular properties [13], which typically focuses on genomics data but 
could also include transcriptomics, metabolomics, deep pathomics and 

other emerging omics data. 
Recent advances in deep learning methods have demonstrated the 

significant potential of representation learning and latent space inte-
gration, which improve the predictive performance of many clinically 
relevant applications, including complicated and redundant tasks that 
are often nontrivial to human observers [14–16]. By integrating com-
plementary information, deep learning methods can capture nonlinear 
relationships between radiology and genomics data sources, enabling 
more accurate patient predictions [5,17]. Clinical outcome can initially 
be accurately predicted by successful models and then elucidated by 
interpretation methods to guide and accelerate the discovery of new 

Fig. 1. Overview of deep learning in radiology-genomics for precision oncology. a. Radiology-genomics data generation in pan-cancer studies. b. The diagram of 
Radiology-genomics integration based on deep learning, including early, intermediate and late fusion. Early fusion combines raw data at the input level. Intermediate 
fusion optimizes feature representations by backpropagating prediction errors. Late fusion aggregates predictions from independently trained models. c. Inter-
pretability and introspection of deep learning models for Radiology-genomics. On one hand, importance of genomics features can be analyzed by integrated gradient 
(IG) in patients level. On the other hand, GradCAM can employ highlighting significant areas in radiology images. d. Radiology-genomics fusion for multiple clinical 
applications. The drawings in panel A were created with BioRender.com. 
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genomic and radiological biomarkers [6]. 
The aim of this mini-review is to delve into the intricacies of deep 

learning in radiology-genomics integration for computational oncology 
and to explore the role of radiology and genomics in improving clinical 
applications that also relate to the integration of radiology and new 
omics data (Fig. 1A). This study will illustrate the potential of deep 
learning-based precision oncology to improve the diagnosis, treatment 
and management of cancer and contribute to more interpretive and 
personalized medicine. 

2. Deep learning methods applicable in radiology-genomics data 
analysis 

Deep learning models are designed to extract nonlinear informative 
representations and encode high-dimensional data into a low- 
dimensional embedding space for subsequent tasks. Different models 
are specifically designed for feature extraction from different data 
sources, each playing a crucial role in the analysis of radiology-genomics 
data (Fig. 2).  

(1) Variational Autoencoders (VAEs). Variational autoencoders 
(VAEs), extensions of traditional autoencoders, learn a low- 
dimensional representation of input data and can generate from 
a latent distribution (Fig. 2A). VAEs include the neural network 
component of the encoder and decoder, which is connected 
through a latent space regularized by the prior distribution of the 
normal Gaussian distribution. The encoder transforms the input 
data into a latent space that captures the underlying Gaussian 
distribution of the mean and variance. This latent representation 
is then sampled from this distribution. The decoder reconstructs 
the input data from this latent representation. The VAE loss 
function combines reconstruction loss with Kullback–Leibler 
divergence between variational distribution and prior distribu-
tion, ensuring the regularity of data generation and distribution. 
Their ability to model complex, high-dimensional data distribu-
tions has been instrumental in advancing the field of deep 
generative models and providing new insights and methods [18]. 
VAEs have transformed genomics and radiomics by enabling 
advanced pattern and biomarker recognition, significantly 
improving disease diagnosis and personalized medicine.  

(2) Convolutional neural networks (CNNs). Convolutional neural 
networks (CNNs) are designed for modeling spatial structures 
such as images or DNA sequences. Its architecture includes 
feature extraction based on convolutional filter layers, dimen-
sionality reduction based on pooling layers, and classification 
based on fully connected layers, which can leverage spatial hi-
erarchies (Fig. 2B). Convolutional layers apply filters to capture 
local dependencies and translational invariance, making CNNs 
suitable for image data. Pooling layers reduce the spatial size, 
decrease the number of parameters and reduce the computational 
burden in the network. CNNs have revolutionized the field of 
medical imaging by enabling automatic and efficient analysis for 
both diagnostics [9,19,20] and prognosis prediction [21,22], 
highlighting their critical importance in improving health 
outcomes.  

