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Associative learning of temporally disparate events is of fundamental importance for
perceptual and cognitive functions. Previous studies of the neural mechanisms of such
association have been mainly focused on individual neurons or synapses, often with an
assumption that there is persistent neural firing activity that decays slowly. However,
experimental evidence supporting such firing activity for associative learning is still
inconclusive. Here we present a novel, alternative account of associative learning in the
context of classical conditioning, demonstrating that it is an emergent property of a
spatially extended, spiking neural circuit with spike-timing dependent plasticity and short
term synaptic depression. We show that both the conditioned and unconditioned stimuli
can be represented by spike sequences which are produced by wave patterns propagating
through the network, and that the interactions of these sequences are timing-dependent.
After training, the occurrence of the sequence encoding the conditioned stimulus (CS)
naturally regenerates that encoding the unconditioned stimulus (US), therefore resulting
in association between them. Such associative learning based on interactions of spike
sequences can happen even when the timescale of their separation is significantly larger
than that of individual neurons. In particular, our network model is able to account for the
temporal contiguity property of classical conditioning, as observed in behavioral studies.
We further show that this emergent associative learning in our network model is quite
robust to noise perturbations. Our results therefore demonstrate that associative learning
of temporally disparate events can happen in a distributed way at the level of neural
circuits.
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INTRODUCTION
Associating sequential events happening at different time
moments is of fundamental importance for a host of perceptual
and cognitive functions (Wallenstein et al., 1998; Fuster et al.,
2000). One of the important paradigms of such association is clas-
sical conditioning, in which the pairing of two subsequent stimuli
is learned such that the presentation of the CS is taken as a predic-
tor of the subsequent US (Rescorla, 1988). Despite the fact that all
classical conditioning experiments have an important temporal
component (i.e., the US occurs after the CS), many theories such
as the Rescorla-Wagner theory of conditioning do not include
this timing relationship in their models (Rescorla and Wagner,
1972; Markram et al., 2011). Furthermore, most of the theo-
retical models proposed for classical conditioning have focused
on individual neurons or synapses by assuming the presence of
slowly decaying firing activity of neurons. This, when combined
with some synaptic learning rules such as spike timing dependent
plasticity (STDP), enables associative learning between tempo-
rally separated events to happen (Gluck and Thompson, 1987;
Wörgötter and Porr, 2005; Drew and Abbott, 2006). However,

experimental evidence for such slowly decaying firing activity is
still inconclusive (Ito et al., 2008).

Here, we present a novel, alternative account of associative
learning of spatially and temporally separated events, which
utilizes the emergent dynamics of neural circuits rather than
individual neurons. Our proposal relies on two basic, known
neurophysiological features: (1) spike-timing dependent plastic-
ity (Abbott and Nelson, 2000; Dan and Poo, 2006), and (2)
short term depression (STD) (Zucker and Regehr, 2002). In our
proposal, both the CS and US are encoded as spike sequences
formed by propagating spiking waves, which emerge from spa-
tially extended, spiking neural circuits, in which each neuron is
coupled to nearby neurons in two dimensions, with coupling
strengths being a function of distance. Associating the CS and
the US with a time separation greater than 100 ms naturally
occurs through the timing-dependent interacting dynamics of
these spiking waves. We further show that our model of asso-
ciative learning is able to account for the temporal contiguity
property of classical conditioning, i.e., that the success of asso-
ciative learning of conditioning is a non-monotonic function
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of the amount of time by which the CS precedes the US; in
particular when the precedence is either too short or too long,
conditioning is relatively poor, as found in behavioral studies
(Rescorla, 1988). We also show that our model is robust against
perturbations.

The idea of using interacting waves to account for the asso-
ciative learning of different stimuli can be traced back to Beurle’s
landmark study (Beurle, 1956). Since this work, however, studies
of association have focused on associatively recalling a stimulus
based on partial clues, mainly dominated by the view of fixed
point attractors (Hopfield, 1982). Recently, evidence of propa-
gating waves in neural systems has been rapidly accumulating
(Rubino et al., 2006; Benucci et al., 2007; Ferezou et al., 2007;
Han et al., 2008; Wu et al., 2008; Lubenov and Siapas, 2009; Sato
et al., 2012), strongly suggesting that it is time to consider the
fundamental question regarding the potential functional roles of
propagating waves in the brain (Gong and Van Leeuwen, 2009).
Our new model of associative learning is a step forward along this
direction.

MATERIALS AND METHODS
NEURAL CIRCUIT MODEL
We consider a n-by-n two dimensional lattice of integrate-and-
fire (IF) neurons. We denote the membrane potential of a neuron
at integer coordinates (i, j) at time t by Vij(t), which has dynamics
governed by the following equation,

Vij (t+�t) =
{

e−�t/τ Vij (t) +Vex+Vin
ij (t) if V (t) < Vth,

Vij (t)−Vth if V (t) ≥ Vth,
(1)

where τ = 20 ms is the neural time constant, �t = 1 ms is the
time step, Vex is a constant external input, Vin

ij (t) is the input
received from other neurons at time t. Here both the constant
external input and the input due to the spiking neurons both have
an implicit dependence on �t. However, as �t is constant, this
dependence is absorbed into the appropriate term. A spike is gen-
erated whenever the neuron reaches a threshold voltage, Vth = 1.
The coupling strength between any two neurons located at (i, j)
and (i′, j′) respectively is denoted as Wij,i′j′ constructed from a
“Mexican-hat” function:

W ′
ij,i′j′ =

{
CEe

−d2
ij,i′ j′/d2

E−CIe
−d2

ij,i′ j′/d2
I if dij,i′j′ ≤ D1,

0 if dij,i′j′ > D1
(2)

where dij, i′j′ is the Euclidean distance between neurons on
a lattice with periodic boundary conditions, CE = 0.4, CI =
0.1, dE = √

14, dI = √
42 are constants that determine the shape

of the coupling function. As interactions between neurons in
real neural systems have finite ranges, connections between neu-
rons in the model are constrained to dij,i′j′ < D1 = 15. For
these parameter choices, coupling is excitatory if dij,i′j′ < D0 =√

21log (4) and inhibitory if D1 > dij,i′j′ > D0, therefore resulting
in a lateral inhibitory coupling structure; such lateral inhibi-
tion could be achieved through disynaptic pathways (Melchitzky
et al., 2001) or large basket cells (Markram et al., 2004).
Such spiking neural circuits with lateral inhibition have been

commonly used to model neural systems including the hip-
pocampus (Samsonovich and Mcnaughton, 1997). Note that we
have found that the collective dynamics such as the formation of
spiking waves in the neural circuit are not sensitive to the values
of any of the above parameters, as shown in Palmer and Gong
(2013).

To enable the total excitatory and inhibitory coupling
strengths to be changed without varying their spatial extent,
they are normalized separately using the following normalization
constants:

WE
ij =

∑
i′j′

W ′
ij,i′j′ if dij,i′j′ ≤ D0,

WE
ij =

∑
i′j′

W ′
ij,i′j′ if D0 < dij,i′j′ < D1. (3)

The coupling strengths are then given by

Wij,i′j′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

WEW ′
ij,i′ j′

WE
ij

if dij,i′j′ < D0,

WI W ′
ij,i′ j′

WI
ij

if D0 < dij,i′j′ < D1,

0 if dij,i′j′ ≥ D1,

(4)

where WE = 1.6 and WI = 2.1 are the total excitatory and
inhibitory coupling strengths, respectively.

All synaptic connections between neurons are subject to both
long-term and short-term plasticity; for long-term plasticity, we
incorporate STDP for all synapses as follows:

�Wij,i′j′ (t) =

⎧⎪⎨
⎪⎩

∑
tk
ij<t

∑
tl
i′ j′<t

H
(

tk
ij, tl

i′j′
)

if dij,i′j′ ≤ D1,

0 if dij,i′j′ > D1,

(5)

where tk
ij is the kth firing time of neuron (i, j) and tl

i′j′ is the ith

firing time of neuron (i′, j′), the sum is over all spike pairs before

time t, and H
(

tk
ij, tl

i′j′
)

is the STDP window function:

H
(
tpost, tpre

) =
⎧⎨
⎩

A+ exp (−�t/τ+) if �t > 0,

−A− exp (�t/τ−) if �t < 0,

0 if �t = 0,

(6)

where tpre and tpost are the firing times of the pre- and post-
synaptic neurons, respectively, and �t = tpost − tpre. The STDP
timescales, τ+ = τ− = 20 ms, are similar to values found in
experimental studies (Bi and Poo, 1998; Zhang et al., 1998),
and A+ = A− = 0.00025, making H an odd function in �t. We
incorporate the STDP into the coupling strength to obtain the
time-dependent coupling strength (Palmer and Gong, 2013):

Wij,i′j′ (t) = Wij,i′j′+�Wij,i′j′ (t) . (7)

STDP may cause some coupling strengths to reach values that are
not within biological limits; to prevent this, STDP requires a hard
limit of synaptic modification (Song et al., 2000; Izhikevich et al.,
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2004). No further constraints are required. We limit changes to
coupling strengths as follows:

∣∣(1 − �Wmax)Wij,i′j′ (0)
∣∣ ≤ ∣∣Wij,i′j′ (t)

∣∣
≤ ∣∣(1+�Wmax)Wij,i′j′ (0)

∣∣ , (8)

where Wij,i′j′ (0) is equal to the initial connection strengths as
described in Equation (4), and Wmax = 0.18 controls the max-
imum possible amount of STDP. The results discussed later are
not sensitive to this value.

Short term plasticity, also called dynamical synapses, refers to
a phenomenon in which synaptic efficacy changes over time such
that it reflects the spiking history of a neuron. In contrast with
long-term plasticity dynamics such as STDP, short term plastic-
ity induces temporary modification to synaptic efficacy; that is,
without continued presynaptic activity, the synaptic efficacy will
return to its baseline level. We incorporate such short term plas-
ticity by using the model described in Markram et al. (1998); in
this model the synaptic efficacy Ak

i′j′ of the neuron at (i′, j′) is

Ak
i′j′ = 2uk

i′j′r
k
i′j′ , (9)

uk
i′j′ = U+uk−1

i′j′ (1 − U) exp
(
−�k−1

i′j′ /F
)

, (10)

rk
i′j′ = 1 +

(
rk − 1

i′j′ −rk − 1
i′j′ uk − 1

i′j′ −1
)

exp
(
−�k − 1

i′j′ /D
)

