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Review Article

IntroductIon

Bone formation, also known as osteogenesis, is a complicated 
process that underlies the whole life of a body.[1] The 
process of osteogenesis is comprised of maturation of 
osteoblasts and osteocytes, extracellular excretion, and 
ossification.[2] Osteoblasts are the most important cells 
in bone tissues which are critical for bone formation.[3] 
Ossification has a restrict order: First, collagen proteins 
accumulate in immature bone tissue; second, osteoblasts 
secrete alkaline phosphatase (ALP), osteopontin (OPN), 
and osteocalcin (OCN); and third, bone canaliculus forms 
finally.[4] Bone mesenchymal stem cells (BMSCs) are 
precursors of osteoblasts, which can differentiate into 
chondrocytes, adipocytes, and osteoblasts. The most cellular 
events involved in bone formation include the proliferation 
and differentiation of BMSCs.

BMSCs differentiation and osteoblasts maturation are 
regulated by several cytokines and signal pathways. 
Many studies have revealed that bone morphogenetic 

proteins (BMPs), belong to the transforming growth 
factor beta superfamily, stimulate proliferation and 
differentiation of BMSCs and enhance mineralization 
of skeleton tissue.[5‑7] It is also known that Wnt proteins 
signals which regulate cell growth, differentiation, 
function, and death, are essential for bone mass 
regulation.[8‑10] Prostaglandin (PG), mainly produced 
by cyclooxygenase‑2 (COX‑2), is reported with the 
significant role of bone formation by forming an 
important regulatory loop with BMPs.[11‑13] Moreover, 
glucocorticoids (GCs) exert ambiguous effects to BMSCs 
and osteoblasts, low dose of GCs keeps hemostasis of 
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bone tissues while high dose inhibits bone formation.[14‑16] 
Recently, several researchers revealed that epithelium 
sodium channel (ENaC) may be the importance of 
regulation of BMSCs and osteoblasts.

The amiloride‑sensitive ENaCs, first described in 1994, 
is a membrane‑bound ion‑channel that is permeable for 
Li+‑ions, protons, and especially sodium ions. Meanwhile, 
this sodium channels are characterized primarily by their 
high affinity to the diuretic blocker amiloride.[17‑19] Studies 
showed that ENaCs were abundantly expressed in the tissues 
of kidney, colon, lung, sweat glands, and reproductive 
ducts.[20,21] Furthermore, recent studies have discovered 
that ENaC may also be expressed in osteoblasts and MSCs, 
for sodium concentration in the extracellular fluid may 
affect proliferation and differentiation of osteoblasts.[20,22] 
Therefore, the study on ENaCs may provide a new sight to 
understand the process and regulation of bone formation. 
In this review, we retrospect researches within the last 
5 years and try to illustrate the characteristics and regulation 
of ENaC as well as the function of ENaC during bone 
formation.

characterIstIcs of epIthelIuM sodIuM channel

Structure of epithelium sodium channel
ENaCs are members of the ENaC/degenerin family of ion 
channels, which are assembled from homologous α, β, and 
γ subunits.[23] Each subunit consists of two transmembrane 
helices and an extracellular loop, and shares a similar 
secondary structure consisting of a large extracellular 
region linked to two membrane spanning domains (TM1 
and TM2), and short intracellular N‑ and C‑termini.[24,25] All 
three subunits are essential for transporting to the membrane 
assembly of functional channels on the membrane.[26] ENaC 
highly seems to be a heterotrimeric protein like the recently 
analyzed acid‑sensing ion‑channel 1 (ASIC1), which belongs 
to the same family.[27]

Crystal structure of ENaCs and site‑directed mutagenesis 
studies suggest that ENaC has a central ion‑channel located 
on the central symmetry axis of the three subunits.[28] Proteins 
that belong to this family consist of about 510–920 amino 
acid residues. They are made of an intracellular N‑terminus 
region followed by a transmembrane domain, a large 
extracellular loop, a second transmembrane segment, and a 
C‑terminal intracellular tail.[29] The extracellular region of 
ASIC1 has a highly ordered structure containing domains 
formed either by β strands or α helices. The structure 
resembles an outstretched hand containing a ball. Domains 
within the structure are aptly named wrist, finger, thumb, 
palm, knuckle, and β‑ball [Figure 1].[30,31]

ENaCs are protease sensitive channels whose iron‑channel 
activity is regulated by the proteolytic reaction. Trypsin 
and chymotrypsin activate ENaCs in the epithelium of 
endometrium of the uterus to help fertilization of oocytes.[32,33] 
Contrastly, extracellular serine protease inhibitors, such as 
aprotinin and bikunin, have been shown to decrease channel 

activity.[34] In addition, furin, a proprotein convertase that 
cleaves latent precursor proteins into biologically active 
products, cleaves α and γ subunits of ENaCs during its 
maturation.[35] Furin cleaves α subunit twice and then release 
a 26 residue fragment.[35,36] Mutation on α subunit furin 
consensus sites dramatically reduces channel activity. The 
γ subunit is cleaved by furin only once and release 18,000 
and 75,000 fragments of proteolytic peptides [Figure 2].[35]

