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We integrated visual and quantitative methods for analyzing the stability of respiration using four methods: phase space diagrams,
Fourier spectra, Poincaré maps, and Lyapunov exponents. Respiratory patterns of 139 patients were grouped based on the
combination of the regularity of amplitude, period, and baseline positions. Visual grading was done by inspecting the shape of
diagram and classified into two states: regular and irregular. Quantitation was done by measuring standard deviation of x and v
coordinates of Poincarémap (SDx, SDv) or the height of the fundamental peak (A

1
) in Fourier spectrumor calculating the difference

between maximal upward and downward drift. Each group showed characteristic pattern on visual analysis. There was difference
of quantitative parameters (SDx, SDv, A1, and MUD-MDD) among four groups (one way ANOVA, 𝑝 = 0.0001 for MUD-MDD,
SDx , and SDv, 𝑝 = 0.0002 for A1). In ROC analysis, the cutoff values were 0.11 for SDx (AUC: 0.982, 𝑝 < 0.0001), 0.062 for SDv
(AUC: 0.847, 𝑝 < 0.0001), 0.117 for A

1
(AUC: 0.876, 𝑝 < 0.0001), and 0.349 for MUD-MDD (AUC: 0.948, 𝑝 < 0.0001). This is

the first study to analyze multiple aspects of respiration using various mathematical constructs and provides quantitative indices of
respiratory stability and determining quantitative cutoff value for differentiating regular and irregular respiration.

1. Introduction

One of the key challenges associated with imaging of thoracic
tumors using current PET/CT systems is respiratory motion
[1]. Respiration results in blurring of a tumor over multi-
ple respiration cycles and in underestimation of metabolic
uptake as well as in overestimation of the tumor volume
[2]. Respiratory gated PET/CT correlates the PET data
acquisition with the breathing phase and enables multiple
PET images associated with different respiration phases to be
reconstructed as distinct scans [3]. It reduces the respiratory
smearing and enables more accurately defining the tumor
volume and improving its standardized uptake value (SUV)
[4].

Despite the improved accuracy of respiratory gated
PET/CT, the gains are patient-specific because respiratory
patterns are patient-specific. Breathing is a dynamic phe-
nomenon, controlled by complex neurophysiologic feedback
and feed-forward coupling mechanisms [5]. The key to

successful respiratory gating is a highly stable respiration
that enables accurate data binning [3]. Therefore, if patient-
specific breathing patterns can be analyzed and evaluated
prior to the PET/CT acquisition, personalized motion cor-
rection methods can be developed.

Modeling respiratory motion remains a critical issue in
the field of radiation therapy. Several authors have inves-
tigated the characteristics of the respiratory patterns and
their variation during treatment forminimizing the influence
of respiratory motion and improving the delivery accuracy.
Basic characteristics of respiratory motion were summarized
previously [6]. A finite state model has been proposed for
representing the respiratory motion using line segments and
capturing the cycles in terms of duration, travelled distance,
and velocity [7]. Amplitude, period, baseline position, and
end-of-inhale and end-of-exhale position of respiration have
been analyzed, and a purely periodic model has been sug-
gested; however, the suggested model cannot satisfactorily
account for highly irregular respiration [8]. Asymmetric
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tumor motion has been analyzed in terms of the amplitude
of the tumor motion in three directions, the difference in
breathing levels during treatment, hysteresis (the difference
between the inhalation and exhalation trajectories of the
tumor when there is a phase difference), and the amplitude
of the tumor motion induced by cardiac motion [9]. Time-
amplitude curves of respiration have been decomposed into
various subcomponents, such as peak-to-peak amplitude,
period, the mean location of end-of-exhale position, and the
maximal upward and downward drifts [10]. Several motion
scenarios during respiratory gated radiotherapy have been
presented, reflecting the differences between simulated and
treatment-related CT, such as cycle change, baseline shift,
displacement change, and breathing type change (abdominal
or chest breathing) [11].

Methodologies presented in the above studies were lim-
ited to decomposing the time-amplitude curves into several
subcomponents. Herein, we transformed the time-amplitude
curves into mathematical constructs such as phase space
diagrams, Fourier spectra, Poincaré plots, and Lyapunov
exponents. By offering various tools for analysis of respi-
ratory patterns, with each tool having its distinctive merits
and limitations, we suggest selecting most suitable methods
satisfying the needs of specific clinical situation. Importantly,
our studies allow grouping the respiratory patterns into
multiple functionally distinct categories and suggest visual
and quantitative criteria for classifying regular and irregular
respiratory patterns. Finally, our approach integrates visual
and quantitative methods for evaluating the respiration sta-
bility.