, (11)

u1
i′j′ = U, r1

i′j′= 1 (12)

where Ak
i′j′represents the absolute synaptic efficacy of the kth spike

of the neuron, uk
i′j′ represents the utilization of synaptic efficiency,

rk
i′j′ represents the availability of synaptic efficiency, �k−1

i′j′ is the

time between the k − 1th and kth spike of the neuron located at(
i′, j′

)
and F = 0.005 s, D = 0.11 s are the timescales represent-

ing the recovery of the u and r variables, respectively (Markram
et al., 1998). Since D � F, these synapses are depressed, i.e.,
the amplitudes of excitatory postsynaptic potentials caused by
closely-spaced successive spikes decrease over time; this is referred
to as short term depression (STD). Furthermore, the closer in
time successive spikes are, the smaller the efficacy of the spikes,
with synaptic efficacy recovering over a timescale which is ≈ D.
Combining STDP described in Equation 7 with STD described in
Equations 9–12, the input the neuron

(
i, j

)
receives from other

neurons to which it is coupled is:

Vin
ij (t) =

∑
i′j′

Wij,i′j′ (t) Ak
i′j′�

(
Vi′j′−Vth

)
, (13)

where �(x)is the Heaviside step function: � (x) = 1 if x ≥ 0, and
� (x) = 0 if x < 0.

Since real neural systems are full of noise, we also add noise
to the model. We incorporate noise through adding noisy spon-
taneous firing; for each neuron, a spike is emitted with small
probability to generate random sparse spontaneous firing with
a frequency around 0.1 spikes per neuron per second, which
is within the range of sparse spontaneous firing rate as found

in cortical neurons (Griffith and Horn, 1966; Koch and Fuster,
1989).

RESULTS
ASSOCIATIVE LEARNING BASED ON THE INTERACTIONS OF SPIKE
WAVES
To model the association of the conditioned and unconditioned
stimuli, we first demonstrate how each stimulus can be repre-
sented in the network. To this end, we add a brief localized
stimulus representing either the CS or the US to neurons at
different locations in the network. These stimuli are able to
evoke spiking wave patterns as shown in Figure 1A. As the wave
pattern propagates across the network, it naturally gives rise to
a spike timing sequence; each stimulus, therefore, is encoded by
a spike sequence. In the present study, we use the terms spike
sequence and propagating spiking wave interchangeably. This
method of generating spike sequences utilizing propagating pat-
terns in recurrent neural circuits is similar to that previously used

FIGURE 1 | Propagating spiking waves in the neural circuit model can

be used to implement associative learning. (A) A wave propagating
through the neural circuit with V ex = 0.0429. Color shows the value of
Vij (t). The wavefront and its tail with reduced potential are clearly visible.
(B) Schematic of wave interactions for associative learning. Black boxes
show the location of the stimuli where the CS is initialized at the top of the
network and the US on the left. Gray regions indicate the paths of the
propagating spiking waves, the red region shows the interaction region,
and the blue region shows the response area. (C) Schematic of wave
regeneration. The wave encoding the CS (red wavefronts, black path) is
initialized at the top of the network and begins propagating toward the
interaction region. When it enters the interaction region, it regenerates the
US (green wavefront, blue path), which was initialized at the left of the
network, thereby achieving associative learning. (D) Number of successful
associations in 60 trials. There is a sharp increase in the number of
successful associations with a peak near 100 ms, followed by a gradual
decline. To ensure that the predictive relationship is maintained, we test to
see if the US can regenerate the propagating wave encoding the CS.
Bolded points show when the number of responses in this case is
significantly lower (p < 0.01 using a t-test) than the number of successful
associations; this indicates that the predictive relationship between the CS
and the US has been maintained.
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in Itskov et al. (2011), in which spike sequences formed by local-
ized moving patterns were used to encode elapsed time in behav-
iorally relevant contexts. Representing external stimuli utilizing
spike sequences in our model is consistent with a growing body
of experimental results showing that such sequences pay an
important role in a host of perceptual and cognitive processes
(Pastalkova et al., 2008; Bathellier et al., 2012; Harvey et al., 2012;
Xu et al., 2012).

As shown in Figure 1B, both the CS and the US can evoke
propagating waves which naturally produce spike sequences; in
this example, the CS is represented by the spiking wave traveling
from top to bottom, and the US is represented by the spiking wave
traveling from left to right. Here we assume that when the wave
evoked by the US reaches the corresponding blue box on the right
of Figure 1B, a response corresponding to the US is generated;
we do not explicitly model how the direction of wave propaga-
tion can be read out to generate a behavioral response. However,
such read out could be achieved through spatial arrangement of
dendritic receptor fields. Indeed, it has been found that dendrites
are sensitive to spike sequences arriving from different directions
(Branco et al., 2010); in a recent modeling study, this property
has been used to read out information contained in propagating
waves (Heitmann et al., 2013).

We now demonstrate that associative learning of the CS and
the US naturally arises in the network with STDP and STD.
Although there has been a significant number of experimental
studies measuring how such learning can occur in a variety of
situations, the general protocol that has been used is: the two
paired stimuli are presented repeatedly to allow learning to hap-
pen; the CS is presented first. After a delay time, �t, which is
constant for all learning trials, the US is then presented. After
training, when the CS is presented, the response of the US is gen-
erated, indicating that the CS can be taken as a predictor for the
US (Rescorla, 1988). Using the same protocol as used in behav-
ioral studies, we apply the paired stimuli to the network model
for 60 trials. After some learning trials (typically < 20), when the
CS is presented alone, it is able to generate the unconditioned
response. As illustrated in Figure 1C, this occurs because when
the spike sequence (wave) encoding the CS propagates along
its path, it is able to regenerate the spike sequence (wave) that
encodes the US.

