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Mechanical and metabolic
interplay in the brain
metastatic microenvironment

Killian Onwudiwe, Alice A. Burchett and Meenal Datta*

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame,
IN, United States
In this Perspective, we provide our insights and opinions about the contribution—

and potential co-regulation—of mechanics and metabolism in incurable breast

cancer brain metastasis. Altered metabolic activity can affect cancer metastasis

as high glucose supply and demand in the brain microenvironment favors

aerobic glycolysis. Similarly, the altered mechanical properties of disseminating

cancer cells facilitate migration to and metastatic seeding of the brain, where

local metabolites support their progression. Cancer cells in the brain and the

brain tumor microenvironment often possess opposing mechanical and

metabolic properties compared to extracranial cancer cells and their

microenvironment, which inhibit the ease of extravasation and metastasis of

these cells outside the central nervous system. We posit that the brain provides a

metabolic microenvironment that mechanically reinforces the cellular structure

of cancer cells and supports their metastatic growth while restricting their spread

from the brain to external organs.

KEYWORDS

tumor metabolism, glycolysis, fatty acid synthesis, tumor mechanics, extracellular
matrix, mechanotransduction, cell stiffness, brain metastatic microenvironment
Introduction

Cancer genetic and metabolic aberrations are linked via oncogenes and tumor

suppressors that play a key role in cell metabolism (1–3). They largely affect three

major metabolic pathways: aerobic glycolysis, glutaminolysis, and one-carbon

metabolism (4–8). These alterations make it possible for cancer cells to transition from

simple adenosine triphosphate (ATP) production to the generation of large quantities of

nucleotides, fatty acids, amino acids, and other intermediates necessary for rapid mitosis,

proliferation, and cell growth (9–11). Cancer cells can even alter their metabolic

programs to maintain cell-autonomous proliferation in the often nutrient-poor

conditions of the tumor microenvironment (12).
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Considering that cellular energy metabolism greatly impacts

neoplasia and can determine cell fate (e.g., proliferation versus

apoptosis), high energy metabolism in the brain could be largely

responsible for the propensity and aggressiveness of metastasis

to and within that organ (13). The brain is a highly vascularized

structure, and its cells are largely dependent on circulating

glucose for energy production (14). Normal brain cells derive

most of their energy from aerobic oxidation of glucose, while

metastatic cancer cells possess metabolic flexibility and depend

not only on glucose for energy but also on glutamine and acetate,

irrespective of their origin or subtype (8). This metabolic

adaptation promotes the rapid growth of cancer in the brain (8).

Besides metabolism, the brain is also mechanically distinct

from other organs. The increased energy demand in the brain

tumor microenvironment supports hyper-vascularization and a

leaky blood–brain barrier, which causes increased fluid pressure

and increased shear stress within the tumor microenvironment

(15, 16). The mechanical properties of brain tissue, such as its

stiffness (i.e., Young’s modulus), are lower compared to other

tissues in the body. This is in part due to the increased fluid

pressure from leaky vasculature and excessive loss of cell mass in

the brain caused by the tumor and chronic inflammation

(16–19).

In brain tumors, there is a relatively elevated production of

some ECM proteins (proteoglycans, hyaluronic acid,

glycosaminoglycans, and collagen), which increase tumor

stiffness and play an important role in tumor progression (20,

21). This is in part due to the increased metabolic stress and

elevated YAP-TAZ signaling (20, 21). But unlike extracranial

cancers that are typically stiffer than their host tissue, primary

brain tumors (e.g., glioblastoma) are often more compliant than

their surrounding tissues, as shown in Table 1 (17). Mechanical

forces are also strikingly altered in the presence of a brain tumor

(28). For example, edema, which is a commonly observed

clinical pathology, is a result of excess fluid pressure in and

around brain tumors (29). Solid stress—exerted by growth-

induced forces—from brain tumors is exerted not only within

the tumor mass itself but externally as well, compressing the

surrounding normal tissue, thereby reducing perfusion and

inducing neuronal loss (30–32). These mechanical stresses are

believed to be a major cause of the clinical symptoms seen in

brain cancer patients (31).
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Cancer cells themselves have also altered physical properties;