(3) Vision transformers (ViTs). Vision transformers (ViTs) utilize 
the transformer architecture, best known for their success in 
natural language processing [23,24]. Unlike CNNs, ViTs do not 
rely on the inductive biases of convolutional layers and instead 
use self-attention mechanisms to process images as sequences of 
patches. ViTs divide an image into patches of fixed-size and 
process these patches sequentially, similar to words in a sentence 
(Fig. 2C). In radiology, ViTs have shown exceptional promise, 
particularly in analyzing CT and MRI scans. The ability of these 
methods to detect complicated patterns and anomalies in medical 
images has remarkable implications for diagnosis and treatment 
planning [25,26] and improves the accuracy and efficiency of 
radiological examinations.  

(4) Graph neural networks (GNNs). Graph neural networks (GNNs) 
excel particularly in areas where data is inherently structured as 
graphs [27,28]. This is particularly evident in specialty areas such 
as radiology and genomics, where GNN offers unprecedented 
analytical capabilities. GNNs process graph-structured data, 
where nodes represent entities and edges represent relationships 
(Fig. 2D). They capture complex dependencies and relationships 
within this data using layers that iteratively update the repre-
sentation of each node based on its neighbors [29]. This approach 
enables GNNs to effectively learn complex relationship struc-
tures. In radiology, GNNs have been instrumental in analyzing 
complex image data and identifying patterns and anomalies in 
interconnected pixel images. Similarly, in genomics, GNNs 

Fig. 2. Scheme overview of deep learning models. a. Variational autoencoders (VAEs) learn a low-dimensional representation of input data and can generate from 
a latent distribution. b. Convolutional neural networks (CNNs) can extract image features based on convolutional filter layers, dimensionality reduction based on 
pooling layers, and classification based on fully connected layers, ultimately allowing spatial hierarchies to be exploited. c. Vision transformers (ViTs) utilize the 
transformer architecture and self-attention mechanisms, that divide an input image into patches of fixed-size and process these patches sequentially, similar to words 
in a sentence. d. Graph neural networks (GNNs) can process graph-structured data, where nodes represent entities and edges represent relationships, and therefore 
excel particularly in domains where data is inherently structured as graphs. e. Sparse connected networks (SCNs) have selective and limited connections between 
hidden layer nodes that correspond to biological processes or pathways that are different from traditional densely connected networks. 
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decipher complex networks of genetic interactions [29–31] and 
help understand genetic diseases [32,33].  

(5) Sparse connected networks (SCNs). Sparse connected networks 
have proven to be a significant advance in computational biology, 
particularly in the integration of genomic data (Fig. 2E). Unlike 
traditional densely connected networks, SCNs have selective and 
limited connections between hidden layer nodes that correspond 
to biological processes or pathways [34,35]. This design im-
proves the biological interpretability of the “black-box” model 
and better adapts to the actual structure of biological systems. 
SCNs improve model efficiency and reduce overfitting, which is 
critical in medical fields where data is often scarce and complex. 
For instance, P-NET [36], a biologically informed deep neural 
network, was developed to detect prostate cancer. In addition, 
PAUSE [37], which stands for Principled Feature Attribution for 
Unsupervised Gene Expression Analysis, is another example of 
how these networks can be used for insightful gene expression 
analysis. 

In addition, a feature summary of the various deep learning methods 
mentioned above in radiology-genomics data analysis is presented in  
Table 1, showing their potential pros and cons in specific application 
scenarios. 

3. Deep learning framework for radiology-genomics fusion 

By deploying advanced multimodal fusion technologies, deep 
learning has proven effective in single-modality analysis of radiology 
and genomics profiles. The integration of radiology and genomics aims 
to uncover connections between microscopic molecular and macro-
scopic information of organisms, thereby enabling a more comprehen-
sive representation of disease mechanisms. Deep learning-driven fusion 
strategies can be classified into early, intermediate and late fusion 
frameworks, each providing unique computational advantages and task 
considerations (Fig. 1B and Table 2).  