In this study, we introduce visual and quantitative meth-
ods for analysis of respiratory patterns during respiratory
gated PET/CT. We analyzed respiratory motions induced by
free breathing of 139 patients by using phase space diagrams,
spectral analysis, Poincaré maps, and Lyapunov exponents.
Then, we grouped the patients’ breathing patterns with sim-
ilar motion characteristics into multiple functionally distinct
categories. Finally, we compared the different methods in
terms of their benefits and limitations.

2. Materials and Methods

2.1.The Studied Population. From July 2013 to April 2014, 139
patients underwent respiratory gated 18F-FDGPET/CT scans
for cancer evaluation. Each patient was asked to breathe freely
during 18F-FDG PET/CT acquisition, without any breathing
coaching. The patient-specific information is summarized
in Table 1. After fasting for at least 8 hours, the patients
were given intravenous injections of 5.2MBq/kg 18F-FDG.
PET/CT acquisition started 60 minutes after the radiotracer
injection. The use of the data for research purposes was
approved and the need for written informed consent was
waived by the institutional review board (IRB-15-026).

2.2. PET/CT Scanner. Therespiratory gated PET/CTprotocol
consisted of nongated CT and nongated PET alongwith gated
PET (Varian RPM) on predefined beds, followed by gated CT.
The PET data were acquired using a Discovery 710 PET/CT

Table 1: Baseline patient characteristics (𝑛 = 139).

Characteristics Value
Gender

Male 65
Female 74

Age
Median 62
Range 44–81

Cancer type
Stomach cancer 36
Pancreas cancer 13
Breast cancer 35
Lung cancer 30
Hepatocellular cancer 22
Carcinoma of unknown primary 3
Total 139

scanner (General Electric Medical System, Waukesha, WI,
USA). For each patient, a nongated CT scan for attenuation
correction was performed with a slice thickness of 3.75mm,
a pitch of 0.969 : 1, a noise index of 25.00, a rotation time
of 0.5 s, and at 120 kVp and 80–100mA, depending on the
bodyweight. After the nongated PET scan, a respiratory gated
PET scan over 2-bed position (10min per each bed) was
obtained (phase binning). The respiratory gated PET data
were binned into five bins (duration: 120ms) synchronized
with the patient breathing cycle. For respiratory gated images,
attenuation correction was performed by using the phase-
matched gated CT. Respiratory gated CT scans with cine
mode using ultra low dose protocol were performed with a
slice thickness of 5mm, a noise index of 120.00, a rotation
time of 0.5 s, a cine time between images of 0.35 s, and
at 100 kVp and 10–40mA, depending on the body weight.
The PET images were reconstructed using full 3D iterative
reconstruction with point spread function (PSF): a 192 × 192
matrix, 3 iterations, and 16 subsets.

2.3. Respiratory Gating System. Respiratory signals were
recorded with real time position management (RPM) res-
piratory gating system (Varian Medical Systems, Palo Alto,
CA, USA, software version number 1.7.5). For each patient,
the recording duration was 20min. In the RPM system, a
lightweight plastic block with a pair of infrared reflective
markers was attached to the patient’s abdomen approximately
halfway between the xiphoid process and the umbilicus, and
itsmotionwasmonitored and tracked using an infrared video
camera on the PET table. More details about the RPM system
can be found in Chang et al. [12].

2.4. Analysis Methods of Respiratory Patterns. Time-amplit-
ude curves of respiratory patterns of 139 patients were obse-
rved and divided into four groups by visual analysis based on
the combination of the regularity of amplitude and period.
Group A showed respiratory pattern that both amplitude
and period were regular. Group B showed pattern that
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Figure 1: Subcomponents of time-amplitude curve. A: amplitude,
P: period, MEE: mean location of end-of-exhale, MUD: maximal
upward drift position, andMDD:maximal downward drift position.