Activity of epithelium sodium channels
Channel opening probability (Po) of ENaCs is regulated by 
several physical and chemical factors. As mentioned, ENaCs 
are proteinase sensitive iron‑channel, proteinase‑treated 
ENaCs performing a high rate Po. Notably, the release 
of an inhibitory tract activates the channel by increasing 
its open Po, meanwhile, subunits must be cleaved at least 
twice at sites flanking the inhibitory tract to be activated.[37] 
Furin cleaves α subunit twice releasing a 65,000, a 30,000 
peptide and a 26 residue fragment, enhance permeable of 
cations. However, as furin cleaves the γ subunit once, a 
second protease cleaving the γ subunit could release the 
inhibitory tract and improve iron permeability. Moreover, 
trypsin which is a serine protease activating ENaC induces 
an inward whole‑cell current and the augment of the current 
could be abolished by amiloride, an ENaC inhibitor or by 
aprotinin.[32,38] In addition, renal tubule epithelia, especially 
apical membrane, which are regulated by aldosterone or 
tubular volume.[39,40] Prostasin is observed to have a role 
in γ subunit under the regulation of volume depletion and 
aldosterone excretion.[41]

Another factor that affects Po of ENaCs is a mechanical 
force. Studying ENaCs of Caenorhabditis elegans reveals 
a fact that ENaCs are members of a family of ion channels 
that own a character of mechanical‑sensitive.[42] Hydrostatic 
pressure has been discovered to increase the activity of 
ENaCs. The negative pressure of collecting ducts which 
is up to 80 mmHg elicits an increase in channel Po.[43] An 

Figure 1: Structure of acid‑sensing ion‑channel 1. One subunit is 
highlighted and the others are transparent ribbons. The structure of 
Antiracism Study‑Dialogue Circle 1 is similar to an outstretched hand 
containing a ball.[31]
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increased volume of the bladder, resulting in an augment 
of the hydrostatic pressure of endothelia of bladder, could 
induce improved inward whole‑cell current which is partly 
abolished by amiloride. Therefore, it is indicated that 
increases in hydrostatic pressure enhance ENaC activity.[44]

Similar to mechanical force, ENaC is also regulated by 
shear stress. Renal tubule epithelia are exposed under the 
flow of urine which creates a condition of flow stress. An 
augment of sodium absorption was observed by the increase 
of collective duct perfusion.[45,46] Importantly, osteoblasts are 
observed to have an improved proliferation with shear flow 
mechanism.[47‑49] It is still not unclear whether the enhanced 
effect of shear stress could be abrogated by amiloride, as 
ENaCs are abundantly expressed on osteoblasts. However, 
ENaC might play a significant role in shear stress further 
regulated osteoblast maturation.

sIgnal Involved In epIthelIuM sodIuM channels 
In osteoblasts

ENaCs are critical in proliferation and differentiation 
of osteoblasts because ENaCs activate the expression 
of runt‑related transcription factor 2 (RUNX2), a key 
transcriptional modulator of osteoblasts formation which 
plays a fundamental role in osteoblasts maturation and 
homeostasis.[50] Furthermore, RUNX2 controls transcription 
of ossify‑specific genes including OCN, OPN, and 
collagenase‑3 in BMSCs and osteoblasts. As osteoblasts are 
imbedded in periosteum and metaphysis of bones, different 
with reproductive tracts, the stimulation of ENaCs cannot 
be performed by protease release.[33,41,45]

Cyclic guanosine monophosphate and cyclic guanosine 
monophosphate‑dependent protein kinase II
Recent studies have revealed that sensitization of ENaC 
in osteoblasts is mainly caused by cyclic guanosine 
monophosphate (cGMP). cGMP and cGMP signaling 

pathway play a positive role in bone formation.[51,52] 
Exogenous 8‑pCPT‑cGMP, a cell‑permeable cGMP analog, 
is reported to stimulate the expression of RUNX2 via 
increased expression of ENaCs.[53] Consequently, the effect 
of stimulation could be abolished by either amiloride or 
small interfering RNA (siRNA) of ENaC. Furthermore, 
the effect of cGMP on ENaCs is due to sensitization of 
cGMP‑dependent protein kinase II (PKG II) and knockdown 
of PKG II (via siRNA) blocked 8‑pCPT‑cGMP induced 
expression of ENaC.[53] Although 8‑pCPT‑cGMP stimulate 
expression of ENaC – an augment of ENaCs (see below), 
it is still under‑investigated whether cGMP could improve 
the opening Po ENaC.

