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Abstract

Motivation: RNA-protein interactions are key effectors of post-transcriptional regulation. Significant experimental
and bioinformatics efforts have been expended on characterizing protein binding mechanisms on the molecular
level, and on highlighting the sequence and structural traits of RNA that impact the binding specificity for different
proteins. Yet our ability to predict these interactions in silico remains relatively poor.

Results: In this study, we introduce RPI-Net, a graph neural network approach for RNA-protein interaction prediction.
RPI-Net learns and exploits a graph representation of RNA molecules, yielding significant performance gains over
existing state-of-the-art approaches. We also introduce an approach to rectify an important type of sequence bias
caused by the RNase T1 enzyme used in many CLIP-Seq experiments, and we show that correcting this bias is es-
sential in order to learn meaningful predictors and properly evaluate their accuracy. Finally, we provide new
approaches to interpret the trained models and extract simple, biologically interpretable representations of the
learned sequence and structural motifs.

Availability and implementation: Source code can be accessed at https://www.github.com/HarveyYan/RNAonGraph.

Contact: wlh@cs.mcgill.ca or blanchem@cs.mcgill.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA-protein interactions mediate all post-transcriptional regulatory
events, including RNA splicing, capping, nuclear export, degrad-
ation, subcellular localization and translation (Stefl et al., 2005).
These regulatory processes are influenced by a diverse population of
RNA binding proteins (RBPs), each having affinity for one or more
specific RNA motifs. Defects in RBP-RNA interactions are impli-
cated in a variety of neuromuscular disorders and possibly cancer
(Lukong et al., 2008; Xiong et al., 2015). For this reason and many
others, it is of crucial importance to adequately characterize the
determinants of RBP binding specificity at the molecular level,
including both sequence and structural motifs, as well as the broader
impact of the sequence/structure context.

RBP binding has been shown to be determined by both the se-
quence and the structure of an RNA (Buckanovich and Darnell,
1997; Hackermuller et al., 2005). For instance, Vts1p is an RBP that
binds a certain sequence motif within a hairpin loop of RNA (Aviv
et al., 2006); therefore, prediction algorithms that do not consider
secondary structures may fail to obtain optimal results. The diffi-
culty of making use of RNA secondary structure in a machine learn-
ing context, however, is that it potentially requires modeling highly
non-local interactions between pairs of nucleotides that could span
hundreds or even thousands of bases in relatively long RNA
transcripts.

Because of their nested structure, RNA secondary structures can
be represented as simple strings (the so-called dot-bracket notation),
and a number of recently proposed RBP binding prediction
approaches combine these string-based structure representations
with the nucleotide sequence information (Cook et al., 2017; Kazan
et al., 2010; Pan et al., 2018). However, the non-local interpretation
of the dot-bracket notation makes it challenging for predominantly
sequence-based models such as long short-term memories (LSTMs)
to identify motifs that involve long-range interactions. A second fun-
damental challenge is to account for the stochasticity of RNA fold-
ing: instead of deterministically adopting their single most stable
secondary structure, RNA molecules are constantly sampling from
an ensemble of possible structures.

Therefore, in this study we introduce RPI-Net, a machine learn-
ing approach that aims at learning a more effective graph represen-
tation of the RNA secondary structures. Instead of manually
extracting features with graph kernels (Maticzka et al., 2014) or
integrating other sources of hand-crafted features, RPI-Net is an
end-to-end learning approach with graph neural networks (GNN)
that learns directly at the molecular level from the sequence and
structures of RNA. RPI-Net also captures the uncertainty involved
in RNA folding by annotating edges with base-pairing probabilities.

RPI-Net is evaluated on a well-known RNA-protein interaction
dataset from a collection of CLIP-Seq experiments (Hafner et al.,
2010; Konig et al., 2010; Licatalosi et al., 2008), originally assembled
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and curated by Maticzka et al. (2014). Compared to three state-of-
the-art methods, RPI-Net improves prediction accuracy substantially
on many RBPs. We also introduce new approaches based on
Sundararajan et al. (2017) to interpret the trained models and reveal
RBP sequence and structure binding preferences that often closely
match experimentally derived motifs.

Finally, another contribution of our paper is to quantify the im-
pact of and rectify a specific type of sequence bias present in certain
CLIP-Seq datasets, originally identified by Kishore et al. (2011) and
later emphasized in Ghanbari and Ohler (2020), which artificially
inflated the reported prediction accuracy of several approaches pub-
lished recently.

2 Related work

Our approach builds upon several computational biology frame-
works that attempt to leverage RNA secondary structure informa-
tion to predict RBP binding, and we extend this line of work by
integrating recent advancements in GNNs.

Existing structure-aware bioinformatics tools. MEMERIS (Hiller
et al., 2006) is one of the earliest approaches to incorporating RNA
secondary structure, though it has limited capacity and only models
motifs in single-stranded (unpaired) areas of RNA. RNAcontext
(Kazan et al., 2010) later extends the structural context of RNA by
annotating nucleotides with their structural state (stem, hairpin and
bulge). This base annotation scheme is adopted in a series of more
recent deep learning approaches (Pan et al., 2018; Zhang et al.,
2016) that separately model the annotated secondary structures and
primary sequence information in a multimodal fashion. Notably,
Zhang et al. (2016) uses a multimodal deep belief network on the
RNA tertiary structure as well as the sequence and secondary
structure.