amplitude was regular, but period was irregular. Group C
showed pattern that amplitude was irregular, but period
was regular. Group D showed pattern that both amplitude
and period were irregular. Each group is further subdivided
depending on the existence of baseline drift. Visual grading
of amplitude and period was done by inspecting the shape
of phase space diagram or Fourier spectrum and classified
into two states: regular and irregular. By inspecting the time-
amplitude curve, visual grading of the baseline stability is
classified into two states, whether or not baseline drift is
present. Then, quantitative evaluation of respiratory stability
is done in each group. Regularity of amplitude or period
was expressed by measuring standard deviation of 𝑥 (AP
direction) and V coordinates of Poincaré map (SDx, SDv) or
measuring the height of the fundamental peak (A

1
) in Fourier

spectrum. Stability of the baseline position was expressed
quantitatively by calculating the difference between maximal
upward drift (MUD) position and maximal downward drift
(MDD) position (Figure 1) [10]. Less than 5% of respiration
cycle was not correlated with the majority of the pattern; this
cycle was discarded from analysis.

For each time-amplitude curve, the respiratory signal
information was mathematically transformed into phase
space diagram, Fourier spectrum, Poincaré map, and Lya-
punov exponent.

A phase space diagram depicts the velocity, V(𝑡), as
a function of the displacement, 𝑥(𝑡), at different times.
Although frequency information cannot be obtained from
the phase space diagram, this method is useful for visualizing
oscillatory processes, such as respiration. Amplitude of respi-
ration was regarded as regular in visual analysis if the shape
of the phase space diagram showed well defined, smooth
margin ellipse and concordant patterns, just as in the case of
phantom, as shown in Figure 2(b).

Second, respiration stability was assessed by analyzing
the frequency distribution of the signal’s power, the so-called
power spectrum. The time-amplitude curves were trans-
formed into the frequency domain by using the fast Fourier
transform (FFT) algorithm [13, 14]. The most prominent
spectral peak is called the fundamental frequency, represent-
ing the average frequency of patient’s respiration. In visual
analysis, the period of respiration was defined as regular if its
corresponding spectrum satisfied the following conditions:
(1) the spectrum contains one fundamental frequency peak,

with its height exceeding the average of other peaks by at
least twofold; (2) the spectrum is bell-shaped and centered
around the fundamental frequency. In quantitative analysis,
we measured the height of the fundamental peak (A

1
) to

express the regularity of period.
A Poincaré map (or Poincaré section) captures the time

series of a process in a phase space, where pairs of successive
points in the time series define the points in the plot [14]. It
has been often used to portray the dynamics of fluctuations
between the intervals, such as in the studies of beat-to-beat
heart rate variability [15–17]. We generated Poincaré sections
by plotting the intersections of a given trajectory in the phase
space diagram with a lower-dimensional state subspace,
called the Poincaré plane, transverse to the trajectory [18, 19].
Herein, regarding the cross section location, we allowed a
variation in both V and 𝑥, because if 𝑥 or V is fixed, most
of the respiratory signal will be lost because respiration of
real patient has irregular and translational characteristics.
So, we adopted the modified methods placing the Poincaré
plane at the median point between the maximal and minimal
points of respiration. A Poincaré map can be interpreted as a
snapshot preserving the properties of the original trajectory.
In this study, qualitative analysis of Poincaré plots was
performed by visually inspecting the shapes formed by the
points in the plots and evaluating the signals’ regularity.
Amplitude of respiration was regarded as regular if the shape
of the Poincaré showed densely gathered pattern, just as in
the case of phantom, as shown in Figure 2(c). However, a
merely visual classification is insufficient because it is highly
subjective in some equivocal cases. Hence, the plots were
quantitatively analyzed by calculating the standard deviations
(SD) along the horizontal (SDx) and vertical coordinates
(SDv), for assessing the dispersion [14].

Finally, by calculating Lyapunov exponents, we evaluated
dynamic and chaotic nature of respiration. Chaotic nature
of respiration has been demonstrated previously by calcu-
lating the Lyapunov exponents for the data collected during
the normal resting breathing of eight adults [20]. In this
study, the largest Lyapunov exponents (LLEs) of 139 patients
were calculated by using the previously suggested algorithm
[21–25]. The LLE quantifies the expected divergence or
convergence of initially close state-space trajectories as the
system evolves in time [5]. The presence of a positive LLE
is sufficient for diagnosing chaos and represents instability
in a particular direction. The presence of a negative LLE
represents the system’s tendency to converge to a stable state.
In the case of purely regular respiration, the LLE is 0. In this
study, we compared the LLEs with temporal changes of the
corresponding time-amplitude curves.