(1) Early fusion framework. Early fusion integrates information 
from multiple data sources at the input stage and then processes it 
into a single model. Techniques such as concatenation, ele-
mentwise summation, multiplication or bilinear pooling (Kro-
necker product) produce a common representation at the input 
layer, which approaches a streamlined model design by using a 
single model for feature extraction. Early fusion allows for flex-
ible data combination, but potentially overlooks inherent differ-
ences in data format, distribution, and spatial characteristics 
between modalities. In scenarios where the modalities have sig-
nificant differences in distribution and data space, early fusion 
methods may not be ideal, resulting in suboptimal fusion per-
formance. Despite this limitation, early fusion methods have 
shown promise in clinical use and have been successfully used in 
various oncology applications, such as fusion of computed to-
mography (CT) and/or MRI data with gene expression data for 

cancer detection [38], treatment planning [39,40] or survival 
prediction [41]. Several studies have examined the correlated 
changes in gene expression and integrated them into radiological 
images for cancer detection in lung cancer [42], classification 
[43], survival [44] and prediction of treatment response [45].  

(2) Intermediate fusion framework. In intermediate fusion, 
multimodal features are combined at an intermediate stage of the 
model architecture, typically after the initial feature extraction 
but before the final decision level, such as concatenation, ele-
mentwise operations or more sophisticated attention mechanisms 
[46–48]. These methods allow preservation of modality-specific 
information prior to integration, eliminating some of the limita-
tions associated with early fusion and providing a balance be-
tween the simplicity of early fusion and preservation of the 
modality-specific features of late fusion. By considering both 
shared and modality-specific representations, these methods aim 
to achieve more effective integration in scenarios where early 
fusion may be difficult due to significant distribution differences 
between modalities. Examples of intermediate fusions in 
oncology include the integration of different radiological imaging 
modalities, such as detection of lung cancer by fusion of PET and 
CT scans [49–51], classification of prostate cancer by fusion of 
MRI and ultrasound images [52] and glioma segmentation by 
combination of multimodal MRI scans [53,54]. Genomic data 
along with mammography images have also been used to 
improve survival prediction [55].  

(3) Late fusion framework. Late fusion, or so-called decision-level 
fusion, is developed to train modality-specific models and predict 
the final outcome by aggregating the predictions of all individual 
models, including averaging, majority voting, Bayes-based rules, 
or learned models such as MLP. Late fusion provides different 
model architecture for each modality, avoiding modality corre-
lation concerns or data synchronization limitations. It is suitable 
for complex systems with multiple data sources or significant 

Table 1 
Feature summary of deep learning methods in radiology-genomics data analysis.  

Method VAEs CNNs ViTs GNNs SCNs 

Flexible encoding and decoding √    √ 
Unsupervised learning √     
Excellent for image data  √    
Capture of local dependencies  √    
Self-attention mechanism   √   
Detection of complex pattern   √ √  
Capture of intricate dependencies in 

graph-structured data    
√  

Reduction of over-fitting     √ 
Biological interpretation    √ √  

Table 2 
Pan-cancer radiology-genomics studies (part 1).  

Cancer 
type 

Study 
ID 

Study 
Objective 

Integration 
method 

Reference 
list 

Gliomas G1 Molecular 
subtype 

- Buda, M. et al. 
[108] 

G2 Molecular 
subtype 

- Li, Y. et al.[109] 

Breast 
cancer 

B1 Oncotype Dx 
RS 

- Ha, R. et al. 
[110] 

B2 Predicting 
molecular 
subtypes 

- Ha, R. et al. 
[111] 

B3 Molecular 
subtypes 

- Zhang, Y. et al. 
[112] 

Lung 
cancer 

L1 Gene 
mutation 
prediction 

- Hosny, A. et al. 
[113] 

L2 Gene 
mutation 
prediction 

- Song, Y.[42] 

L3 Molecular 
subtype 

- Yamamoto, S. 
et al.[114] 

Medulloblastoma M1 Molecular 
subtypes 

- Dasgupta, A. 
et al.[115] 

Renal 
Cancer 

R1 Prognosis 
Prediction 

Early 
fusion 

Schulz, S. et al. 
[44] 

Colorectal 
cancer 

C1 metastasis 
prediction 

Early 
fusion 

Zhao, J. et al. 
[43] 

Lung 
cancer 

L4 Recurrence 
prediction 

Intermediate 
fusion 

Jia, L. et al. 
[116] 

Brain 
cancer 

B4 Prognosis 
prediction 

Intermediate 
fusion 

Cui, C. et al. 
[117] 

Lung 
cancer 

L5 Prognosis 
prediction 

Early 
fusion 

Chen, W. et al. 
[118]  
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data heterogeneity. When data is missing or incomplete, late 
fusion can still make predictions by training each modality model 
separately and aggregating predictions even if a modality is not 
available. In oncology, There are many late fusion applications 
involving the integration of imaging data with genomic data in 
the fusion of CT and genomic profiles for lung cancer diagnosis 
[56], prostate cancer survival prediction [57,58] and chemo-
therapy response prediction [45], could be used. 