their mechanical integrity tends to be lower than that of normal

cells in the brain and decreases with increasing tumor

progression and metastasis (33–37). Tumorigenesis, for

example, induces actin cortex remodeling, which in turn

makes cancerous cel ls softer—a key advantage for

uncontrolled division, migration, and infiltration. Reduced cell

membrane stiffness enhances the ability of cancer cells to

migrate from the primary tumor to secondary sites, with each

organ hosting its own unique mechanical properties and

forces (38).

In this Perspect ive , we explore how the brain

microenvironment regulates unique relationships between

metabolism and mechanics (Figure 1), both at the cellular and

tissue levels. We propose that exploring mechano-metabolic

interplay may reveal new targetable vulnerabilities.
Cancer mechanics and metabolism
in the brain

Mechanica l s ignals f rom the bra in and tumor

microenvironment (TME) modulate cell and tumor mechanics

and influence cell metabolism to promote the aggressiveness of

cancer (42, 43). Cancer cells mechanically interact with their

environment via mechanotransduction by converting

mechanical cues into biochemical outputs (44). Mechanical

stresses—sensed through conserved mechanotransduction

pathways—can alter the metabolism and behavior of cancer

cells and can cause cancer cells to attain stem-like properties,

thus driving cancer progression and metastasis (42).

Mechanotransduction also leads to cytoskeletal reorganization

and changes in cell stiffness, another important player in the

mechanical–metabolic feedback system. As shown in Table 2,

several other factors influence the mechanical–metabolic

feedback system in the body.

In most cancers, the mechanically and spatially

heterogeneous TME induces metabolic alterations, facilitating

cancer cells to dynamically tune energy generation in response to

fluctuating energy needs (45). Proliferation rates and propensity

for migration are higher in cancerous cells than in normal cells,

which requires more energy and allows them to preferentially
TABLE 1 Stiffness of biological tissues in their normal and diseased states.

Tissue Tissue stiffness (kPa) Tumor Stiffness (kPa) Reference

Breast 27 270 (22)

Brain 5.89 3.75 (23)

Lung 5 30 (24)

Bladder 3 8 (25)

Liver 6 12 (26)

Pancreatic 3 6 (27)
fro
ntiersin.org

https://doi.org/10.3389/fonc.2022.932285
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Onwudiwe et al. 10.3389/fonc.2022.932285
respond to environments with higher nutrient and energy

production (46, 47). Mechanotransduction provides signals to

control cell proliferation, differentiation, and death and requires

the metabolism of nutrients for both energy generation and

biosynthesis of macromolecules (48). Not only do these

functions depend on cell mechanics, but they also largely

depend on the mechanical properties and functions of the

extracellular matrix (ECM) (44).

In tumors, ECM stiffness is largely governed by the

deposition and crosslinking of collagen as well as the

presence of hyaluronic acid (49–52). Many cell activities are

influenced by the properties of the ECM, including metabolic

reprogramming (47). The mechanical properties of individual

single cells and the sensing of external forces induce
Frontiers in Oncology 03
metabolic changes in the cells, which in turn regulate cell

and tissue mechanics (e.g., cytoskeletal changes, ECM

production) (53). For example, normal cells in softer ECM

(such as the brain, which lacks collagen and other stiffening

molecules) have fewer bundled actin fibers than those near

stiff ECM structures (54). Cells within soft ECM facilitate

optimal glycolysis by mediating TRIM21 (tripartite motif

containing-21, a ubiquitin ligase) and inducing subsequent

degradation of phosphofructokinase (PFK), a rate-limiting

glycolytic enzyme (54). In contrast, cells surrounded by stiff

ECM have increased cell-surface tension, which has

promoted highly bundled actin fibers that entrap TRIM21,

rendering it inactive and increasing the rate of glycolysis (54).