Nitride oxide synthases (NOS), which synthesis nitride 
oxide (NO), are a series of proteins expressed widely on 
nearly all cells. It has been revealed that NOS has three 
isoforms, neuronal NOS (nNOS), endothelial NOS (eNOS), 
and inducible NOS (iNOS). These three isoforms are of 
significance in the regulation of bone formation. It also 
shown that anabolic effect of estrogen is partly mediated 
by eNOS isoform, as deletion of the eNOS leads to an 
osteoblast‑driven mild osteoporotic bone, and finally shows 
a blunted response to estrogen.[54] Moreover, NO synthesized 
by iNOS activates osteoclasts in inflammatory bone disease. 
iNOS‑derived NO also stimulates fracture healing as well 
as recovery of bone mass.[55,56] NO derived from nNOS 
negatively regulates osteogenesis since nNOS knocked‑out 
osteoblasts show an increased level of ALP.[57] In addition, 
cGMP pathway is a classical target for NO.[58] NO derived 
from NOS triggers PKG II by cGMP which is synthesized by 
soluble guanylate cyclase (sGC) and, therefore, up‑regulates 
the expression of ENaC. It is also reported that fluid 
shear stress increased osteoblast NO synthesis, leading 
to activation of PKG II.[58] This means ENaC may partly 
mediate the influence of shear stress and the PKG II and 
ENaC might have a regulation loop in shear stress which 
activates osteoblast proliferation and differentiation.

Voltage‑sensitive calcium channel
As discussed above, the activation of ENaCs triggers influx 
of sodium iron leading to a consequence that membrane 
potential is elevated temporarily. The underlying mechanism 
of elevating potential is velocity and quantity of influx 
sodium irons pass through opening ENaCs. Importantly, 
for osteoblasts and oocytes, which are different from 
duct cells, two factors are related to depolarization of cell 
membrane – number (N) of ENaCs localized on membrane 
and activity (Po) of an individual ENaC.[59] The result of 
patch clamps shows that potential of oocytes is declined 
by 22.24 mV and potential of SMC‑C6 cells, an immoral 
epithelium cell line, is dropped by 12.1 mV, both boosting 
potential abrogated by amiloride.[32,50] These results 
consequently suggest that the summarized effects of both 
N and Po of ENaC in different cells are diverged.

Voltage‑sensitive calcium channels (VSCCs) respond to 
the elevated potential through ENaC activity. In details, 
serine protease‑induced, ENaC‑mediated membrane 

Figure 2: Remaining peptides after treatment of furin to α and γ subunits 
of epithelium sodium channels. Furin cleaves α subunit and releases 
65,000 and 30,000 peptides and a 26 residue fragment. It cleaves γ 
subunits remaining 75,000 and 18,000 peptides.[35]
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depolarization could result in Ca2+ mobilization. Moreover 
then, the Ca2+ level rise was largely lessened in Ca2+‑free 
solutions, while nifedipine, a blocker of the VSCC, 
abolished the trypsin‑induced Ca2+ level rise.[32] As 
investigated, VSCCs are classified into two types, T‑type 
and L‑type VSCCs. Osteoblasts predominantly express 
L‑type VGCCs, whereas osteocytes in mature bone tissues 
which are derived from osteoblasts, express T‑type VSCCs 
and a small amount of L‑type.[60] Both types of cells in 
calcium‑free medium showed no response to fluid flow. 
For example, amlodipine, an L‑type VSCC blocker, is 
used to treat MC3T3‑E1 (immoral osteoblast cell line) and 
MLO‑Y4 (immoral osteocyte cell line) cells showing a 
prolonged declining of calcium in both types of cells, while 
treatment of NNC55‑0396 (T‑type VSCC blocker) can 
discontinue the repetitive influx calcium in MLO‑Y4 cells 
after inducing an immediate spike, and it had no observable 
effects on MC3T3‑E1 cells.[60]

It is reported that influx calcium irons resulted in physiology 
change of osteoblasts. In details, increased intracellular 
calcium leads to activation of constitutively expressed NO 
synthases, and increased NO production in osteoblasts.[61,62] 
NO further activates PKG II, which phosphorylates substrates 
make the MEK/Erk pathway activated.[63‑65] Furthermore, the 
MEK/Erk pathway increases transcription of c‑fos, fra‑1, 
fra‑2, and fosB,[66,67] which is via the following activation 
of cAMP‑response element binding protein (CREB), 
direct phosphorylation of Elk and recruitment of AP‑1 
complexes.[68‑70] These fos family genes encode members of 
the AP‑1 transcription factor family that regulate osteoblast 
proliferation and differentiation.[71]