4. Task-aware deep learning advances in radiology-genomics for 
precision oncology 

Over the last decade, radiology-genomics has emerged as a syner-
gistic field that combines radiology and genomics and aims to address 
the limitations of current diagnostic methods. This interdisciplinary 
approach facilitates the development of noninvasive diagnostic and 
prognostic tools by combining the quantitative imaging characteristics 
of tumor phenotypes with genomic data. Such integration is promising 
for the identification of therapeutic biomarkers, particularly in 
oncology, and for the further development of personalized medicine. 
Radiology-genomics, enhanced by the molecular characterization of 
various types of cancer and the application of texture analysis and deep 
learning techniques contributes significantly to the advancement of 
cancer diagnostics towards individualized treatment paradigms. 

(1) Molecular status determination for cancer diagnosis. Accu-
rately identifying the molecular phenotype of tumors is crucial 
for cancer diagnosis in the era of precision medicine (e.g. cases 
shown in Table 2 and Table 3). This task is complicated by the 
heterogeneity of malignant tumors, which often results in small 
biopsy samples being insufficient to capture the full spectrum of 
tumor gene mutations. Radiology-genomics offers a promising 
solution by studying the relationship between imaging features 
and molecular markers of tumors. The aim of this approach is to 
provide a noninvasive means of predicting gene mutations from 
imaging data, overcoming the limitations of traditional, invasive 
biopsy methods, which are costly, time-consuming, and not uni-
versally accessible. Integrating imaging phenotypes with molec-
ular phenotypes using Radiology-genomics not only facilitates 
precision medicine but also paves the way for more effective 
cancer diagnosis and treatment strategies [17,59]. Initial 
research has shown a correlation between radiological imaging 
patterns and biological molecular conditions, suggesting that 
phenotypes detected from medical images may serve as surro-
gates or biomarkers for molecular phenotypes, such as epidermal 
growth factor receptor (EGFR) mutations in lung cancer high-
lighting the ability of radiology-genomics to substantially in-
crease the precision of cancer detection [60]. These findings 
suggest that integrated radiology-genomics approaches could be 
used to identify eligible and noneligible patients for targeted 
therapies, potentially streamlining clinical decision-making pro-
cesses. In particular, in many scenario of early cancer diagnosis, it 
is difficult to obtain tumor tissue samples. Therefore, blood 
samples could be adopted and such predictive approaches can 
help physicians make informed decisions.  

(2) Personalized care response prediction for cancer treatment. 
Recent studies have significantly advanced the field of imaging 
genomics, and demonstrated that the imaging properties of tumor 
tissue can accurately predict response to various therapies, 
including chemotherapy, radiotherapy, targeted therapy, and 
immunotherapy. Chemotherapy and radiotherapy largely target 
cancer cells, while targeted therapy and immunotherapy attack 
specific molecular signaling pathways and strengthen the im-
mune system. This advance facilitates the personalization of 
treatment strategies, and allows clinicians to predict an individ-
ual patient’s response to specific therapeutic interventions, 

thereby optimizing treatment effectiveness while minimizing 
toxicity [61,62]. Such a tailored treatment approach significantly 
reduces unnecessary medical interventions, reduces the risk of 
side effects and increases the likelihood of therapeutic success 
[63].  