2.5. Statistical Analysis. One way analysis of variance
(ANOVA) with Scheffe post hoc analysis and multivariant
analysis of variance (MANOVA) were performed for the
determination of statistically significant difference between
the quantitative parameters among four groups, which were
divided based on visual grading. In addition, receiver
operating characteristic (ROC) curve analysis was conducted
to define the quantitative cutoff value of amplitude (SDx,
SDv), period (A1), and drift (MUD-MDD) for differentiating
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Figure 2: Example of typical regular respiratory pattern: respiratory pattern of phantom. (a) Time-amplitude curve. (b) Phase space diagram.
(c) Poincaré map. (d) Frequency spectrum.

Table 2: Four categories of respiratory patterns of 139 patients based
on visual analysis.

Amplitude
Regular Irregular

Period Regular
A (𝑛 = 38) C (𝑛 = 54)

Drift yes Drift no Drift yes Drift no
0 38 39 15

Period Irregular
B (𝑛 = 23) D (𝑛 = 24)

Drift yes Drift no Drift yes Drift no
4 19 24 0

regular and irregular respiration. All p values were considered
significant at<0.05.TheStatistical Package for Social Sciences
(version 16.0) andMedCalc (version 15.8) software were used
for statistical analysis.

3. Results

We classified the respiratory patterns of 139 patients into four
groups according to the combination of regularity of ampli-
tude and period, as shown in Table 2. As shown in Figure 3,
respiratory patterns of 38 patients (Group A) exhibited
regular amplitudes and periods. All patients in Group A did
not showbaseline drift (meanMUD-MDDwas 0.242±0.102).
In respiratory patterns for Group A as shown in Figure 3(a),
time-amplitude curves revealed regular amplitudes and fre-
quencies and phase space diagrams showed shapes of con-
stant form and size. Frequency spectra revealed narrow
bell-shaped distributions around prominent fundamental
frequency peaks (mean A

1
was 0.178±0.123). Poincaré maps

revealed that the points formed densely gathered patterns
(mean SDx and SDv were 0.068 ± 0.021, 0.053 ± 0.029).

In Group B, 23 patients exhibited regular amplitudes and
irregular periods as shown in Figure 3(b). Only 4 patients
showed baseline drift and 19 patients did not show baseline
drift (mean MUD-MDD was 0.23 ± 0.88). Time-amplitude
curves revealed regular amplitudes, but irregular frequencies.

Phase space diagrams showed shapes of constant form and
size. Poincaré maps revealed that the points formed densely
gathered patterns (mean SDx and SDv were 0.071 ± 0.19,
0.035 ± 0.15). Frequency spectra revealed broader distribu-
tionswith dispersive noise peaks (meanA

1
was 0.078± 0.017).

In Group C, 54 patients exhibited irregular amplitudes,
but regular periods as shown in Figure 3(c). 39 patients
showed baseline drift and 15 patients did not show base-
line drift (mean MUD-MDD was 0.445 ± 0.278). Time-
amplitude curves revealed regular amplitudes, but irregular
frequencies. Phase space diagrams showed irregular and
discordant patterns. Poincaré maps revealed that the points
were widely scattered (mean SDx and SDv were 0.151 ±
0.152, 0.091 ± 0.037). However, frequency spectra revealed
broader distributions with dispersive noise peaks (mean A

1

was 0.195 ± 0.097).
In Group D, 24 patients showed both irregular amplitude

and periods as shown in Figure 3(d). All patients showed
baseline drift (mean MUD-MDD was 0.793 ± 0.550). Time-
amplitude curves revealed irregular amplitudes and frequen-
cies. Phase space diagrams showed irregular and discordant
patterns. Poincaré maps revealed that the points were scat-
tered randomly without any direction (mean SDx and SDv
were 0.251± 0.136, 0.095± 0.047). Frequency spectra revealed
broader distributions with dispersive noise peaks (mean A

1

was 0.121 ± 0.054).
There was statistically significant difference of quantita-

tive parameters (SDx, SDv,A1, and MUD-MDD) among four
groups (one way ANOVA, 𝑝 = 0.0001 for MUD-MDD, SDx,
and SDv, 𝑝 = 0.0002 for A