In most cancers, increasing ECM stiffness upregulates the
TABLE 2 Mechanical parameters and their mediators that impact cancer cell invasion/metastasis.

Parameter Mediator

Intracellular viscosity and elasticity Dynamic cytoskeletal proteins (actin, keratin, etc.), microtubule and microfilament polymerization and stability

Cell membrane viscosity and elasticity Cholesterol content, saturated/unsaturated membrane lipid ratio

Stiffness of stromal cells Varies with cell type and function, can be altered by tumor cell signaling

Stiffness of microenvironment ECM content (collagen, hyaluronic acid, etc.), concentration, and degree of crosslinking
FIGURE 1

Mechanics and metabolism are linked in the brain metastatic microenvironment. Abnormalities in tissue and cell-scale physical properties
influence and are influenced by metabolic processes, both of which can contribute to the initiation and progression of brain metastases [Clinical
images reproduced from (39–41)].
frontiersin.org

https://doi.org/10.3389/fonc.2022.932285
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Onwudiwe et al. 10.3389/fonc.2022.932285
number of glucose transport proteins in the cell membrane,

increases glycolytic enzymes and glycose synthase activity,

induces the expression of gluconeogenic genes, and enhances

the pentose phosphate pathway, all of which increase cancer

cell metabolism (47). Thus, changes in cell and/or ECM

stiffness—influenced by microenvironmental factors and

mechanobiological signaling—play an important role in cell

growth, proliferation, migration, and malignancy (36, 55, 56).

While ECM stiffness and cell–ECM adhesion are important

regulators of tumor cell invasion, ECM degradation through

enzymes such as matrix metalloproteinases (MMPs) is also

cri t ical for cel l migrat ion (57) . The acidic tumor

microenvironment resulting from overactive cell metabolism is

favorable for MMP activation (58). The resulting metabolic shift

toward aerobic glycolysis in cancer cells supports the production

of MMP2, for example, which can help clear a path through the

ECM (58). Thus, metabolism contributes to protease-enabled

cell migration.

The transcriptional regulators YAP and TAZ are largely

responsible for the effects of ECM stiffness on cellular glucose

metabolism (47). They integrate mechanical cues and responses

to soluble signals and metabolic pathways to control several

aspects of cell behavior, including proliferation and migration.

In normal development, the Hippo pathway serves to regulate

YAP/TAZ activity to control cell proliferation and stemness.

Mechanosensory processes are integrated into the Hippo

pathway, linking mechanical stress to the transcriptional

response of the cell. For example, stiffened ECM causes actin

polymerization within the cell, which inhibits the downstream

Hippo pathway, allowing YAP/TAZ to migrate to the nucleus

and function as transcription factors to promote proliferation

(59). YAP/TAZ activation also regulates metabolic processes,

promoting aerobic glycolysis and responding to local glucose

levels (60). In breast tumors, YAP activation drives cancer

growth and metastasis (61). YAP, which is found to be

localized in the nucleus, is highly expressed in breast cancer

tissues and increases metabolic transcriptional activity in breast

cancer cells (62). Hence, aberrant YAP/TAZ activation can

specifically promote cancer cell metastasis, such as breast

cancer brain metastases (63, 64).

In contrast to ECM stiffness, cellular stiffness is primarily

influenced by the structural composition of the cytoskeleton, i.e.,

increasing structural protein density (e.g., actin, keratins) can

increase cell stiffness (37, 65). However, in response to the

aberrant biomechanical tumor microenvironment, cancer cell

cytoskeletal proteins undergo significant degradation and

reduction, thus rendering these cells more mechanically

compliant (37, 65–68). This is the case for most metastatic

cancers (including breast cancers), where the rigidity of the
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cytoskeleton decreases with tumor progression, especially in

highly metastatic cells (37, 65, 66).

