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Abstract

Background

Transcription of the HIV-1 provirus is regulated by both viral and host proteins and is very

important in the context of viral latency. In latently infected cells, viral gene expression is

inhibited as a result of the sequestration of host transcription factors and epigenetic

modifications.

Results

In our present study we analyzed the effect of host factor dual specificity tyrosine-phosphor-

ylation-regulated kinase 1A (DYRK1A) on HIV-1 replication. We show that DYRK1A con-

trols HIV-1 replication by regulating provirus transcription. Downregulation or inhibition of

DYRK1A increased LTR-driven transcription and viral replication in cell lines and primary

PBMC. Furthermore, inhibition of DYRK1A resulted in reactivation of latent HIV-1 provirus

to a similar extent as two commonly used broad-spectrum HDAC inhibitors. We observed

that DYRK1A regulates HIV-1 transcription via the Nuclear Factor of Activated T-cells

(NFAT) by promoting its translocation from the nucleus to the cytoplasm. Therefore, inhibi-

tion of DYRK1A results in increased nuclear levels of NFAT and increased NFAT binding to

the viral LTR and thus increasing viral transcription.

Conclusions

Our data indicate that host factor DYRK1A plays a role in the regulation of viral transcription

and latency. Therefore, DYRK1A might be an attractive candidate for therapeutic strategies

targeting the viral reservoir.
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Background
The ability of the human immunodeficiency virus type 1 (HIV-1) to replicate in a host cell is
influenced by numerous host factors that act on different steps of the viral life cycle ranging
from virus entry to budding of the newly formed virions. Recent genome wide RNAi studies
have identified almost 1000 host proteins that support HIV-1 replication [1–9]. On the other
hand, a number of host factors, such as MX2 [10–12], TRIM5α [13,14], SAMHD1 [15,16],
APOBEC3 [17–19] and Tetherin [20] have been described to display antiviral effects and
restrict viral replication.

Recently, we have performed a genome wide association study to assess the effect of genetic
polymorphisms on HIV-1 replication in macrophages and we identified polymorphisms in a
number of host genes that were strongly associated with HIV-1 replication [21]. One of these
polymorphisms was located in the dual specificity tyrosine-phosphorylation-regulated kinase 1A
(DYRK1A). In addition, this polymorphism was also associated with HIV-1 disease progression
in two independent cohorts, suggesting an important role for this protein in HIV-1 replication
[21].

DYRK1A is a kinase that is involved in regulation of the cell cycle and neurogenesis during
brain development [22–27]. DYRK1A regulates the activity of several transcription factors
[28–35], some of which have been implicated in the regulation of HIV-1 transcription [36–39].
DYRK1A phosphorylates the Nuclear Factor of Activated T-cells (NFAT) and the class III his-
tone deacetylase Sirtuin 1 (SIRT1) [34,35]. Phosphorylation of NFAT by DYRK1A results in its
translocation from the nucleus to the cytoplasm, which decreases nuclear NFAT levels [32,33].
SIRT1 phosphorylation by DYRK1A results in the activation of SIRT1, which deacetylates the
RelA/p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)
complex, and thus inhibits NF-kB activity [34]. Both NFAT and NF-kB are transcription fac-
tors that bind to the HIV-1 long terminal repeat (LTR) promoter thereby regulating proviral
transcription [36–41].

Here we investigated the role of DYRK1A in HIV-1 replication. We show that DYRK1A
controls HIV-1 replication at a transcriptional level in multiple cell lines and primary PBMC.
DYRK1A inhibits LTR-driven transcription by limiting the nuclear localization of transcrip-
tion factor NFAT. Inhibition of DYRK1A in TZM-bl cells and J-Lat cells, which carry a latent
HIV-1 provirus, resulted in reactivation of the latent HIV-1 to a similar extent as treatment
with TNFα and two commonly used broad-spectrum HDAC inhibitors. These data suggest
that DYRK1A can control HIV-1 replication and might be involved in viral latency.