One key disadvantage of these multimodal approaches is that se-
quence and structure information are processed separately before
being merged together. This can make it difficult to detect subtle
relationships between sequential motifs and structural context. In
addition, these approaches suffer from the limitation that they use a
fixed sequential representation of the data, which makes higher-
order interactions difficult to model and ignores the stochasticity of
RNA folding.

There is also recent work, such as the Graphprot (Maticzka
et al., 2014) framework, that use a graph kernel to extract secondary
structure features from an RNA graph, which simultaneously en-
code information about the nucleotide and its structural context.
This approach is more effective at coupling sequence and secondary
structure. However, the extremely high dimensionality of the
extracted features can easily lead to overfitting.

GNNs. Recent advances of GNNs features two related genres.
The first genre include a series of graph convolution-based models
supported by spectral graph theory, which aim at learning approxi-
mate spectral filters defined on the graph Laplacian (Kipf and
Welling, 2017). The other genre takes motivations from graphical
models and graph isomorphism testing, and the operations are gen-
eralized as a form of differentiable message-passing between the
nodes in a graph (Hamilton et al., 2017). Methods of this type have
been successfully applied to learn molecular fingerprints
(Duvenaudt et al., 2015) and to infer molecular properties (Gilmer
et al., 2017). In particular, adding recurrence to carry the state infor-
mation when learning the node level embeddings has proved useful
in the context of learning molecular graphs (Gilmer et al., 2017; Li
et al., 2016), which motivates our choice of GNN architecture for
RNA structures. Despite their prevalent usage in modeling molecu-
lar graph structure, applications of GNNs to RNA secondary struc-
ture have been scarce.

3 Materials and methods

Figure 1A provides an overview of our RPI-Net approach. We refer
the reader to introductory material on GNNs in Hamilton et al.
(2017). First, we fold RNA to obtain an ensemble of possible

secondary structures and build a graph representation; then, we
learn node level embeddings using a recurrent GNN and a bidirec-
tional LSTM; finally, the node embeddings of an RNA are globally
pooled along its spatial axis to make a final prediction of RNA-
protein interaction for a given protein.

3.1 RNA folding and sampling possible structures
To capture the dynamics and uncertainty of RNA secondary struc-
ture for a given sequence, RPI-Net uses a Boltzmann ensemble of
possible structures, rather than simply relying on the minimum free
energy structure. In this approach a secondary structure s associated
with sequence x takes on probability pðsjxÞ ¼ 1

Z e�bEðs;xÞ, where Z is
a normalizing constant (also known as the partition function) and
E(s, x) is the free energy of x under structure s. The base-pairing
probability for nucleotides at positions i and j, considering all pos-
sible secondary structures in a thermodynamic equilibrium, is then
defined as:

pð½i; j�jxÞ¢
X

s:½i;j�2s

PðsjxÞ: (1)

Even though the number of valid secondary structures increases
exponentially as the sequence length increases, Equation (1) can be
calculated in time Oðn3Þ using McCaskill’s algorithm (McCaskill,
1990), which is implemented in the RNAplfold package (Bernhart
et al., 2006). After running RNAplfold, we obtain a probabilistic ad-
jacency matrix An�n, where Ai;j ¼ pð½i; j�jxÞ. These probabilistic
annotations allow us to account for uncertainty in the RNA folding.

3.2 Learning nucleotide level embeddings
We start by giving a high-level overview of our approach, and pro-
vide full details later in the section. Our GNN is constructed based
on the notion of neural message passing on an RNA graph formed
by two types of bonds: covalent bonds linking consecutive nucleoti-
des along the RNA backbone and base-pairing hydrogen bonds.
Unlike many other applications of GNN, the probabilistically-
weighted RNA graph is quite sparse, so in order to enable a more ef-
fective message passing, we choose to stack multiple GNN layers to
obtain a sufficiently large receptive field. These layers share their
weight parameters. This gives rise to a kind of recurrence resembling
that of a Gated GNN model (Li et al., 2016). In practice, we use a
LSTM that treats the node embedding as a hidden state and the mes-
sages coming to each node as input. In addition, we compute the
messages on the covalent bonds with a convolutional operation so
that messages can be gathered from more distant nucleotides along
the RNA backbone in a single GNN layer.