(3) Prognosis and risk stratification for cancer patients. The 
integration of radiology and genomics facilitates the develop-
ment of prognostic markers by bringing together imaging, genetic 
and pathological data. This synthesis unveils the relationship 
between imaging characteristics and patient outcomes, thereby 
accelerating the translation of radiology-genomics into clinical 
practice. By adopting this personalized approach, therapeutic 
interventions are aligned with individual prognoses, thereby 
improving resource efficiency and overall health care [20,64]. 
Moreover, risk stratification enabled by radiology-genomics can 
significantly influence resource allocation and patient manage-
ment [17]. This approach allows high-risk patients to be 

Table 3 
Pan-cancer radiology-genomics studies (part 2).  

Study 
ID 

Genomics data on 
tumor tissue 

Imaging 
modality 

Imaging 
model 

Clinical 
Requirement 
* 

G1 DNA methylation, gene 
expression, DNA copy 
number, and microRNA 
expression, as well as IDH 
mutation 1p/19q co- 
deletion measurement 

MRI Cross- 
validation 
model 

PD, PA 

G2 Known genomic marker 
status based on 2016 
WHO classification 

MRI CNN PD, PA 

B1 Marker genes based on 
Oncotype DX 

MRI CNN PA 

B2 Immunohistochemical 
staining pathology data 

MRI CNN PD,PA 

B3 Hormonal receptor (HR) 
and HER2 receptor: 
(HR+/HER2 − ), 
HER2 + and triple 
negative (TN) 

MRI CNN PD,PA 

L1 Tumor node metastasis 
stage and gene expression 
assays 

CT CNN SD,PT 

L2 EGFR and KRAS mutation 
status 

CT CNN SD,PT 

L3 ALK status and clinical- 
pathologic 

CT Random 
forest 

PD,PA 

M1 Marker profiling of 12 
protein coding genes and 
9 microRNAs using real- 
time reverse transcriptase 
polymerase chain 
reaction 

MRI Multivariate 
logistic 
regression 
analysis 

PD,PA 

R1 Genomic data from whole 
exome sequencing 

CT CNN SP,PT 

C1 RNA sequencing for 
paired tissues (CRC 
tissues and adjacent 
normal tissues) 

CT CNN SD 

L4 Gene Expression from 
RNA-seq 

CT CNN RP,PT 

B4 80 DNA features 
including 79 of the most 
expressive CNV features 
and one binary indication 
of mutation status for 
IDH1 gene 

CT CNN SP,PT 

L5 Gene Expression from 
RNA-seq 

CT CNN SP,PT  

* Clinical requirements include precise diagnosis (PD), prognosis assessment 
(PA), personalized treatment (PT), stage diagnosis (SD), survival prediction (SP), 
and recurrence prediction (RP). 
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prioritized and ensures they receive immediate and intensive 
care. In addition, it facilitates the efficient allocation of medical 
resources and optimizes the use of available treatments and in-
terventions based on individual risk profiles identified through 
radiology-genomics analysis. Identifying high-risk patients al-
lows prioritization of more rigorous monitoring and timely in-
terventions to ensure they receive the necessary care promptly 
[65]. Conversely, low-risk individuals benefit from a less inten-
sive treatment strategy, thereby minimizing unnecessary 
healthcare expenditure and mitigating the risks associated with 
overtreatment [66]. 

5. Interpretation of the deep learning model improves the 
integration of radiology and genomics 

In radiology-genomics, deep learning models can learn abstract 
feature representations. However, there is concern that these models 
may use incorrect shortcuts for predictions instead of learning relevant 
clinical aspects. In another words, despite the improvement of deep 
learning in various tasks for clinical requirements (Table 3), there are 
still concerns about the clinical decision-making process of AI due to the 
property ‘black box’ of deep neural networks. Therefore, interpretability 
and model introspection should be crucial topics in AI for the integration 
of radiology and genomics (Fig.1CD), encompassing different phases of 
model development, deployment and validation.  

(1) Radiology interpretability from deep learning. In radiology, 
interpretability methods are essential to understand the impor-
tance of different image regions in deep learning model pre-
dictions. Techniques such as class activation maps (CAMs), 
including Grad-CAM and Grad-CAM+ + [67,68], are crucial for 
identifying the importance of individual pixels in the 
decision-making process involved in deep learning. These 
methods evaluate how changes in inputs, such as pixels in 
radiological images, affect the model’s output. Grad-CAM, com-
bined with guided backpropagation, determines pixel-level 
importance within prediction regions. By overlaying attention 
scores on radiology scans, key regions that contribute to outcome 
predictions are visualized using heatmaps. Studies using 
Grad-CAM have enabled slide-level interpretability in tasks such 
as lung cancer diagnosis and survival prediction [69–71]. 
Grad-CAM generates heatmaps that identify the most relevant 
regions for disease stage classification and diagnosis. Regions that 
are highly relevant for survival characteristics can also be local-
ized. Some regions, particularly those with unique outlines, can 
be utilized for survival prediction and detection.  