THE TEMPORAL CONTIGUITY PROPERTY OF CONDITIONED
ASSOCIATIVE LEARNING
As shown in behavioral studies, the success of associative learning
of conditioning is a non-monotonic function of the amount of
time, �t, by which the CS precedes the US (Rescorla, 1988). When
�t is either too short or too long, conditioning is relatively poor.
However, there is some intermediate set of time intervals when
conditioning is most successful. This temporal contiguity prop-
erty of classical conditioning has been found to be invariant across
many different experiments covering a wide variety of stimuli,
although there is no absolute temporal interval that produces
the best conditioning. For instance, a similar non-monotonic
functional form has been found when testing both rabbit eyelid
response and pigeon keypeck response, however, the time inter-
vals for optimal conditioning were on the order of 100 ms and 5 s,

respectively (Smith et al., 1969; Barker and Smith, 1974; Rescorla,
1988).

We now demonstrate that this temporal contiguity property
can be reproduced by our propagating wave-based model of asso-
ciative learning. When both STDP and STD are included, we run
60 trials of the paired US and CS. As shown in Figure 1C, for
some values of �t, after training it is possible for the CS to gen-
erate the response of the US. In our testing regime, we apply the
CS alone after each learning trial. If the US response is generated,
it is counted as a successful association. As in behavioral stud-
ies (Rescorla, 1988), we count the number of successful trials, and
repeat this procedure for different �t values to study how success-
ful conditioning varies with �t. Figure 1D shows that our model
is able to reproduce the temporal contiguity property of condi-
tioning, as observed in experimental studies (Smith et al., 1969;
Barker and Smith, 1974; Figure 1 of Rescorla, 1988). In particu-
lar, the model shows a very low number of responses for small �t
followed by a sharp increase with a peak at �t ≈ 100 ms, which
is then followed by a decay in number of responses for larger �t.
The associative learning therefore is relatively poor if �t is either
too short or too long, and it appears to be a non-monotonic
function of �t. Note that despite the general trend of the decay
of successful learning for larger �t (the mechanism underlying
such decay is illustrated below), a significant number of success-
ful learning can still happen even when �t ≈ 1 s, a time scale that
is much larger than that of individual neurons or synapses.

MECHANISMS OF ASSOCIATIVE LEARNING BASED ON SPIKING WAVE
INTERACTIONS
As demonstrated above, associative learning of the CS and the
US can naturally occur in our model, utilizing spike sequences
generated in the network. The question that arises naturally is:
what are the mechanisms underlying such associative learning?
It has been proposed that spike sequences are important neural
substrates for perceptual and cognitive functions (Abeles, 1991;
Kumar et al., 2010). However, the timing relationship between
such sequences has only been explored for their zero-lagged
synchrony and its potential computational roles for feature bind-
ing (Abeles et al., 2004). As proposed recently, cell assemblies
organized as spike sequences could be the basic tokens of the
“neural syntax” (Buzsáki, 2010), just as words are the basic tokens
of the syntax of language; clearly, such complex neural syntax
requires that different spike sequences exhibit timing relation-
ships more complicated than those of zero-lagged synchrony. We
now demonstrate that the spike sequences formed in our neu-
ral circuits have complex interactions that are timing dependent
and that such timing-dependent interactions of spike sequences
are essential for implementing associative learning at the level of
neural circuits.

To study how the interactions between the propagating spik-
ing waves evoked by the CS and the US depend on their time
separation, �t, we systematically vary �t from 0 to 1000 ms.
Since the CS is added to the network prior to the US, for clar-
ity we label the spiking waves evoked by the CS and US as the
first and second waves, respectively. We first investigate the behav-
ior of the network in the first learning trial as �Wij,i′j′ (t) in
Equation 5 is small, and the additional dynamics added by STDP

Frontiers in Computational Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 79 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Palmer and Gong Wave interaction based associative learning

FIGURE 2 | Interacting dynamics of spiking waves. The propagating path
of the wave encoding the CS is denoted by the red line; that of the wave
encoding the US is denoted by the black line. (A) A repulsive interaction
(�t = 0 ms). (B) A suppressive interaction (�t = 20 ms). (C) The second
wave passes through the tail of the first (�t = 360 ms).

are minimal, which simplifies analysis. As shown in Figure 2, the
interactions can be largely grouped into three main categories,
namely, repulsion, suppression and pass-through. The repulsive
interaction occurs when the second wave interacts with either the
front or the tail of the first wave, causing the paths of the both
spike waves to be altered; this typically occurs for small values of
�t (�t < 15 ms). For larger values of �t (15 < �t < 100 ms),
suppression can occur when the second wave interacts with the
tail of the first one, as a result the second wave is annihilated.
For both the repulsive and suppressive interactions, it is appar-
ent that the wave evoked by the US is unable to pass through the
path of the one evoked by the CS; i.e., the propagation path of
the first wave is blocked by the tail of the second wave. However,
when �t > 100 ms, the second wave is able to pass through the
path of the first one. These wave interactions therefore depend
on their temporal separation; in other words, their interaction
dynamics are timing dependent. Similar timing-dependent inter-
action dynamics of evoked propagating waves has been found
in the rat visual cortex; as reported in Gao et al. (2012), when
the inter-stimulus interval was between 80 and 300 ms, a second
propagating wave was significantly suppressed by the first one.
This is similar to the suppressive interactions shown in our model
and there is certain overlap between the interval (80–300 ms)
found in Gao et al. (2012) and that in our model (15–100 ms).
For inter-stimulus intervals greater than 300 ms, the amplitudes
of the two waves showed no significant difference (Gao et al.,
2012). This is similar to the pass-through that we observed for
large values of �t, although for our model this behavior occurs
when �t > 100 ms.