The core message passing function of RPI-Net takes three values
as input: a probabilistic adjacency matrix An�n; an embedding ma-
trix H

ðl�1Þ
x�d1

, which contains a d1-dimensional embedding for each nu-
cleotide and is updated by each message passing learning and the
LSTM cell memory C

ðl�1Þ
x�d2

. The message propagation formula is then
given by:

Ml ¼ ReLUðAHl�1W þ ConvðHl�1ÞÞ (2)

ConvðHl�1Þp ¼
Xf�bf�1

2 c�1

i¼�bf�1
2 c

Bih
l�1
pþi (3)

Hl;Cl ¼ LSTMððHl�1;Cl�1Þ;MlÞ (4)

where ReLU is a leaky rectified linear unit (Maas et al., 2013) and
W and B1; . . . ;Bn are trainable matrices. For the first layer of mes-
sage passing (l¼1), we initialize H0 with an one-hot encoding of
the nucleotide (i.e. fA;U;C;Gg) and the cell memory C0 to zeros. The
convolutional layer uses symmetric padding on both ends of the
RNA sequence to keep its length constant. An example of message
passing is given in Figure 1B, where a nucleotide only receives cova-
lent messages from its two immediately connected neighbors in add-
ition to its base-pairs. We emphasize that—compared to a
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traditional GNN—we have generalized the message passing oper-
ation along the RNA backbone to a convolutional operation
[Equation (3)]. One can interpret Equation (3) as a nucleotide posi-
tioned at index p receiving covalent messages from its neighborhood
of size f (the receptive field of the convolution filter).

The total number of GNN layers is denoted by L, which is con-
strained to be a small number to avoid incurring a high computation-
al overhead. To better account for long range dependencies between
nucleotides, we feed HL obtained at the final message passing step to

a bidirectional LSTM module, which outputs a updated Ĥ
L

as the nu-
cleotide embeddings learned by our model.

3.3 Global RNA graph embedding
To obtain a global representation for the RNA as a whole, we finally
use a Set2Set model (Vinyals et al., 2016) to pool the individual nu-
cleotide embeddings along the spatial axis of the RNA:

qt ¼ LSTMðq�t�1Þ; (5)

ai ¼
hT

i qtP
j hT

j qt
; (6)

rt ¼
X

i

aihi (7)

q�t ¼ ½qt; rt�; (8)

where each hi is the row of Ĥ
L

corresponding to nucleotide i. The
Set2Set model is similar to the Seq2Seq (Sutskever et al., 2014)
model in that at each pooling step it uses attention to compare the
decoder (a LSTM) hidden state to each nucleotide embedding
[Equation (6)]. The weighted sum of the nucleotide embeddings

[Equation (7)] is concatenated with the hidden state [Equation (8)],
which is then forwarded to the next pooling step as input to the de-
coder LSTM module [Equation (5)]. The decoder is unrolled a fixed
number of steps (T), and the concatenated vector q�T at the last step
is used as an output from this module. The prediction is finally given
by a softmax following a linear transformation on the output of the
Set2Set model, which maps the dimensionality of q�T to two.

3.4 Hierarchical supervision
Our model is trained as follows. Each input sequence s in our train-
ing set is labeled with a ‘global’ binary value ygðsÞ indicating
whether or not it contains a binding site of the RBP of interest. We
also associate to s a length n binary vector yl, where yl;i indicates
whether or not position i belongs to the viewpoint region. We train
our model with a composite objective function combining a local
and a global cross-entropy loss function. The global loss function is
defined over an entire RNA sequence,

Lg ¼ �yg logðpgÞ � ð1� ygÞ logð1� pgÞ; (9)

where prna is the predicted probability obtained as the output of the
Set2Set module described in Section 3.3. In addition to this global
loss, we can also define a local loss that operates directly on the indi-
vidual nucleotide embeddings:

Ll ¼ �
1

n

Xn

i¼1

biðyl;i logðpl;iÞ þ ð1� yl;iÞ logð1� pl;iÞÞ; (10)

bi is a positive scalar to weigh losses from different positions on
a sequence.

Our complete minimization objective is given by the joint loss
function,

Fig. 1. (A) Our GNN model takes in as input an adjacency matrix that specifies the base-pairing probabilities, as well as the one-hot encoded nucleotide sequence. The message

passing layers are unrolled L steps using a LSTM model (Hochreiter and Schmidhuber, 1997), whose output is then fed to a bidirectional LSTM module to learn a more global

nucleotide embedding. (B) Here, we show an example of message passing to node j from its 2-hops neighborhood. mij denotes the messages passed from node i to j, and to

keep the notation uncluttered we have omitted its type and direction. aij is a scalar used for the base-pairing probability when mij is passed along a hydrogen bond, otherwise it

is set to one. The node features associated to j at time step t is denoted as ht
j , and it is updated with the information from its adjacent nodes according to Equations (2)–(4)
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L ¼ kLg þ ð1� kÞLl; (11)

where k is a mixing ratio controlling the importance of the two
objectives.

Note that Ll can provide a more fine-grained supervision signal
than Lg, since we would like our model to discover the binding site
primarily located within a relatively small viewpoint region, possibly
aided by information gathered from the flanking regions.

However, Ll is also arguably more challenging to optimize due
to the highly disproportionate amount of nucleotides that are not
within the marked viewpoint regions. To address this concern—
which is similarly motivated in the field objection detection—we
adopt a gradient harmonizing mechanism (GHM) (Li et al., 2019)
to mitigate the imbalance between positive and negative examples,
or between easy and difficult examples, as well as to penalize out-
liers. GHM proceeds by estimating the gradient density GDðgiÞ for
the gradient norm gi on a per nucleotide basis. The gradient norm is
taken from the loss with respect to the output of the model, indicat-
ing the difficulty of classifying that nucleotide. bi is then simply
given by S

GDðgiÞ. In practice, we also use a unit region approximation
as well as the moving average statistics to compute GDðgiÞ more ef-
ficiently, as suggested by the authors of GHM.