1
) (Table 3). In Scheffe post

hoc analysis, there were difference of MUD-MDD, SDx, and
SDv between A, B and C, D groups and difference of A

1

between A, C and B, D groups. In addition, we conducted
multivariant analysis of variance (MANOVA) to compare
the difference of quantitative parameters (SDx, SDv, A1, and
MUD-MDD) between groups depending on visual period,
visual amplitude, and visual drift. Regarding visual period,
there was difference of MUD-MDD (F = 5.242), SDx (F =
3.954), andA

1
(F = 26.109) between groups (Wilks’ Lambda =

0.684, 𝑝 = 0.0001). Regarding visual amplitude, there was
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Figure 3: Representative respiratory patterns for Groups A (a), B (b), C (c), and D (d).



6 BioMed Research International

Table 3: Difference of quantitative parameters between groups:
result of one way ANOVA and Scheffe post hoc analysis.

Quantitative parameters N Mean SD p Scheffe

MUD-
MDD

A 38 0.242 0.102

0.0001 A, B < C, DB 23 0.231 0.088
C 54 0.445 0.278
D 24 0.793 0.550

SDx

A 38 0.069 0.021

0.0001 A, B < C, DB 23 0.071 0.019
C 54 0.151 0.152
D 24 0.251 0.136

SDv

A 38 0.053 0.029

0.0001 A, B < C, DB 23 0.035 0.015
C 54 0.091 0.037
D 24 0.095 0.047

A
1

A 38 0.178 0.123

0.0002 A, C > B, DB 23 0.078 0.017
C 54 0.195 0.097
D 24 0.122 0.054

difference of MUD-MDD (F = 11.005), SDx (F = 16.326), and
SDv (F = 31.394) between groups (Wilks’ Lambda = 0.741,
𝑝 = 0.0001). However, the partial correlation revealed no
significant visual period ∗ visual amplitude, visual period
∗ drift, visual amplitude ∗ drift, visual period ∗ visual
amplitude ∗ drift interactions.

Also, receiver operating characteristic (ROC) curve anal-
ysis was conducted to define the quantitative cutoff value of
amplitude (SDx, SDv), period (A

1
), and drift (MUD-MDD)

for differentiating regular and irregular respiration (Figures 4
and 5). Regarding binary visual analysis result as the reference
of standard, the quantitative cutoff values for differentiating
regular and irregular subcomponents of respirationswere 0.11
for SDx (AUC: 0.982, 𝑝 < 0.0001), 0.062 for SDv (AUC: 0.847,
𝑝 < 0.0001), 0.117 forA

1
(AUC: 0.876, 𝑝 < 0.0001), and 0.349

for MUD-MDD (AUC: 0.948, 𝑝 < 0.0001).
Lastly, the data for all 139 patients exhibited negative

LLEs, ranging from −3.76 to −0.43. (mean: −1.94, standard
deviation: 0.46). The LLEs values were not correlated with
the results of phase space, power spectrum, and Poincaré
map analyses. A visual comparison of the time series with
the LLEs (Figure 6) suggested that more negative Lyapunov
exponents corresponded to faster regularization of initially
irregular patterns.

4. Discussion

In this study, we have proposed both visual and quantitative
methods for analyzing the stability of respiration during res-
piratory gated PET/CT. Using phase space diagrams, Fourier
spectra, Poincaré maps, and Lyapunov exponents, we classi-
fied the respiratory patterns of 139 patients into four groups
according to the combination of regularity of amplitude and
period, as well as baseline position. Each group revealed

characteristic shape and pattern on visual analysis, as well as
showing statistically significant difference of the quantitative
parameters between groups and quantitative cutoff value for
differentiating regular and irregular respiration.

The advantages and limitations of the different methods
are summarized in Table 4.

A specific advantage of the phase space diagram method
is that it allows intuitively visualizing the oscillatory pro-
cesses, such as respiration, at a glance. Phase space patterns
are patient-specific. Compared with time-amplitude curve,
this method becomes especially useful when the information
on the respiration signal is acquired on a long time scale.
However, quantitative analysis is difficult because a threshold
for classifying regular and irregular respiratory patterns
cannot be easily set by visually inspecting the phase space
diagram. Moreover, in equivocal cases, which cannot be
clearly categorized into regular or irregular, visual catego-
rization is not easy. Finally, the analysis becomes difficult
when the regularities of amplitude, frequency, and baseline
are discordant or when there is a mixed pattern consisting
of both regular and irregular respiratory patterns. In these
cases, additional evaluation is required and other quantitative
analysis methods, such as power spectrum or Poincaré map,
can be helpful.