THE ROLES OF STDP AND STD IN ASSOCIATIVE LEARNING
In the previous Section, we have illustrated the dynamics of
interactions between multiple propagating spiking waves when

�Wij,i′j′ (t) is small (i.e., the beginning of the learning process).
After allowing learning to proceed, when �t is small, the block-
ing effect still exists as shown in Figures 2A,B. When �t is large,
the second wave can freely pass through the tail of the first one
(Figure 2C); however, after several trials of learning, the presence
of the first wave along can regenerate the second one, as shown
in Figure 1C. We now show that this occurs because STDP plays
a crucial role in learning the paths of the propagating waves and
their interactions.

We first examine how coupling strengths are changed as a
result of STDP during the learning process of the paired CS
and US. As a wave pattern propagates across the neural circuit,
the coupling strengths aligned with the direction of its propa-
gation will be increased as STDP increases coupling strengths
when presynaptic neurons fire before postsynaptic ones. On the
other hand, as the STDP window function (Equation 6) is odd,
connections in the direction opposite to wave propagation will
be decreased, as shown in Figure 3A. Whilst coupling strength
changes resulting from a wave pattern traveling over a path once
are relatively small, if it repeatedly travels over the same path (as
in the training process) significant changes to coupling strengths
can occur, with the maximum change limited by the bounds
to STDP (Equation 8). As shown in Figure 3A, it is simple to
understand coupling strength changes due to a single pattern, but
analyzing the changes to connection strengths within the inter-
action region are more complex, as each neuron has around 700
connections and multiple wave patterns travel over each neuron
from different directions. To simplify, we define a function that
can be used to quantify changes to the strength of synaptic con-
nections from a single neuron as a function of a single variable,
namely the angle of the connection on the two-dimensional, spa-
tially extended spiking neural circuit. This is achieved by creating
a new polar coordinate system centered on the neuron of interest
and averaging connection strengths over certain angular segments
(Figures 3A,B). The change of coupling strength as a function of
angle is:

�ij (θ) = max

⎛
⎜⎜⎜⎜⎜⎝

∑D1
x=−D1

∑D1
y=−D1�Wij,i+x y+j (t)

�
(

d −
∣∣∣θ − tan−1

(
x
y

)∣∣∣)∑D1
x=−D1

∑D1
y=−D1

�
(

d −
∣∣∣θ − tan−1

(
x
y

)∣∣∣)
, 0

⎞
⎟⎟⎟⎟⎟⎠ , (14)

where d is a small number that controls the angular resolution
of �ij (θ), D1 is the maximum coupling distance (Equation 2),
and x and y index over all neurons that the neuron at location
(i, j) is connected to. �ij (θ), defined in Equation 14, measures
the amount of synaptic changes caused by STDP as a function of
angle, θ , from the presynaptic neuron (Figure 3A). This is cal-
culated by summing over all connected neurons and then using
a Heaviside step function to ignore those neurons which are con-
nected to the main neuron at angles different from θ , i.e., neurons
outside the red sector in Figure 3A. As neurons are aligned along
a regular grid, the spatial density of connections is uniform but
the angular density of connections is non-uniform; to correct for
this, we normalize �ij (θ) by dividing it by the number of neurons
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FIGURE 3 | Changes to synaptic coupling strengths due to STDP. (A)

Changes in coupling strength (�Wij, i ′ j ′(t)) after a wave pattern has traveled
over a neuron. Coupling strengths in the direction of propagation are
increased, and strengths in the opposite direction are decreased. To
calculate �ij (θ ), the coupling strength changes within the circular sector
(red lines) centered at an angle of θ (black lines) are averaged to give the
value of �ij (θ ). (B) �ij (θ) for the neuron in (A). There is a clear peak pointing
in the direction of wave propagation across the neuron. (C) �ij (θ) for the
20 × 20 sub-grid of neurons near the interaction region. The original paths
of the two wave patterns corresponding to the CS and the US are marked
with black and red lines, respectively. The gray-filled circles mark neurons in
the interaction region. The polar plots are laid out so that each plot
corresponds directly to a single neuron in the grid of neurons. For scale, the
black circles show a mean change in connection strength of 10−4. In the left
and top of the figure, only a single wave passes over each neuron, leading
to connection increases in only one direction, similar to (B). The areas in
the corners with no connection strength changes because in the regions
the wave does not pass over. In the interaction region, neurons typically
show an increase in coupling strength in two directions, corresponding to
the top-to-bottom CS and the left-to-right US. The resulting bimodal
distribution of coupling strengths enables the spontaneous wave
regeneration to happen. The red-filled circle shows a neuron on the edge of
the path. As �ij (θ ) is slightly biased toward the center of the wave pattern,
waves initialized near this neuron will quickly converge to the learned path.

that we are averaging over. The negative component of �Wij,i′j′ is
removed for simplicity, as it is almost always in the exact reverse
direction when compared to the positive component.