3.5 Baseline predictors
To demonstrate the benefits of learning graph neural representations
in a probabilistic ensemble setting, we also consider a baseline
model that only looks at the RNA nucleotide sequence, by simply
having a convolutional neural network (CNN) in place for GNN.
Our baseline CNN model has 2 convolution layers with filters of
length 10 and has the same number of hidden units as in GNN.
Other components of the model are the same, such as the bidirec-
tional LSTM layers and the Set2Set module. We apply the hierarch-
ical objective function to both of our CNN and GNN models,
which therefore are referred to as RPI-Net(CNN) and RPI-
Net(GNN).

3.6 Sequence and secondary structure motif extraction
In biological applications, model interpretability (i.e. the ability to
extract human-understandable, biologically-relevant information
from a trained model) is nearly as important as prediction accuracy.
In the context of studying RNA-protein interaction, this essentially
means to uncover the sequence and secondary structural motifs that
may describe an RBP’s binding affinity, as well as higher-level con-
cepts such as cooperative binding.

Extracting sequence motifs from an RPI-Net(CNN) model.
Integrated gradients (Sundararajan et al., 2017) are an effective ap-
proach to assign an ‘attribution score’ Attr(i) to each position i of a
given input sequence s, measuring the extent to which the nucleotide
at that position contributes to the entire sequence’s prediction score.

IGðxÞ ¼ x� x0

m

Xm

i¼1

rFðx0 þ i

m
x� x0ÞÞ
�

(12)

AttrðxÞ ¼
X

j

ðIGðxÞ � xÞ�;j (13)

Since F, the logit from our neural network that makes the posi-
tive prediction for binding, is differentiable almost everywhere
[Prop.1 in Sundararajan et al., 2017], the following property holds:P

i;j IGðxÞi;j ¼ FðxÞ � Fðx0Þ, where x is an one-hot encoded RNA se-
quence and x0 is a reference having the same length and feature di-
mension as x. IG(x) is a real-valued matrix where i indexes the
position along the sequence and j indexes the encoded feature di-
mension at each position. Therefore, each entry in IG(x) records the
contribution of that position in the sequence to F(x), and for the pur-
pose of revealing attributions of the positive predictions of binding
sites, x is selected from the positive RNA examples and x0 is simply
fixed to zeros.

Since each position in x is encoded with only one nucleotide, we
use Attr(x) from Equation (13) as the final result of the integrated

gradients, which is a vector that only retains the contribution that
exists in the original sequence. Note that we use � to denote
element-wise multiplication.

To identify portions of sequence x of highest relevance to the
prediction, and considering that RBPs tend to recognize short 5–
10 nt motifs, we assign to each position i the sum of the attribution
scores of the K¼10 positions centered at i.

We identified the highest-scoring K-mer from each of the 2000
positive sequences with the highest prediction scores, and then pro-
duced a multiple alignment of those K-mers using clustalw2 (Larkin
et al., 2007), to eventually derive a position weight matrices (PWM)
profile, which can be visualized using WebLogo (Crooks et al.,
2004).

Extracting sequence and structural motifs from RPI-Net(GNN)
models. The input to a GNN, unlike the pure CNN-based approach,
is a sequence-structure pair. During training, the structure is an adja-
cency matrix filled with equilibrium base-pairing probabilities. At
the stage of secondary structural motif extraction, whose purpose is
to characterize the structural preference of the sequence binding
motif, we only study one structure at a time, sampled from
RNAsubopt (Lorenz et al., 2011).

We note that we do not directly compute integrated gradients of
the adjacency matrix. Once a secondary structure is sampled, we
consider its adjacency matrix as fixed weight parameters of the net-
work, and compute integrated gradients to the nucleotide sequence
as usual. The secondary structure is annotated with forgi
(Kerpedjiev et al., 2015) which associates each position in the se-
quence with a structural element such as dangling start (F), dangling
end (T), hairpin loop (H), internal loop (I), multi-loop (M) and stem
(S). Therefore, for each sequence-structure pair, we extract a se-
quence k-mer using the aforementioned procedure, along with its
structural annotation which is also a k-mer. The same multiple se-
quence alignment step is applied to the sequence k-mer, with gaps
inserted in the structural k-mer at the same position as its corre-
sponding sequence k-mer.

Note that given an identical sequence paired with different sec-
ondary structures, Attr(x) should be different for these two struc-
tures and a higher score would suggest the sequence k-mer is better
recognized by the model due to its structural context. Therefore, to
adequately characterize the structural motif, we only consider the se-
quence and structural k-mers with high attribution scores, otherwise
the structural motif may become less meaningful because of the
sheer quantities of random structural k-mers. For this purpose, we
sample 2000 structures from each sequence (including the flanking
regions to the viewpoint) and rank all the k-mers from each
sequence-structure pair based on the attribution scores. The top
ranked k-mers are then selected to build the sequence and structural
motifs.