Results

DYRK1A knockdown or inhibition increases HIV-1 replication
The effect of DYKR1A knockdown on HIV-1 replication was analyzed in HEK293T cells.
HEK293T cells express high levels of endogenous DYRK1A and after transfection with a
shRNA that targets DYRK1A mRNA, a dose-dependent decrease in DYRK1A protein expres-
sion was observed (Fig 1A). When the DYRK1A knockdown cells were infected with a VSV-G
pseudotyped HIV-1 luciferase reporter virus, a dose dependent increase in luciferase activity
was observed (Fig 1B and S1A Fig). This indicates that DYRK1A represses viral replication in
HEK293T cells. A similar observation on virus replication was made using INDY, a selective
inhibitor of DYRK1A [42,43]. When INDY was added to the HEK293T cells at 24 hours after
infection with a VSV-G pseudotyped HIV-1 luciferase reporter virus, a dose dependent
increase in luciferase activity was observed (Fig 1C and S1B Fig). Next, we analyzed whether
DYKR1A is also an important regulator of HIV-1 replication in primary cells. Activated
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Fig 1. The effect of DYRK1A knockdown or inhibition on HIV-1 replication. (A) To test the shRNA targeting against DYRK1A, HEK293T cells were
transfected with either 6.25 ng, 12.5 ng or 25 ng of shDYRK1A or shControl and 48-hours after transfection DYRK1A protein expression was determined by
Western blot. The results shown are representative for 3 independent experiments. The ratio is calculated by dividing the intensity of the DYRK1A bands by
the intensity of the β-actin band as determined with ImageJ. (B) The effect of DYRK1A downregulation on HIV-1 replication was tested by transfecting
HEK293T cells in 96-wells plates with either 6.25 ng, 12.5 ng or 25 ng of shDYRK1A or corresponding concentrations of the shControl. Forty-eight hours after
DYRK1A downregulation cells were inoculated at a MOI of 0.01 with a VSV-G-pseudotyped single-round luciferase virus. Luciferase activity was determined
48 hours post infection as a measure for viral replication and expressed relative to the corresponding shControl. Data is shown as mean and SD of three
independent experiments. (C) The effect of DYRK1A inhibition on HIV-1 replication in HEK293T was analyzed by infection with a VSV-G-pseudotyped
single-round luciferase virus. Twenty-four hours post infection cells were treated with 24 μM, 48 μM or 120 μM of either INDY or DMSO control and after an
additional 24-hours luciferase activity was determined as a measure for viral replication and expressed relative to DMSO control (No Drug). Data is shown as
mean and SD of three independent experiments. (D) The effect of DYRK1A inhibition on HIV-1 replication in PBMC was analyzed by infecting PHA-
stimulated PBMC from four healthy blood donors with a VSV-G-pseudotyped single-round luciferase virus at a MOI of 0.1. Twenty-four hours post infection,
cells were treated with either 24 μM or 48 μM of INDY or DMSO control and after another 24-hours luciferase activity was determined as a measure for viral
replication and expressed relative to the DMSO control (No drug). Data is shown as mean and SD of 4 independent donors. Significance was determined
with an unpaired student’s T test. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0144229.g001
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PBMCs were infected with a VSV-G pseudotyped HIV-1 luciferase reporter virus and
24-hours after infection different concentrations of the DYRK1A inhibitor INDY were added
to the culture medium. After 24-hours, we observed an increase in luciferase activity in the
PBMC that were treated with the DYRK1A inhibitor (Fig 1D). This indicates that DYRK1A
also controls HIV-1 replication in PBMC.

DYRK1A affects HIV-1 replication at a transcriptional level
DYRK1A has been described to regulate the activity of several transcription factors, including
NFAT and NF-kB, which are known to drive transcription from the HIV-1 LTR [36–39]. We
investigated whether the effect of DYRK1A on HIV-1 replication was mediated at a transcrip-
tional level. We co-transfected reporter constructs in which luciferase expression is driven by
the HIV-1 LTR in combination with a shRNA against DYRK1A in HEK293T cells and ana-
lyzed luciferase activity 48-hours after transfection as a measure for LTR driven transcription.
A dose dependent increase in luciferase activity was observed in HEK293T cells in which
DYRK1A expression was downregulated by shRNA (Fig 2A). Moreover, a dose dependent
increase of LTR driven luciferase expression was observed when DYRK1A was inhibited by
increasing concentrations of INDY (Fig 2B). Next, we analyzed whether DYRK1A regulates
viral transcription via the transcription factors NFAT and NF-kB by using a luciferase reporter
construct in which the NFAT an NF-kB binding sites were deleted from the LTR. Although the
level of basal transcription of this construct is decreased compared to the construct containing
the complete LTR, significant levels of luciferase activity could be detected (Fig 2C). Knock-
down or inhibition of DYRK1A did not affect transcription driven by LTR from which the
NFAT and NF-kB binding sites were removed (Fig 2D and 2E). This suggests that DYRK1A
controls HIV-1 replication by repressing transcription most likely via the nuclear factors
NFAT and/or NF-kB.

Inhibition of DYRK1A reactivates HIV-1 transcription
To analyze whether DYRK1A plays a role in transcriptional silencing of an integrated HIV-1
provirus, we analyzed whether the DYRK1A inhibitor INDY is able to reactivate a transcrip-
tionally latent HIV-1 provirus. As model systems we used TZM-bl and J-Lat cells which con-
tain an integrated luciferase or GFP gene under the control of the HIV-1 LTR promoter. When
TZM-bl cells were incubated with different concentrations of the DYRK1A inhibitor INDY, we
observed that luciferase expression strongly increased, indicating that inhibition of DYRK1A
resulted in reactivation of the HIV-1 LTR (Fig 3A and S1C Fig). Similar results were observed
when J-Lat cells were treated with INDY [44,45]. Treatment of J-Lat full length cells (8.2) and
J-Lat TAT-GFP cells (A1) resulted in increased GFP expression and also increased numbers of
GFP expressing cells (Fig 3B–3E). For comparison, we analyzed the ability of two broad spec-
trum histone deacetylase inhibitors (HDACi’s), sodium butyrate and trichostatin A (TSA) [46–
51], to reactivate transcription from the HIV-1 LTR. Increased luciferase activity was indeed
observed in the presence of these HDACi. Inhibition of DYRK1A resulted in reactivation of
the latent provirus to a similar extent as the two broad spectrum HDACi’s tested (Fig 3E and
S1C Fig).