As discussed above, we expect that when a single wave passes
over a neuron, �ij(θ) will have a single peak that is approxi-
mately aligned with the direction of propagation of the wave. This
is shown in Figure 3B where �ij(θ) shows a single peak, which
is aligned with the propagation direction of the wave. We now
calculate �ij(θ) for all neurons near the interaction region after
training by repeatedly applying the paired US and CS stimuli, as

shown in Figure 3C. We find that in this case, the behavior of
�ij(θ) near the interaction region is more complex than the case
when only a single wave is present (Figure 3B). In particular, as
waves are interacting within this region, both wave patterns cause
changes to coupling strengths in their directions of propagation.
As a result, neurons within the interaction region show two peaks
in �ij (θ), corresponding to the directions of the two propagating
wave patterns (Figure 3C), namely, top-to-bottom and left-to-
right. This bimodal distribution of coupling strengths developed
during the learning process endows the network with the prop-
erty of spiking wave pattern regeneration as shown in Figure 1C.
Specifically, when the wave encoding the CS propagates alone and
enters the interaction region (Figure 3C), neurons to the right of
the wave pattern will receive significant excitatory input due to the
increased coupling strengths in that direction (Figure 3C). This
will cause certain neurons in that direction to fire; if the num-
ber of these firing neurons reaches a critical value, it is possible
for a wave pattern propagating along the right-to-left direction to
be regenerated and this regenerated wave will then travel along
the path of the wave evoked by the US. This wave regeneration
allows for the wave evoked by the CS to generate the uncondi-
tioned response, a key feature in our associative memory model
(Figure 1C). Here it is interesting to note that in our theoretical
account of associative learning, the neurons in the intersection
region play an essential role in associating the US and the CS
together; this notion is similar to the concept of “nodal” neu-
rons discussed in Eichenbaum et al. (1999), in which it was
hypothesized that some nodal neurons could encode the com-
mon features of different temporal events, so that these temporal
events could be associated to form episodic memory (see Figure 3
in Eichenbaum et al., 1999).

Aside from changing coupling strengths during the training
process (Figure 3), STDP also has a notable secondary effect,
namely, that the speed of spiking wave propagation undergoes
an increase of 25% after only 5 training trials. This property is
qualitatively similar to the experimental data reported in Xu et al.
(2012), in which visual stimulus (a moving dot) could induce
spike sequences and the propagation speed of these sequences
increased after a training process, i.e., many repeated presen-
tations of the stimulus. Such increased speed of training or
experience-induced spike sequences has also been observed in the
hippocampus and in the neocortex (Ji and Wilson, 2006; Euston
et al., 2007).

In associative learning of classical conditioning, there is a pre-
dictive relationship between the CS and the US. This allows the CS
to predict the US, whilst the US does not predict the CS (Rescorla,
1988). In our model, we find that with STDP but without STD,
this predictive relationship is violated when �t � 200 ms, as the
second wave encoding the US is capable of generating the CS
response. This happens because without STD, when the second
wave approaches the interaction region, the membrane potential
of neurons along the paths of the first and the second wave has
been restored to their initial values, thus the membrane potential
would be near-identical for both the first and the second waves.
Incorporating STD, however, breaks this symmetry by adding
an extra slowly-recovering effect, namely synaptic efficacy. As
shown in Figure 4, the reduction in synaptic efficacy caused by
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the propagation of the first wave persists long after the neuron
membrane potentials have recovered to their equilibrium values.
As described in Equation 13, synaptic efficacy can affect the total
inputs to neurons; namely, the smaller synaptic efficacy is, the
smaller the inputs to other neurons are. This means that when
the second wave reaches the interaction region (Figure 3C), the
inputs caused by its spiking wave front to the neurons along the
direction of the first wave are reduced due to the small synaptic
efficacy caused by the first spiking wave. In this way the sec-
ond wave is unable to regenerate the first wave; therefore, the
predictive relationship between the CS and the US is maintained.

DECAY OF SUCCESSFUL ASSOCIATION DUE TO NOISY SPONTANEOUS
FIRING ACTIVITY
The general function form of the temporal contiguity prop-
erty of classical conditioning is that the success of association
between the CS and the US is a non-monotonic function of their
time separation, �t, as found in experiments (Rescorla, 1988)
and reproduced in our modeling study (Figure 1D). In particu-
lar, for large values of �t, the amount of successful association
decreases as �t increases; this decay of association over time
is ubiquitous for different experimental protocols (see Figure 1
of Rescorla, 1988), but the underlying neural mechanism still
remains unclear. We now show that in our model, this decay of
association occurs due to the random modifications of synap-
tic coupling strengths caused by spontaneous firing activity (see
Materials and Methods).

As demonstrated above, during the training process, the
synaptic coupling strengths along the propagation paths of the
first and second waves are modified by STDP to store these spik-
ing waves. However, due to the random nature of the spontaneous
firing activity, these coupling strengths will be changed in a ran-
dom way; i.e., the coupling strengths will be randomly potentiated

FIGURE 4 | Comparison of the recovery process of the membrane

potential (V ) and synaptic efficacy (A). A propagating spiking wave is
initialized and the value of V and A is measured along its path. Both are
normalized with their resting values equal to 1 enabling them to be plotted
on the same scale for comparison. Note that the x-axis is a log scale, whilst
the y-axis is linear. The front of the wave is near x = 10, at the peak of the
green line which indicates a neuron emitting a spike. It is clear that the
membrane potential has recovered to close to the initial value within ≈100
grid units of the wavefront, whilst the synaptic efficacy takes ≈500 grid
units to recover.