Due to the consideration of running time, we have only used the
top 100 positive sequences based on the prediction scores, which in
the end gives us 200 000 sequence 10-mers and their corresponding
structural 10-mers. At the multiple sequence alignment step, out of
these 200 000 10-mers, we only align the top 6000 sequence 10-
mers with the highest attribution scores. Then gaps are inserted to
the structural 10-mers at the same position as in their corresponding
sequence 10-mers.

3.7 Debiasing CLIP-seq data
Finally, before turning to our empirical results, we discuss an im-
portant data bias present in many CLIP-seq datasets and our meth-
odology to rectify this bias. Certain variants of the CLIP-Seq
protocol, such as PAR-CLIP (Hafner et al., 2010) and HITS-CLIP
(Licatalosi et al., 2008), use particular RNA cleavage enzymes such
as RNase T1 to separate a portion of RNA that contains the binding
site from the original transcript, resulting in a snippet that can be
later sequenced and mapped to the original genome. The issues
related to these enzymes are that they favor a certain pattern of
cleavage, such as cleaving after Guanine. Therefore, in many posi-
tive examples the RNA-seq reads that contain RBP binding sites
would be preceded by Guanine and end as well with Guanine.
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We adopt the viewpoint terminology originally introduced in
Maticzka et al. (2014), referring to an approximate region centered
in an RNA sequence, relative to the flanking regions extended in
both upward (50UTR) and downward (30UTR) directions. For a
positive RNA sequence, the viewpoint is an actual RNA-seq read
that contains a binding site. In negative examples, viewpoints would
be randomly shuffled unbound sites. Therefore, in dataset obtained
with particular CLIP-Seq protocols such as PAR-CLIP and HITS-
CLIP, viewpoints in the positive examples usually start with
Guanine and end with Guanine. Such a pattern, however, does not
appear in the negative examples, as shown in Figure 2. Notably,
iCLIP (Konig et al., 2010) as another variant of CLIP-Seq does not
seem to exhibit this type of bias.

This cleavage bias is critical, since machine learning algorithms
that base their decisions on features extracted in relatively close
vicinity to the viewpoint borders will very likely end up learning
border motifs that strongly favor Guanine, rather than actual RBP
binding motifs. To address the above concern, we propose a simple
yet effective approach to rectify the bias by replacing the nucleotides
at positions that emit this border pattern with uniformly drawn ran-
dom nucleotides. We replace the nucleotides inside a window of size
3 centered at the Guanine preceding the viewpoint, as well as those
within another window of size 3 centered at the end of the view-
point, as shown in Figure 2. The same replacement strategy is used
for all affected RBP datasets. We employ this strategy for both posi-
tive examples and negative examples so that a machine learning pre-
dictor will not merely learn to distinguish altered (or in other words,
unnatural) nucleotide sequences from the original ones.

After this nucleotide replacement procedure, we create a
debiased version of the dataset where the viewpoint border artefacts
have been largely removed, although it can be observed that for
some RBP datasets such a border bias may extend more than three
bases in both directions, e.g. EWSR1, ELAVL1 (C) and QKI in
Supplementary Figure S1. We select windows of size 3 to guarantee
that Guanine and its two nearby nucleotides are always replaced.
Larger window size would unavoidably degrade the quality of
RNAs by changing their underlying semantics.

With this debiased dataset, we can move on to evaluate a ma-
chine learning algorithm more fairly since it would be pushed to
learn meaningful RBP binding motifs instead of simply exploiting
the border statistics.

4 Results

4.1 Datasets
We evaluate our approach on a well-known benchmarking RBP
binding dataset originally curated by Maticzka et al. (2014), which
features 24 human RBP binding experiments derived from two ear-
lier studies (Anders et al., 2012; Xue et al., 2009) based on different
CLIP-Seq protocols (PAR-CLIP, iCLIP and HITS-CLIP). Each

positive sequence consists of a ‘viewpoint’ region of 12–75 nt, which
is the region identified by the experiment, flanked on each side with
150 nt (when possible), for a total length ranging from 38 to 375.
The flanking regions provide the necessary context to study the
region’s secondary structure and potentially locate binding sites for
cooperative binding. Negative examples are obtained by choosing at
random viewpoint-sized portions of human transcripts, ensuring
they do not overlap positive examples for that RBP and then extend-
ing them by 150 nt. Most datasets include 8000–50 000 positive
examples, and roughly equally many negative examples
(Supplementary Table S2).

Out of the 24 RBP datasets, 16 are obtained with PAR-CLIP and
are thus subject to the bias described in Section 3.7. Another four
are obtained with HITS-CLIP that are also similarly biased, except
for the PTB dataset. The four iCLIP datasets do not exhibit any vis-
ible sequence bias. Our debiasing procedure (Section 3) was applied
to all PAR-CLIP and HITS-CLIP (except PTB) datasets (both posi-
tive and negative examples), which effectively eliminated this un-
wanted signal (Supplementary Fig. S1). The same debiased datasets
were used to train and evaluate all models.