Cell cytoskeletal composition and their dynamic

alterations during motility can also contribute to metabolic

alterations. The focal adhesion proteins activated during cell

adhesion and detachment guide mitochondrial regulation

and govern the rate of ATP production (48, 69). In the

bra in , fo r example , they can ca tabo l i z e gamma-

aminobutyric acid (GABA) to create nicotinamide adenine

dinucleotide + hydrogen (NADH) for the support of

biosynthetic processes for sustained proliferation and

migration (8). Highly proliferative metastatic cancer cells

with low adhesion, higher PI3K expression, and loss of

PTEN tend to use alternative endogenous substrates for

their metabolism and continued proliferation (8, 70). Thus,

cytoskeletal protein polymerization and cell mechanics are

intrinsically connected and can largely be affected by the

microenvironment (53).

The phosphatidylinositol 3-kinase (PI3K) signaling

pathway, which plays a role in the regulation of glucose

metabolism and renders the cells dependent on high levels of

glucose flux, is activated via integrin-mediated activation of focal

adhesion kinase (FAK) (71–73). However, PI3K is dysregulated

through various mechanisms, including loss or inactivation of

the tumor suppressor PTEN, mutation or amplification of PI3K,

and activation of tyrosine kinase growth factor receptors or

oncogenes upstream of PI3K (73). PI3K is active in brain

metastases, including those from breast cancer (71–73).

Activation of the PI3K pathway initiates a cascade that results

in the formation of new actin fibers and branching of existing

fibers. This actin polymerization leads to protrusions at the cell

membrane, such as lamellipodia and invadopodia. Mature

invadopodia mediate cell interaction with and movement

within their microenvironment and involve both cytoskeletal

structures that facilitate cell movement and the delivery of

matrix-degrading proteases to clear a path (74). There is also

emerging evidence that cytoskeletal processes in turn regulate

PI3K activity, potentially completing a positive feedback loop

that results in cancer cell invasion (75).

In the brain, the mechanical properties of cancer cells and

tumors in the metastatic environment are opposing (e.g., tumor

versus host stiffness). Cellular stiffness is generally higher than

that of the ECM, and the overall tumor generally softens with

cancer progression (16). This undoubtedly affects and is affected

by cell metabolism and may partially explain the comparatively

low metastatic rate of cancerous cells from the supportive brain

microenvironment to extracranial sites, particularly in the

context of primary brain tumors (53, 76). We, therefore,

hypothesize that due to increased glucose supply in the brain,
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metastatic cancer cells often migrate to the brain, while brain

cancer cells preferentially invade locally rather than extravasate

and metastasize to other parts of the body.
Cancer metabolism and metastasis
in the brain

Cancer cells consume excess nutrients and energy compared

with benign cells. The Warburg effect alters cancer cell

metabolism by increasing glucose uptake and the fermentation

of glucose to lactate (77, 78) (Figure 2). This process, known as

aerobic glycolysis, is less efficient than the complete

mitochondrial respiration cycle that occurs in normal cells, but

it may provide comparable amounts of energy and even confer a

survival advantage to cancer cells. In glioblastoma, for example,
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which is the most common and malignant primary adult brain

tumor, a metabolic shift is observed toward aerobic glycolysis

(13). Glioma cells adapt to maximize their ability to synthesize

substrates for membrane lipids, nucleic acids, and proteins for

increased proliferation and migration (13). In breast cancer

brain metastases, fatty acid synthesis is elevated compared to

the metabolism at extracranial sites, resulting in a site-specific

metabolic dependency (79). A recent study by Parida et al.