or depressed through STDP, depending on the temporal order
of the random spikes happening to two coupled neurons. One
would then expect that such random changes can make the cou-
pling strengths to behave like a random walk. To test this, we
calculate the variance of the random change of coupling strengths
�Wij,i′j′(t) as a function of time. Figure 5 shows that that the
variance increases linearly over time, i.e., σ 2 (t) ∝ t, which is a
characteristic feature of a random walk. As in Fusi and Abbott
(2007), we then define the memory traces of the propagating
spiking waves stored in the modified synapses as “signal,” S. The
random walk of coupling strengths due to random spontaneous
firing activity would cause the memory traces to fluctuate and
degrade; such fluctuation introduces “noise,” N to the memory
traces, defined as the standard deviation of the random changes to
the signal. After the training process, the long-term modifications
of synaptic strengths due to the propagating waves are �Wij,i′j′ ,
so the signal S ∝ �Wij,i′j′ . Due to its random walk nature, the
random modification of synaptic strengths N ∝ t1/2. The quan-
tity that can be used to characterize the quality of the stored
memory of propagating waves is the signal-to-noise ratio, S/N,
and S/N ∝ �Wij,i′j′/t1/2. The signal-to-noise ratio thus decays
monotonically as �t increases, meaning the memory traces of
propagating waves decay monotonically; this therefore results in
a reduction in the number of successful associations between the
two stimuli.

ROBUSTNESS OF ASSOCIATIVE LEARNING
We now show that our associative learning implementation is
robust to external perturbations. The propagating waves used to
encode the CS and the US have wavefronts that are composed
of many firing neurons, which make them robust to some per-
turbations. In particular, when a propagating wave front is only
partially activated by external perturbations, it can recover to its
original size; this is illustrated in Figure 6A, where an obstruc-
tion is created by forcing blocks of neurons to zero potential,

FIGURE 5 | Variance of random synaptic modifications over time. This
variance increases linearly over time, i.e., σ 2 (t) ∝ τ , indicating �Wij,i ′ j ′ (t)
undergoes a random walk. For the linear fit, the coefficient of
determination, R2 = 0.99997.
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FIGURE 6 | Propagating spiking waves are stable with respect to

perturbations. (A) The size of traveling wave patterns is stable. We
initialize a wave pattern at the top of the image. It then propagates toward
two regions that are fixed with Vij (t) = 0 (the two blue rectangles). After
traveling past these obstacles, the wave pattern quickly returns to its
original size. This demonstrates that the size of the wave pattern is stable.
(B–E) STDP can enable a path to be learned (schematic). (B,C) show initial
training of a path without and with STDP, respectively. (D,E) Show the
behavior when a test pattern is initialized to the side of the original pattern.
With STDP (E), the pattern converges to the original path. Without STDP
(D), the pattern continues in a straight line.

i.e., Vij (t) = 0. After propagating through the obstacle, the wave
pattern quickly returns to its original size, before continuing to
propagate along its original path. The robustness of the size of
the wave pattern can be understood through the shape of the
coupling function (Equation 2). We note that the wave pattern
size is close to the minimum distance for inhibitory connections
D0. As a result, if the wave pattern expands, the amount of inhi-
bition increases, allowing the pattern to return to its original
size. Similarly, if the pattern shrinks, the amount of inhibition
decreases, allowing the pattern to return to its original size.

Furthermore, the model is robust with respect to perturba-
tions in the CS and US locations. We consider two cases; one with
STDP and another without STDP to illustrate the importance
of STDP in correcting such perturbations. We first run training,
as shown in Figures 6B,C, by presenting a stimulus at the same
location for both cases. After training, the location of the wave ini-
tialization site is shifted slightly to a different side to test whether
it can return to the learned path, as shown in Figures 6D,E.
When STDP is included in the network (Figure 6E), the test pat-
tern quickly returns to the original learned path, indicating that
for this case, the learned spiking wave is robust to the changes
of the initial stimulus location. Such perturbations in the ini-
tial locations can be regarded as errors in the initial stimulus.
The dynamical behavior of returning to the learned path there-
fore indicates that the dynamics of the wave patterns now have
an error-correcting property. This error-correcting property is
analogous to that shown in conventional attractor neural net-
works (Hopfield, 1982), in which perturbations to state away
from a learned attractor are corrected as the state quickly returns
to the attractor. To understand how STDP has enabled such
error correction, we investigate how STDP has affected the cou-
pling strengths of neurons as waves propagate across them, as

shown in Figure 3C; in particular, the red-filled circle in the figure
represents a single neuron located near the edge of a wave pattern.
We observe that �ij(θ) is angled toward the center of the wave
pattern. As a result of these modified coupling strengths, neurons
on the original path receive extra excitation. This causes the wave
to return to the learned path, as shown in Figure 6E. However,
without STDP, the test pattern does not return to the previous
path; instead, it propagates along a different path (Figure 6D).

DISCUSSION
In this study, we have proposed a novel theoretical account of
associative learning of temporally disparate events in the con-
text of classical conditioning. In our model, temporally separated
events such as the CS and the US are encoded by different spike
sequences formed from propagating spike waves. After training,
the sequence encoding the CS can regenerate the sequence encod-
ing the US, therefore enabling successful association between
them. Associative learning therefore happens in a distributed way
at the level of neural circuits, without slowly decaying firing activ-
ity of neurons. Furthermore, as we have demonstrated, our model
is able to account for the temporal contiguity property of classical
conditioning and is robust to certain types of noise perturbations.