4.2 Performance comparisons
PAR-CLIP bias impacts previous machine learning methods. In
Supplementary Table S3, we present evidence that two representa-
tive algorithms, iDeepE (Pan and Shen, 2018) and GraphProt
(Maticzka et al., 2014), are indeed affected by the PAR-CLIP se-
quence bias.

iDeepE is an ensemble model combining a global and a local
convolution neural network to predict RBP binding from RNA se-
quence only. Here, we demonstrate that when an iDeepE model fit-
ted with the original CLIP-Seq data is used to predict on the
debiased data, its accuracy declines substantially, especially for
RBPs such as CAPRIN1, AGO1-4, IGF2BP123, MOV10 and
ZC3H7B, which from Supplementary Figure S1 are also those where
the PAR-CLIP sequence bias is strongest. This suggests that
iDeepE’s previously reported accuracy may be inflated by this ex-
perimental bias. Indeed, iDeepE’s local convolution neural network
can be particularly susceptible to this type of bias. Nonetheless,
iDeepE remains a strong predictor on debiased data for many RBPs.

GraphProt, which bases its predictions on features mainly
extracted from the viewpoint and surrounding nucleotides, is also
affected by this bias, but to lesser extent. In particular, its perform-
ance on AGO1-4 and ZC3H7B is strongly impacted. This can be
corroborated with evidence from GraphProt’s original paper, which
presents the learnt motifs for these two RBPs [Maticzka et al.
(2014); Fig. 7], showing a close resemblance between GraphProt’s
learned motifs and the border motifs we show in Figure 2. Still,
based on results presented in Supplementary Table S3, GraphProt is
more resilient to the PAR-CLIP artefact than its deep learning com-
petitor in almost every RBP dataset. This suggests that the high

Fig. 2. Positive examples from the PAR-CLIP dataset can be biased at the beginning and at the end of the viewpoint regions, emitting an unusually high frequency of Guanine

(Ghanbari and Ohler, 2020; Kishore et al., 2011) and some correlated residuals, which can be revealed by aligning the viewpoint borders of all positive examples. Such pattern,

however, does not seem to exist in the negative examples, e.g. in the two RBP binding dataset for AGO1-4 and ZC3H7B. It can be further qualitatively verified that all PAR-

CLIP data have suffered from this type of bias, and the complete set of evidence can be found in the Supplementary Figure S1. HITS-CLIP is another protocol that can also be

affected, with analogous but arguably milder border artefacts. SFRS1 is provided as an example for this family of protocols. Other dataset obtained with iCLIP, for example

TDP43, does not appear to have this type of bias at all
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expressivity of deep neural networks could be a double-edged
sword, should the training data contain any bias that can potentially
be exploited by the model. Therefore, it is imperative that a model
should only see debiased CLIP-Seq data during training, otherwise it
can be affected by the bias, unless special training strategy is used to
shield the model from exposure to the viewpoint border statistics,
which we leave for future works.

State-of-the-art performance is achieved by RPI-Net. Here, we
compare our approach to three popular RBP-binding predictors:
iDeepE, GraphProt and mDBN.

mDBN is another deep learning approach that encodes RNA se-
quence and secondary structures using replicated softmax topic
model, complemented by a tertiary structural profile. The training of
mDBN first undergoes a series of pre-training iterations as a deep be-
lief net, and is then trained by stochastic gradient descent as a feed-
forward neural net. We found ourselves unable to re-evaluate mDBN
using the debiased data, because the tool is no longer maintained and
lacks documentation; hence, the performance reported here is based
on the author’s own evaluation on the un-debiased dataset.

Table 1 and Figure 3 report 10-fold cross-validation results on
debiased data for iDeepE, GraphProt and our approach. Detailed
hyperparameters used to evaluate our models can be found in
Supplementary Table S1. Both our CNN or GNN approaches consist-
ently outperform the three existing predictors in terms of AUROC val-
ues, with average AUROC gains of 2.89%, 7.29% and 3.92%
compared to mDBN þ (non-debiased data), GraphProt and iDeepE,
respectively (P-value < 0.001 for all comparisons, calculated for
Wilcoxon signed-rank test (Wilcoxon, 1946) with alternative hypoth-
esis that AUROC values of RPI-Net(GNN) are greater). In all 24 data-
sets, the AUROC values obtained by our two predictors exceed that of
GraphProt and iDeepE on the same debiased data, while mDBNþ
(evaluated on non-debiased data) comes out as a winner for four RBPs.

Incorporating secondary structure improves performance. The
RPI-Net(CNN) and RPI-NET(GNN) approaches perform compar-
ably on many datasets, but the latter achieves superior results for 14
RBPs (against only eight for which the CNN is better). This notably
includes four RBPs (ALKBH5, CAPRIN1, MOV10 and ZC3H7B)
for which the AUROC gain exceeds 1% using the GNN,

highlighting the utility of incorporating secondary structures in the
learning process.