In the Fourier spectrum method, the information on
amplitude and baseline position is lost during the Fourier
transform. This method is useful for analyzing cases showing
discordance between frequencies, amplitudes, or baseline
positions (Group B2).

Complex cases that exhibit discordance between ampli-
tudes and baseline positions (such as Groups B1, B2, and C)
can be analyzed using the Poincaré map method. However,
the main limitation of this method is that more than one
Poincaré map can be generated, depending on the sectioning
methods. In this study, Poincaré surfaces were positioned
halfway between the maximal and minimal respiration
points, because the median point was considered not to be
affected by the fluctuations of extreme end-of-inhale or end-
of-exhale points. In addition, the results of this analysis can
be affected by the fitting method. In some studies, the shapes
in Poincaré maps have been fitted to ellipses [26], while other
studies have employed the Pearson correlation [27]. Finally, a
number of techniques have been developed for quantifying
the geometrical shapes in Poincaré maps. For example, a
qualitative, visual classification method has been extended
into a quantitative method by incorporating standard time-
domain statistics into the existing categories of Poincaré plots
[28, 29]. In our study, we adopted a simple way to express
the extent of dispersion by measuring the standard deviation
along the map horizontal coordinate.

Using the Lyapunov exponent method, we proposed a
novel methodology for analyzing respiration waveforms by
considering the respiratory system as a dynamical system.
The LLEs for all 17 patients were negative, implying that, in
all cases, the time series of breathing were attracted to the
stable periodic orbits. By calculating the correlation between
the time series and the corresponding Lyapunov exponents,
we have shown that more negative exponents correspond to
faster regularization of initially irregular respiratory patterns.
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Figure 4: Receiver operating characteristic (ROC) curve analysis (red line) for quantitative parameters of A
1
(a), MUD-MDD (b), SDx (c),

and SDv (d). Black line on both sides of the ROC curve represents 95% confidence interval.

In the future, the method of Lyapunov exponent will be
especially useful in the clinical settings aiming to evaluate
improvement of breathing pattern reproducibility using res-
piratory coaching.

The present study has some advantages over previous
studies.

First, although other studies addressed different subcom-
ponents of respiratory patterns, there was no attempt in
the past to group the respiratory patterns into functionally

distinct categories. Here, for the first time, we demonstrated
that there were characteristic and distinctive shape and pat-
tern on visual analysis and proved that there was significant
difference of the quantitative parameters between groups.

Second, for the first time, we integrated both visual
and quantitative approaches for evaluating the respiration
stability. Our study proposed specific visual and quantitative
criteria for classifying regular and irregular respiratory pat-
terns. In the quantitative analysis methods (e.g., the power



8 BioMed Research International

Sens: 83.0
Spec: 89.10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10
visual_period

≤0.117

(a) A1

Sens: 88.1
Spec: 93.10.0

0.5

1.0

1.5

2.0

2.5

10
Drift

>0.349

(b) MUD-MDD

Sens: 91.0
Spec: 100.0

10
visual_amplitude

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

>0.11

(c) SDx

Sens: 76.9
Spec: 80.3

0.0

0.1

0.2

0.3

10
visual_amplitude

>0.062

(d) SDv

Figure 5: Interactive dot diagrams for quantitative parameters of A
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Figure 6: Temporal correlations of the time series with the corresponding LLEs.

spectrum, the Poincaré map, and the Lyapunov exponent
method), the extent of regularity was captured with contin-
uous numerical variables. This is the first study providing
quantitative indices of respiration stability and determining
quantitative cutoff value for differentiating regular and irreg-
ular respiration.

Third, analysis in the previous studies was performed
by decomposing the subcomponents of the respiration time-
amplitude curve. However, this method cannot reveal a com-
plete picture of the underlying complex breathing dynamics.