In our model of associative learning, the timing relationships
of firing activity of groups of neurons, including spike sequences
formed from these neurons and their timing-dependent interac-
tions are essential for associative learning. Spike sequences have
indeed been found to be important for a range of perceptual
and cognitive processes (Pastalkova et al., 2008; Bathellier et al.,
2012; Harvey et al., 2012; Xu et al., 2012). However, most of
these studies have focused on just one such sequence and higher-
level timing relationships between different sequences have
not been explored. Similarly, previous modeling studied have
mainly focused on modeling the formation of spike sequences
(Abeles, 1991; Kumar et al., 2010); interactions between different
sequences have been rarely discussed and such discussion has just
focused on their zero-lag synchrony and its role in feature binding
(Abeles et al., 2004). However, rich timing-dependent interac-
tions of different spike sequences, as illustrated in our model
in the context of associative learning, could be of fundamental
importance for brain functions.

In our model of associative learning of classical conditioning,
propagation of spiking waves across neural circuits is the mech-
anism underlying the formation of spike sequences. As we have
illustrated, such propagation of neural activity is essential to make
local information available at larger spatial and temporal scales,
therefore associating signals that are distributed over space and
time. Interestingly, the notion that neural activity propagation
is important for classical conditioning is reminiscent of Pavlov’s
original speculation that “automatic irradiation” of neural firing
activity evoked by external stimuli could be the neural mecha-
nism underlying classical conditioning (Pavlov, 1927). Recently,
evidence of propagating waves in the brain has been accumu-
lating very rapidly (Rubino et al., 2006; Benucci et al., 2007;
Ferezou et al., 2007; Wu et al., 2008; Lubenov and Siapas, 2009;
Sato et al., 2012). In Ferezou et al. (2007), it was speculated that
multiple waves activated in a distributed manner may be essen-
tial for “associative plasticity and learning.” In Gong and Van
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Leeuwen (2009), it was proposed that propagating wave patterns
are basic building blocks for neural circuits to carry out dis-
tributed dynamic computation; in this paradigm, information
is encoded in these dynamic patterns and communicated to the
different parts of the cortex based on their propagation, and infor-
mation is processed when they collide or interact with each other.
Here, we have presented such a model for associative learning
based on interacting spiking wave patterns.

Interacting waves have been used to account for classical con-
ditioning in Beurle (1956), in which it was shown that the CS
and the US can evoke two plane waves. After learning, which was
implemented through modulating firing thresholds of neurons,
the activation of one wave is able to regenerate another wave,
referred to as “pulse regeneration” (Beurle, 1956). In this way, an
association between two events can be formed. In Beurle’s study,
two waves which occurred at the same time were used to model
association between the CS and the US; this is in contrast to real
psychophysical data showing that when the CS and the US occur
together, no association can be formed (Rescorla, 1988). In our
study, however, the temporal separation between the US and the
CS is explicitly modeled and a salient feature of classical condi-
tioning, namely the temporal contiguity of classical conditioning
can be reproduced. Furthermore, in our model, the learning of
wave propagation paths is achieved by using synaptic dynamics
such as STDP and STD that have been widely observed in many
different parts of the brain (Abbott and Nelson, 2000; Chung
et al., 2002); in Beurle’s original work, however, there was no
explicit synaptic plasticity considered and experimental evidence
of learning achieved by modulating firing threshold is rare.

Both STDP and STD play important roles in our model of
associative learning. As we have illustrated, STDP allows spike
sequences to be learned and importantly such learned sequences
are very robust against different types of perturbations, including
changing the location of the initial stimuli. This robust learning of
spike sequences can occur because asymmetric synaptic weights
developed in our model enable perturbed waves to converge back
to a nearby learned path. As we have illustrated, these asymmet-
ric weights develop due to the temporal asymmetry of STDP and
because waves move sequentially across the circuit. STDP also
pays an important role in associating different events together
by increasing the coupling strengths along the propagating paths
of different spiking waves to form an intersection point between
them. The role of neurons around the interaction points estab-
lished by STDP in our model of associative learning is similar that
of “nodal cells” introduced in Eichenbaum et al. (1999), in which
it was proposed that some hippocampal neurons may function
like nodal cells to link sequential events to form a memory space.

Short term depression (STD) is another essential element in
our model of associative learning. Without STD, the US and the
CS would experience the network in an essentially identical state,
therefore they are likely to generate similar responses. Previous
models have broken this symmetry by assuming the existence
of persistent neural firing activity that decays slowly (Drew and
Abbott, 2006). However, the existence of such input is still incon-
clusive (Ito et al., 2008). In contrast, with STD the reduction in
synaptic efficacy, after the wave corresponding to the CS propa-
gates through the network, causes the symmetry between the US

and the CS to be broken. In this model of associative learning,
therefore, there is no need to assume any persistent neural firing
activity. Since generating spikes is energetically expensive for neu-
rons (Niven and Laughlin, 2008), our model potentially provides
an economical and robust way to implement associative learning.

Since our model for associative learning is based on several
general properties of neural circuits, including the existence of
stimulus evoked propagating waves, STDP and STD, it may be
applicable to a variety of neural systems. Examples to which
our model could be applied include the hippocampus, which is
generally regarded as a place where association of spatially and
temporally disparate events can form (Rawlins and Olton, 1982;
Eichenbaum et al., 1999). Notably, both spike sequences and
propagating waves such as propagating waves of theta oscillations
(Lubenov and Siapas, 2009; Patel et al., 2012) and propagating
waves of sharp wave ripples have been observed in the hippocam-
pus (Patel et al., 2013). Another area in neural systems, to which
our model can be applied is primary visual cortex, in which it
has recently been found that moving stimuli can evoke spike
sequences and these sequences can be recalled once a clue is pre-
sented (Xu et al., 2012). In these neural systems, it would be
interesting to investigate timing-dependent interactions between
different spike sequences and their functional roles.
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