4.3 Motif visualizations
Sequence motifs from RPI-Net(CNN) model. To interpret the
trained models, we developed a summarization approach based on
integrated gradients and sequence motif analysis (Section 3.6). The

Fig. 3. Comparison of RPI-Net(GNN) ROC AUC values to previous models and

RPI-Net(CNN). The dotted lines correspond to a 1% difference. The P-value is cal-

culated for the Wilcoxon signed-rank test with the alternative hypothesis that AUC

scores of RPI-Net(GNN) are greater

Table 1. ROC AUC scores from 24 RBP binding experiments, based on 10-fold cross-validation

RBP mDBNþ (original) GraphProt (debiased) iDeepE (debiased) RPI-Net (CNN) (debiased) RPI-Net (GNN) (debiased)

ALKBH5 0.686 0.671 0.632 0.714 0.724

C17ORF85 0.817 0.774 0.770 0.848 0.844

C22ORF28 0.792 0.729 0.786 0.840 0.849

CAPRIN1 0.834 0.790 0.786 0.843 0.869

Ago2 0.809 0.755 0.851 0.888 0.877

ELAVL1(H) 0.966 0.953 0.970 0.973 0.971

SFRS1 0.931 0.894 0.909 0.936 0.941

HNRNPC 0.962 0.952 0.978 0.985 0.986

TDP43 0.876 0.874 0.941 0.961 0.959

TIA1 0.891 0.861 0.941 0.964 0.963

TIAL1 0.870 0.833 0.933 0.960 0.959

Ago1-4 0.881 0.819 0.868 0.920 0.927

ELAVL1(B) 0.961 0.930 0.944 0.963 0.964

ELAVL1(A) 0.966 0.954 0.969 0.972 0.968

EWSR1 0.966 0.926 0.946 0.964 0.967

FUS 0.980 0.945 0.968 0.978 0.980

ELAVL1(C) 0.994 0.983 0.990 0.995 0.995

IGF2BP1-3 0.879 0.854 0.843 0.904 0.912

MOV10 0.854 0.757 0.818 0.846 0.875

PUM2 0.971 0.951 0.940 0.968 0.972

QKI 0.983 0.952 0.958 0.976 0.977

TAF15 0.983 0.966 0.967 0.982 0.981

PTB 0.983 0.937 0.944 0.958 0.958

ZC3H7B 0.796 0.675 0.764 0.793 0.838

Notes: Underlined RBP indicates that the original dataset is biased and a debiased version is used to train the models. AUC scores that are within 1% of the

best score obtained for a given RBP are shown in bold.
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integrated gradient approach attributes a score to each position in a
sequence, measuring the extent to which the model’s prediction
depends (positively or negatively) on the nucleotide at that position.
Figure 4A shows the integrated gradients values for four positive
examples for different RBPs, based on models trained on the non-
debiased (top) and debiased (bottom) data. The former models
assigns very high attribution scores to the ‘G’ nucleotide near the
viewpoint’s boundaries and comparatively lower scores elsewhere.
However, with models trained on debiased data, this border arte-
facts disappears and meaningful protein binding motifs emerge
within the viewpoints. Notably, regions with high attribution scores
tend to resemble known motifs for those RBPs (Fig. 4B, left
column).

While attribution scores can highlight relevant portions of individ-
ual input sequences, they need to be combined to obtain a more global
representation of the sequence motifs sought by our models. We devel-
oped an approach based on alignment and summarization of sub-
strings with high attribution scores (Section 3), which results in a
more classical sequence logo for each RBP. Figure 4B shows the motifs
obtained for six RBPs for the RPI-Net(CNN) model; the complete list
of motifs for all RBP is available in Supplementary Figure S2.

Many of motifs found have shown a strong agreement with
experimentally-determined motifs such as TBP43, PTB, PUM2, QKI
and SFRS1 (Colombrita et al., 2012; Hafner et al., 2010; Perez
et al., 1997; Tacke et al., 1997). In general, the majority of our se-
quence motifs shown in Supplementary Figure S2 conform well to

the prior biological observations, including A-U rich patterns for
EWSR1, TAF15 and FUS, and U-track for HNRNPC and TIA1.
There are also less successful cases such as IGF2BP1-3 where the
motif pattern is less conspicuous, potentially due to the uncertainty
of the model about the binding mechanism of that RBP. This also
tends to be the cases where the RPI-Net(CNN) model makes less ac-
curate predictions (e.g. C22ORF28, AGO1-4, MOV10,
C17ORF85, ZC3H7B and CAPRIN1). This suggests that the quality
of motifs extracted from the model is dictated by the model’s cap-
ability of making accurate predictions for an RBP.

Identification of secondary sequence motifs. In addition to the
sequence motifs obtained by multiple sequence alignment, we inves-
tigated an alternate approach using motif discovery program
MEME (Bailey et al., 2015) to identify enriched motifs within the
10-mers identified using our integrated gradients approach. A poten-
tial advantage of tools like MEME is that they can discover multiple
motifs, some of which may be mediating cooperative binding with
other RBPs. Results are shown in Supplementary Figure S3. For sev-
eral RBPs (e.g. TIAL1, SFRS1 and AGO1-4), we can observe more
than one motif with very low e-values that may be attributed to dif-
ferent RBPs. Notably, most of the motifs found here were not
detected by directly running MEME on the entire viewpoint regions,
showing that our approach was instrumental in highlighting key
portions of those sequences.