(2) Genomics interpretability from deep learning. Integrated 
gradient methods [72,73] are often used to interpret multi-omics 
data, such as genomics data. These methods examine how specific 
changes to original inputs can influence model outputs by 
calculating attention scores. In regression tasks such as survival 
prediction, attribution values indicate the magnitude and direc-
tion of the impact: positive attributions indicate an increase in 
predicted risk, while negative attributions indicate a decrease. In 
classification tasks, positive attribution increases the probability 
of a particular class, while negative attribution decreases it. This 
approach discovers molecular features that consistently 
contribute to model predictions in a group. The attribution value 
indicates the importance of features predicted by the model, 
where molecular features with high attribution values can serve 
as potential biomarkers for specific clinical applications. Identi-
fying features with high average attribution values helps clini-
cians identify potential biomarkers important for differentiating 
clinical outcomes [47,74–76]. 

6. Challenges and future directions 

The application of deep learning in radiology-genomics still faces 
many challenges, mainly caused by the increasing amount of multi-
modal data. Several previous reviews have discussed challenges such as 
fairness and data movement, as well as limited interpretability [3,77]. 
Here, we focus on four challenges specific to the integration and appli-
cations of radiology–genomics.  

(1) Modality missing in radiology-genomics integration. A major 
challenge in integrating radiology and genomics is dealing with 
missing data, which may appear as partial or complete absence of 
one or more modalities [78,79]. Many existing multimodal deep 
learning models struggle to resolve missing data inputs given the 
limited availability of paired CT images and genomic sequencing 
datasets, i.e., CT images and genomic data from the same person 
poses a significant problem. This limitation often arises from 
different examination methods, associated costs and data privacy 
concerns. Noninvasive, cost-effective and time-efficient radiology 
is accessible to almost all patients. In contrast, high-throughput 
genomic sequencing, the predominant method for molecular 
profiling, is invasive, costly and time-consuming, and therefore 
inaccessible to some patients. The reliance on complete 
radiology-genomics data for model training limits the size of 
usable datasets, and the inability to utilize incomplete modalities 
despite their valuable information represents significant limita-
tion [80]. It is crucial to develop multimodal deep learning 
models capable of handling missing input modalities in clinical 
applications. 

(2) Modality alignment in radiology-genomics integration. Mo-
dality alignment refers to the process of harmonizing and inte-
grating data from different sources [81–83]. In this scenario, 
radiology and genomics, which originate at the organismal and 
molecular levels respectively, and differ in scope and data dis-
tribution, are combined to create a unified analytical framework. 
This alignment is critical in multimodal studies as it ensures that 
data from each modality are accurately correlated and analyzed 
together [84,85]. When integrating radiology and genomics, 
modality alignment includes preprocessing steps such as 
normalization, registration, and feature selection, followed by 
the development of models that can effectively combine infor-
mation from both modalities. Techniques such as canonical cor-
relation analysis, multiview learning, and cross-modal learning 
are commonly used to match and integrate these different data 
sources [86,87]. Successful matching of modalities allows for 
more comprehensive and accurate interpretation of cancer fea-
tures and leads to better diagnostic, prognostic and therapeutic 
outcomes.  