showed that brain-tropic Her2+ breast cancer cell metabolic

diversity and plasticity shape their metastatic fitness (80). These

cells outcompete proximate cells in the brain for glucose uptake,

metabolize lactate, hinder immune surveillance, and successfully

seed brain metastases (80). This metastatic process requires de

novo ser ine synthes i s to prol i ferate in the bra in

microenvironment due to reduced amino acid levels in the

brain relative to the plasma (81). However, because

biochemical factors such as oxygen and glucose influence cell
FIGURE 2

Cancer invasiveness and metastatic potential are regulated by the cooperation between aberrant cellular/tissue mechanics and altered
metabolism in tumors. The physical and metabolic characteristics of tumors and their microenvironment interact in many distinct ways.
Heightened solid stress (compressive and tensile) compresses tumor blood vessels, exacerbating hypoxia and acidosis within the
microenvironment, which influences metabolism. Increased cell metabolism (e.g., aerobic glycolysis and lactate production) enables cell
proliferation, which in turn causes an increase in solid stress. Metabolism is also influenced by increased fluid shear stress and elevated ECM
stiffness, which results in altered cytoskeletal organization and reduced cancer cell membrane stiffness. Mechanical properties and forces are
sensed via mechanotransduction pathways (e.g., focal adhesion kinase (FAK), resulting in translocation of YAP/TAZ to the nucleus which
influences many cells physiological properties). Cell stiffness is also influenced by lipid metabolism in cancer cells. Together, co-regulated
metabolic and mechanical alterations in cancer cells directly promote invasion and metastasis.
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migration and metabolism, a well-nourished brain promotes

cancer cell seeding and invasion (82). Initial metabolic plasticity

also supports metastasis to and survival in the brain, where

cancer cells lose some of their metabolic flexibility compared to

the primary tumor upon colonization (82).

Intrinsic and extrinsic factors affect cancer metabolism and

metastasis (8, 83). Intrinsically, mutations and changes in gene

expression support metabolic shifts and can directly alter the

levels or activity of metabolic enzymes within cancer cells (8).

The loss of tumor suppressor genes such as phosphate and

TENsin homolog deleted on chromosome 10 (PTEN) correlates

with a significant increase in the risk of brain metastases in

melanoma, breast, and lung cancer patients (83–86).

Extrinsically, interactions with the extracellular matrix,

surrounding cells, and available nutrients affect cell

metabolism. For example, ECM alterations due to primary

therapies (radiotherapies and chemotherapies) increase

metabolism and energy production (ATP and GTP) and can

create migratory tracts to promote intracranial tumor migration,

invasion, and recurrence (87–89). Since about 20% of glucose-

derived energy products in the body are consumed in the brain,

the local rates of glucose supply and demand provide an ideal

nutrient-rich environment to fuel the growth of primary and

metastatic tumors (90). It has been recently shown that breast

cancer metastases feature higher expression of glycolysis-related

proteins (Glut-1, hexokinase II, CAIX, and MCT4) in the brain

than in other organs (bone, liver, or lung) (91). Due to enhanced

gluconeogenesis and glutamine oxidation (77), brain metastatic

breast cancer cells have also been shown to develop the ability to

survive and metastasize independently of glucose availability.

Breast cancer cells that metastasize to the brain have a

genetic predisposition for adaptability and the ability to

crosstalk with host cells, influencing de novo metabolic

changes (92). For example, during early metastatic brain

colonization, the blood–brain-barrier (BBB) is selectively

disrupted via cancer cell trafficking and the inhibition of

the docosahexaenoic acid (DHA) transporter expressed by

endothelial cells. This loss can induce BBB leakage, reduce

DHA transport, and alter metastatic lipid metabolism (83,

93). Because glutamine and glutamate are stored in the brain

microenvironment, cancer cells also use these amino acids to

support their continuous proliferation and biosynthesis of

macromolecules (94). The PTEN pathway is suppressed in

breast metastatic cells in the brain microenvironment by

astrocytes via the activity of exosome-delivered miRNAs

that inhibit PTEN expression, thus promoting tumor

growth and progression (83). Hence, the metabolic soil of

the brain is primed to support the growth of the metastatic

cancer cell seeds (95).