Sequence and structural motifs from RPI-Net(GNN) model.
Extracting motifs from the GNN model is more challenging because

Fig. 4. Integrated gradient maps and sequence motifs obtained using RPI-Net(CNN). (A) Integrated gradient values for four positive examples, revealing that debiasing the

CLIP-Seq data is crucial for RPI-Net(CNN) to learn meaningful protein binding hypothesis. When RPI-Net is trained on the original (biased) datasets, the border artefacts will

receive the highest attribution of the model’s prediction. Trained on debiased datasets, the border artefacts are eliminated and meaningful protein binding pattern are revealed

inside the viewpoint region (enclosed red rectangles). (B) Shows six sequence logos extracted from RPI-Net(CNN) models, compared to the known motifs for those RBPs. The

widths of characters become smaller as more gaps are inserted to that position. Our sequence motifs have shown a strong agreement to the literature motifs that are experimen-

tally verified. Image credits: The literature motif images are taken from Maticzka et al. (2014), Figure 5
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they involve a combination of sequence and secondary structure.
Applying the approach described in Methods, we obtained paired
sequence-structure logos for each RBP. Figure 5 shows the motifs
obtained for the RBPs for which the GNN approach yielded signifi-
cantly improved accuracy compared to the CNN (see
Supplementary Fig. S4 for the full results).

Despite having a limited quantity of RNA sequences, we can still
reveal some remarkable binding hypothesis learnt by our GNN
model. The PTB binding motif shows a clear ‘UCUU’ repeat that is
almost absent in its CNN counterpart. The structural motif of PTB
also highlights segments of unpaired regions separated by a double-
stranded region, which suggests a stem-loop structural component
to the PTB binding motif. The IGF2BP1-3 motif also demonstrates a
clear ‘CAU’ repeat that strongly agrees with the literature, which
also tends to adopt a structural context of stem-loops. The structural
motifs for MOV10, CAPRIN1, ZC3H7B and ALKBH5, suggest
that these sequence motifs are mostly located in double-stranded
areas, except for CAPRIN1, which tends to have a small segment of
a hairpin loop.

5 Discussion and conclusion

In this study, we introduced a novel approach to model RNA sec-
ondary structures with GNNs, which shows important performance
gains over the previous methods and improves on our own powerful
CNN baseline. We can also interpret the meaningful protein binding
hypothesis learnt by our models by extracting sequence and struc-
tural motifs. We also propose a strategy to eliminate CLIP-Seq bor-
der artefacts, which enable our approach to learn meaningful
protein binding hypotheses.

Despite the significant performance gains and meaningful bio-
logical interpretations provided by our GNN as well as CNN mod-
els, our approach can be still improved in many aspects to better
integrate RNA secondary structure information. For one, our ap-
proach is not taking advantage of the nested nature of RNA second-
ary structure, which could be naturally represented by a junction
tree or hypergraph (Jin et al., 2018). For instance, one could con-
sider aggregating structurally adjacent nucleotides within the same
double-stranded stem or unpaired loop region into a single node in a
hypergraph. This hierarchical pooling strategy could enable our
model to learn more meaningful graph level embeddings and to
make faster inference, since the pooling operations interleaving the
GNN layers would reduce the dimensionality of the graph while
also refining the higher level node embeddings with more hierarchic-
al information.

Our work also demonstrates that the removal of border artefacts
is crucial for an end-to-end learning system to learn non-trivial pro-
tein binding hypothesis. An interesting alternative to our debiasing
technique is the one introduced by Ghanbari and Ohler (2020), who
formulate the RBP binding prediction problem as a multi-class clas-
sification, aiming to simultaneously predict the binding of all RBPs
in a collection of CLIP-seq datasets, which combines multiple biased
RBP dataset into one. If all datasets are equally affected by sequence
biases introduced by the experimental protocol, then this bias is
uninformative for the prediction task and should not significantly
affect the training. However, our experience is that different

PAR-CLIP datasets exhibit biases of different strengths, which
would be problematic for this approach; the criterion of grouping
different protein dataset should be based on the similarity of their
border emission patterns. A proper quantitative guidance for merg-
ing different dataset has yet to be defined.

One other aspect that calls for additional improvement is related
to the secondary structural motifs extracted from our GNN models,
which are limited in the sense that they are merely presented in a
one dimensional format, although the inputs to the GNN is repre-
sented as a full two dimensional base-pairing probability matrix. To
obtain secondary structural motifs in the two dimensional space, a
subgraph alignment technique may be developed to obtain a prob-
abilistic profile over the structural preference around the binding
sites.

Finally, a transcript’s secondary structure may allow binding
sites for cooperating RBPs to come in close physical proximity (des-
pite being distant along the linear sequence) as suggested in
Supplementary Figure S5, and hence allow stabilizing protein–pro-
tein interactions. A potential benefit of the GNN approach that
remains to be explored is its ability to amalgamate sequence signal
information across the entire structure in a manner that may be
more biologically relevant than what a CNN can achieve.
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