(3) Foundation model in radiology–genomics integration. 
Recent advances in foundational models, such as natural lan-
guage processing and computer vision, have demonstrated the 
potential of pretraining to learn the basic representation in the 
pretraining phase [88–90]. Due to extensive pretraining on 
multiple data sources, the obtained basic model can be used for 
downstream applications abroad. On the one hand, the imaging 
pretraining models, which are pretrained on large sets of labeled 
or unlabeled images, show improved performance compared to 
the baseline models in several clinical applications. RETFound 
[91] can improve the detection, diagnosis and prognosis of eye 
diseases through retinal imaging, while REMEDIS [92] mitigates 
such distribution performance issues and improves model 
robustness through a self-supervised representation learning 
strategy. On the other hand, the foundation model can learn 
molecular feature associations and gene regulation through pre-
training on large genomics and mRNA data, improving pre-
dictions in network biology [92] and cell type annotation [93]. 
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Foundation models have great potential to transform biomedi-
cine and oncology. The integration of radiology and genomics 
into the foundation model should benefit multimodal analysis, 
learning new task and leveraging domain knowledge [94]. 

(4) Integration of radiology-genomics with new omics. In addi-
tion to the conventional genomics modality focused in radiology 
genomics, the integration of other new omics modalities is 
increasingly recognized as essential for the advancement preci-
sion oncology and would be called radiology-omics, taking into 
account considering transcriptomics [95], metabolomics [96] 
and deep pathomics [97,98] etc. Transcriptomics provides in-
sights into gene expression patterns corresponding to various 
cancer hallmarkers [99], while metabolomics provides a detailed 
understanding of the metabolic alterations associated with cancer 
[100]. Deep pathomics, in which deep learning techniques are 
applied to histopathological images, can help reveal complex 
tissue architecture and cellular morphology [101–103]. 
Combining these more diverse omics data types with radiology 
genomics, i.e. radiology-omics, should enable a more compre-
hensive characterization of tumor heterogeneity and improve the 
accuracy of various clinical prediction tasks [104]. Multi-omics 
sample representation from multimodal learning can support 
various downstream clinical tasks with incomplete multi-omics 
datasets [104,105], further enhancing prognostic and predictive 
tasks with detailed clinical endpoints (e.g., cancer subtype or 
drug response prediction). Compared to single omics data used in 
conventional radiology-genomics studies (Table 3), integration 
with appropriate multi-omics data in various clinical applications 
can provide more comprehensive insights into cellular regulation 
and tumorigenesis according to the central dogma that will help 
identify potential new non-invasive candidate markers (Table 4). 

7. Conclusion 

The integration of deep learning into radiology-genomics represents 
a transformative advance in the field of oncology [106,107]. This 
mini-review paper highlights the transformative impact of deep learning 
integration in radiology-genomics, a significant advance in oncology. 
The role of deep learning in harmonizing radiology and genomics is 
critical to advancing cancer diagnosis, treatment, and patient care. By 
correlating imaging and genetic data, these models provide deep in-
sights into tumor characteristics, promoting personalized medicine. This 
integration significantly improves diagnostic precision, prognosis and 
treatment planning, setting a new standard in patient care. In particular, 
the ability to predict treatment responses and monitor disease progres-
sion in real time represents a major advance in compassionate and 
effective cancer treatment. 

The choice of deep learning fusion method when integrating radi-
ology and genomics data depends on the data properties, modality- 
specific information and general analysis goals. Each fusion approach 
has its strengths and considerations, and its effectiveness may vary 
depending on the specific challenges presented by the multimodal na-
ture of radiology-genomics datasets. Ensuring the interpretability of 
radiology-genomic models is crucial for their successful use in clinical 
settings. This not only improves the understanding of model predictions, 
but also helps address concerns related to model reliability and potential 
impact on patient care. Transparent and interpretable AI models are 
more likely to be accepted and adopted in the medical community, 
contributing to better patient outcomes. These approaches and appli-
cations are intended to enable physicians to gain a deeper understanding 
of disease, ultimately leading to more effective and patient-centered 
healthcare practices. 

As radiology-genomics continues to evolve, the increasing 
complexity and diversity of data will further emphasize the importance 
of AI. Advances in AI interpretability and adherence to ethical practices 
are critical to responsible use and maintaining the trust of patients and 

physicians. The fusion of radiology genomics and deep learning will 
revolutionize patient outcomes with focus on personalized, patient- 
centered care. This approach aims to not only extend life but also 
improve quality of life, representing a more effective, personalized and 
compassionate approach to cancer treatment. The journey of integration 
continues, and every step forward brings us closer to a future where 
cancer care is tailored to each individual patient. 
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