Cancer cells also increase the synthesis of cholesterol, an

integral part of the cell membrane (96). This is a common

characteristic of breast cancer cells, as cholesterol must be

constructed into new cell membranes in dividing cells (97).
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However, cholesterol synthesis is particularly upregulated in

the brain, in part because cholesterol cannot cross the BBB

(96). It has been shown that both tumor tissues and individual

tumor cells have increased membrane cholesterol levels,

across a range of cancer types (98). While there are

contradictory findings on the effects of membrane

cholesterol and cholesterol depletion in cancer cells,

membrane cholesterol plays an important role in cell

membrane stiffness (98). Brain metastatic cancer cells also

increase total fatty acid content to support membrane

biosynthesis, though unsaturated fatty acid synthesis is

decreased (96, 98). Interestingly, unsaturated fatty acids

lead to a more rigid cell membrane, i.e., a decrease in

unsaturated fatty acid content may correspond to a decrease

in cancer cell fluidity (99). Together, cholesterol and lipid

synthesis provide yet another link between the biological and

mechanical characteristics of brain metastatic cells. Indeed,

the brain appears to provide a metabolic microenvironment

that mechanically reinforces the cellular structure of

metastatic cancer cells.
Cancer mechanics and metastasis in
the brain

Numerous studies have shown the interdependency of

mechanics and metastatic behavior of cancer cells (65, 66, 100,

101). The mechanical properties (e.g., stiffness, viscosity) of most

cancer cells, including those in the breast, are lower than their

counterparts in normal cells (67, 102, 103). Most cancerous cells

have altered viscoelastic properties (lower stiffness and viscosity)

that allow cells to move easily through the interstitium and

tumor microarchitecture on their way to metastatic sites (104).

In contrast, brain cancer cells within softer tumors may be less

likely to systemically metastasize and may be partially

constricted by the stiffer tissue of the surrounding host brain

compared to the tumor stiffness, as well as the tumor mechanical

stresses housed and amplified within the skull, all of which

reduce the ease of migration (105). As described earlier, at the

cellular level, brain cancer cells are stiffer than normal glial

cells (76).

Besides well-known mechanical abnormalities such as cell

and matrix stiffness and interstitial fluid pressure, tumors also

generate solid stress due to the solid elements of the tumor

(30). These solid stresses promote tumor progression and

hinder the delivery and efficacy of anti-cancer therapies by

compressing the blood vessels and contributing to

intratumoral hypoxia (30). Growth-induced stresses

enhance epithelial-to-mesenchymal (EMT) transition and

cancer cell migration, in part via activation of b-catenin,
AKT, and Erk pathways, all of which are metabolically related

(105, 106). Notably, reducing solid stress (e.g. , via
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angiotensin receptor blockade) in breast cancer mouse

models reduces lung metastatic burden (107). However,

direct links between this mechanical force and cancer cell

membrane stiffness and metabolic activity have yet to be

determined. Nevertheless, altered mechanics at the cellular

and tissue levels can drive cancer metastasis.
Discussion

The interplay of mechanics and metabolism is largely

unexplored but undoubtedly plays a major role even in the

early stages of the metastatic cascade from primary sites such as

breast tumors. Hypoxia and acidosis in the primary tumor

microenvironment emerge due to rapid cell division, a poorly

functioning vasculature, and high rates of glycolysis and lactate

production in tumor cells (108). These conditions promote

metabolic pathway alterations, including a switch from

oxidative phosphorylation to aerobic glycolysis, to aid cancer

cell proliferation (109, 110). The need for higher energy levels

causes these cells to invade nearby and distal organs (e.g., the

brain) where glucose levels are high and can sustain cancer

growth and spread. These aggressive primary breast cancer cells

have low membrane stiffness and viscosity compared to normal

epithelial cells, so they can easily detach from their substrate and

intravasate (65, 66, 68). The reduction in cancer cell membrane

stiffness is in part due to the interactions between cell

metabolism and cytoskeletal structure (109). Resistance of the

cytoskeleton in response to altered mechanical cues in variable

microenvironments can enable the altered energy metabolism,

e.g., the persistence of high glycolytic rates in cancer cells despite

chronic mechanical changes in the tumor tissue (109, 110).