In our study, the time-amplitude curves were transformed
into various mathematical constructs, such as the phase space
diagram, the Fourier spectrum, the Poincaré map, and the
Lyapunov exponent. This study is the first to analyze multiple
aspects of respiration using various methods of analysis,
each of which has its advantages, limitations, and indica-
tions. Time-amplitude curves and phase space diagrams are
sufficient for characterizing the respiration stability in the
typical cases, such as those in Group A or Group D. However,
when some inconsistency exists between the amplitudes,
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Table 4: Advantages and limitations of phase space diagram, power spectrum, Poincaré map, and Lyapunov exponent methods.

Advantage Limitation

Phase space (i) It allows intuitively visualizing
the respiration stability.

(i) Quantitative analysis is difficult (threshold value
cannot be set).

(ii) Visual grading is difficult for equivocal patterns.
(iii) Analysis becomes difficult when regularities of
amplitude, frequency, and baseline position are

discordant or when the respiratory pattern consists of
regular and irregular patterns.

Power spectrum
(i) Stability is rated based on

frequency.
(ii) Both visual and quantitative

analyses are possible.

(i) Information on amplitude and baseline position
cannot be obtained.

Poincaré map

(i) It uses the shape and
directionality of distribution
patterns in Poincaré map as
differential points and allows
easy analysis of the cases in
which the amplitude and

baseline position are discordant.
(ii) Both visual and quantitative

analysis are possible.

(i) It cannot get information about frequency.
(ii) Various Poincaré maps can be generated depending

on various fitting and sectioning methods.

Lyapunov exponent
(i) Respiration is evaluated in

terms of the temporal divergence
or convergence.

(i) It is not correlated with phase space, power
spectrum, and Poincaré map methods.

frequencies, and baseline positions (Group B or Group C),
additional quantitative analysis tools, such as Fourier spectra
and Poincaré maps, become helpful. The Fourier spectrum
method is useful for classifying the respiration stability based
on frequency. In contrast, Poincaré maps can be used for
analyzing complex cases that exhibit baseline position drifts
or a combination of regular and irregular respiratory patterns.
Themethod of Lyapunov exponents can be used for revealing
the temporal divergence or convergence of time series. Thus,
these different methods are suitable for different clinical
situations.

Several limitations of this study should be mentioned.
First, visual grading system is binary system. Second, we used
the respiration data acquired by using an external respiration-
sensing monitor, which captures the anterior surface motion
of the patient’s abdomen. Although several studies have
reported that the external marker represents internal motion,
recent studies have shown a discrepancy between external
respiratory motion and internal tumor motion [30]. Third,
because this paper is focused on analyzing respiratory pattern
only, potential research applications regarding the impact of
the respiration patterns on PET/CT images have not been
investigated.

The work presented in this paper can be extended in sev-
eral ways. First, multiple visual grading systems can be ap-
plied for the visual analysis of phase space diagrams in the
future studies. Second, other parameters, such as the differ-
ence between lesion SUVs or volumes of motion-free and
motion-blurred PET/CT images, can be used as a reference
for quantitatively determining the threshold. In the future
work, we plan to investigate the impact of various respiratory

patterns on the quantitative metabolic parameters, such as
SUV and volume. Finally, it would be meaningful to inves-
tigate the changes in qualitative and quantitative indices of
respiration stability that were mentioned in this study, before
and after respiratory coaching in respiratory gated PET/CT.

These analysis methods can help design patient-specific
respiratory methodologies. In respiratory gated PET/CT
image, there is some change of SUV, compared with non-
gating image. Change of SUV between gating and nongated
image can be due to either gating itself or effect of unstable
respiration. In such situations, if we do not have information
about patient’s respiratory pattern, we cannot judge whether
or not the changing SUV is due to gating itself or unstable
respiration. So, to judge how we confide the changing SUV in
the gated PET, we should evaluate the stability of respiration
first. So, if we evaluate respiratory stability before acquiring
PET/CT image, we can select patients showing unstable
respiration and give those patients respiratory training before
acquiring PET/CT.

5. Conclusions

In this study, we integrated both visual and quantitative
methods for analyzing the stability of respiration during
respiratory gated PET/CT using four methods: phase space
diagrams, Fourier spectra, Poincaré maps, and Lyapunov
exponents. Here, we demonstrated that each group revealed
characteristic shape and pattern on visual analysis, as well as
showing significant difference of the quantitative parameters
between groups and determining quantitative cutoff value
for differentiating regular and irregular respiration. These
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analysis methods can help design patient-specific respiratory
methodologies in the future.
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