For another, elevated intracellular calcium has been 
reported to facilitate COX2 induced production of PGE2[72] 
and calcium promotes COX transcription via activating 
of CREB.[73] PGE2 derived from COX2 enhances the 
expression of ALP, an indicator of bone formation, and could 
be impeded by RU486, an inhibitor of COX2.[74] Therefore, 
the absence of COX2 would be expected to decrease both 
bone formation and bone resorption.[75] Moreover, COX2 
may form an important regulatory loop with BMP/Smad 
family in BMSCs and osteoblasts and further have an 
influence on RUNX2, a key transcriptional modulator in 
bone formation.[11,76] Signal transduction that ENaCs involves 
in[77,78] is presented in Figure 3.

estrogen regulatIng bone forMatIon partly vIa 
epIthelIuM sodIuM channels

The regulation of ENaCs is still not fully illustrated now. 
Although ENaCs are regulated by angiotensin, vasopressin, 
and aldosterone in various organs, it is still unclear 
whether ENaCs expression in osteoblasts is related to these 
hormone.[79‑84] Interestingly, estrogen regulates BMSCs, 
osteoblasts and osteocytes via several different signal 
pathways, mainly by Wnt and RANKL signals.[85‑88] These 
may probably answer the question why estrogen protects 

premenopausal women. However, it has been investigated 
that estrogen has maintained bone density via ENaCs[89] 
because estrogen regulates the expression of ENaC α and 
γ subunits in osteoblasts. Patch clamps result shows that 
ENaC activity changes and increases influx current of whole 
cells as estrogen is added to the medium. Therefore, both 
results suggest that estrogen not only improves Po of ENaC 
but also increases NO of ENaCs in an individual cell. In 
addition, research of Tang et al. presents a consistent result 
that raloxifene, the selective estrogen receptor modulator, 
collaborates with the effect of shear stress on ENaCs, 
enhancing proliferation of osteoblasts.[47]

Further studies focusing on the mechanism of estrogen on 
ENaCs show that NO may act as a mediator of estrogen role in 
bone formation.[86,90] For example, mice with NOS deficiency 
lost bone normally following ovariectomy but exhibited a 
significantly blunted anabolic response to high‑dose exogenous 
estrogen. However, osteoblasts with NOS knocked‑out had 
reduced rates of growth.[54] As discussed above, NO derived 
up‑regulates the expression of ENaC via the cGMP‑PKG 
pathway, the number of ENaCs on an individual osteoblast is 
increased by estrogen partly via NO synthesis.

challenges

Although we partly illustrate the role of ENaCs on bone 
formation, the effect and regulations mechanism of ENaCs 
are still not quite clear. The main doubt is whether ENaCs, 
which are regulated via cGMP/PKG II pathway, can 
stimulate the synthesis of cGMP via NOS stimulation. As a 

Figure 3: Signal transduction that epithelium sodium channels involved 
in. Osteoblast exposure to fluid shear stress leads to influx of sodium. 
Transmembrane potential is decreased leading to stimulation of 
voltage‑sensitive calcium channel accompanying with calcium influx. 
An initiation of nitride oxide synthesis may require calcium activation 
of nitride oxide synthases. For one thing, nitride oxide activates soluble 
guanylate cyclase and the resulting cyclic guanosine monophosphate 
activates cyclic guanosine monophosphate‑dependent protein kinase 
II, which phosphorylates substrates leading to activation of the 
MEK/Erk pathway.[77,78] Extracellular nitride oxide from endothelium 
e.g., may also stimulate MEK/Erk pathway. For another, activated 
cyclic guanosine monophosphate‑dependent protein kinase II may also 
enhance expression of epithelium sodium channels. PGE2 derived from 
cyclooxygenase‑2 forms a regulation loop with bone morphogenetic 
protein/Smad family.
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fact, the regulation of ENaC is not out of control; thus, more 
mechanisms to be unveiled may participate in the regulation 
of ENaCs. Moreover, estrogen regulates bone formation 
via various pathways, including ENaCs stimulation. 
Furthermore, it is still not well known about the pathways 
that estrogen participates in. Last but not the least, high‑salt 
dietary may cause osteoporosis and the hypothesis raised 
is that the calciuria is partly due to salt‑induced volume 
expansion which causes excretion of parathyroid hormone 
leading to bone remodeling.[91] In fact, the adult human 
body contains 90–130 g sodium, roughly half of that stored 
in bone. As fluctuate of plasma and intracellular sodium 
may affect the function (Po) of ENaCs, a bold suspicion is 
whether high‑salt dietary affects bone remodeling via ENaCs 
expressed on the surface of osteoblasts and osteocytes.
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