The invasion occurs from the primary invasive tumor site

(breast), through the circulation (blood vessels), to the secondary

metastatic site (brain). Cancer cells experience distinct

mechanical and metabolic microenvironments at each stage,

leading to biophysical adaptations. While in circulation within

the blood vessel, metastatic cancer cells experience varying

mechanical forces such as shear stress, which can activate

genetic programs associated with cytoskeletal remodeling and

altered cell–cell adhesion (36). Shear stress also activates

ATOH8, a fluid mechanosensor that transcriptionally

promotes glycolysis and reduces reactive oxygen species (ROS)

(111). This promotes cancer cell survival in the bloodstream by

enabling metabolic flexibility. Notably, most cancer cells do not

survive the circulation, which may be due in part to the varying

mechanical microenvironment and/or altered metabolism

within the blood vessel (112, 113). Krog et al. also suggested

that the mechanical fragility of circulating cancer cells is not

necessarily due to the magnitude and duration of exposure to

fluid shear stresses during circulation but possibly due to other

secondary causes such as their exposure to immune attack in the

blood vessels and lack of matrix attachment (113). They also
Frontiers in Oncology 07
concluded that these cancer cells may be as likely to withstand

hemodynamic stresses as other blood cells during circulation

(113). Cancer cells that survive the circulation, however, acquire

energy via alternate carbon sources than they do in the solid

tumor microenvironment (114).

Once in the brain, breast cancer cells may assume brain-

like properties to survive, e.g., by using GABA to synthesize

NADH for energy production (115). Exposure to new

mechanical properties and forces drives further metabolic

and mechanical changes during metastasis, including the

stiffening of the disseminated cancer cell membrane relative

to those in the primary breast tumor (116, 117). Metabolically

(e.g., via production of cytoskeletal proteins), mechanical

cues from the tumor microenvironment can lead to

increased cell stiffness (110). Reinforcement of the

cytoskeletal structures and rigidity of the cell viscoelasticity

in the brain may prevent secondary brain tumors from

seeding tertiary extracranial metastases (or primary brain

tumors from seeding initial secondary metastases). Further

exploration into the co-regulation of mechanics and

metabolism in the cerebral microenvironment may provide

new insights and reveal new targetable vulnerabilities for

breast cancer brain metastases.
Conclusion

The interaction between mechanics and metabolism is

multifaceted and plays a pivotal role in cancer progression, as

seen in the case of breast cancer metastasis to the brain. The

brain microenvironment provides a favorable mechanical and

metabolic microenvironment for disseminated cancer cells,

helping promote tumor growth and invasion. However, it is

challenging to fully understand the relationship between

mechanics and metabolism due to heterogeneity within a

tumor, between different tumors in one patient, between

different patients of the same tumor type, and between

different patients with different cancers. Current methods

for measuring cell and tissue stiffness, such as atomic force

microscopy and magnetic resonance elastography, could be

improved to provide more accurate and high-resolution

information. Understanding the complete metabolic milieu

of a cell requires the acquisition of a complex range of

metabolomics data, which is time-sensitive and cost-

intensive and may not always capture the true in vivo

(particularly dynamic) state. Further advancements in

metabolic analysis methods combined with mechanical

probing would a id in revea l ing the dynamic and

heterogeneous metabolic states within a tumor and how

they correlate with metastasis and patient outcomes. In the

future, information about the mechanics and metabolism of

patient-derived cancer cells could also serve as valuable

biomarkers of metastasis.
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