The effect of DYRK1A on HIV-1 transcription and replication is mediated
via transcription factor NFAT
Our data suggests that DYRK1A regulates transcription from the viral LTR through the tran-
scription factors NFAT and/or NF-kB. To confirm this, we performed DNA chromatin immu-
noprecipitations in TZM-bl cells cultured in the presence or absence of INDY. Treatment with
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Fig 2. The effect of DYRK1A knockdown or inhibition on LTR driven transcription. (A) The effect of DYRK1A downregulation on LTR driven
transcription was analyzed by co-transfection of HEK293T cells in 96-wells plates with 5 ng of LTR-luciferase reporter construct and 12.5 ng, 25 ng or 50 ng
of shDYRK1A or the shControl vector. Luciferase activity was analyzed 48-hours post-transfection as a measure for LTR activity and expressed relative to
the shControl. (B) The effect of DYRK1A inhibition on LTR driven transcription was analyzed by transfecting HEK293T cells in 96-wells plates with 5 ng of
LTR-luciferase reporter construct. Twenty-four hours post transfection cells were treated with 24 μM, 48 μM or 120 μM of either INDY or the DMSO control
and after an additional 24-hours luciferase activity was determined and expressed relative to DMSO control (No Drug). (C) Comparison of basal
transcriptional levels of the LTR-luciferase reporter construct and LTR-luciferase reporter construct lacking the NFAT and NF-kB binding sites was performed
by transfecting HEK293T cells in 96-wells plates with 5 ng of either construct. Luciferase activity was analyzed 48-hours post-transfection as a measure for
LTR activity. The effect of DYRK1A downregulation (D) or inhibition (E) on LTR driven transcription was analyzed by co-transfection of HEK293T cells in
96-wells plates with 5 ng of LTR-luciferase reporter construct lacking the NFAT and NF-kB binding sites and 12.5 ng, 25 ng or 50 ng of shDYRK1A or the
shControl vector or treatment with 24 μM, 48 μM or 120 μM INDY. Luciferase activity was analyzed 48-hours post-transfection as a measure for LTR activity
and expressed relative to the shControl. Significance was determined with an unpaired student’s T test. *p<0.05, **p<0.01. Data is shown as mean and SD
of three independent experiments.

doi:10.1371/journal.pone.0144229.g002
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INDY increased binding of NFAT to the HIV-1 LTR, whereas binding of NF-kB to the HIV-1
LTR only increased upon TNFα treatment (Fig 4A). To further show that the effect of
DYRK1A on HIV-1 replication and transcription is mediated via NFAT we tested whether
inhibition of NFAT or NF-kB would abrogate the effect of DYRK1A knockdown on LTR-
driven transcription in HEK293T cells. Indeed, treatment of HEK293T with NFAT inhibitor
FK506 abrogated the effect of DYRK1A knock-down, whereas treatment with NF-kB inhibitor
Bay had no effect (Fig 4B, 4C and S1B Fig). Of note, both inhibitors were effective at the con-
centration used as demonstrated by the decrease of the basal activity of the LTR-luciferase
reporter construct (S2A Fig). It has been shown before that DYRK1A can phosphorylate

Fig 3. The effect of DYRK1A inhibition on reactivation of HIV-1 LTRs. (A) The effect of DYRK1A inhibition on reactivation of silent HIV-1 provirus was
studied in TZM-bl cells. TZM-bl were treated with either 48 μM, 120 μM or 240 μM of INDY or the DMSO control and 24-hours later LTR-driven luciferase
activity was determined as a measure for viral reactivation. Results are expressed relative to the DMSO control. Data is shown as mean and SD of three
independent experiments. (B-E) J-Lat cells were treated for twenty four hours with 24, μM, 48 μM, 120 μM or 240 μM of INDY or 12.5 ng/ml TNFα as a
positive control. Subsequently the percentage of GFP expressing cells and the mean fluorescent intensity was determined by FACS. Results are expressed
relative to the control). Data is shown as mean and SD of two independent experiments. (F) The effect of DYRK1A inhibition on the reactivation of silent HIV-
1 provirus was compared to reactivation by two HDAC inhibitors sodium butyrate and TSA. TZM-bl were treated with either 120 μM or 240 μM of INDY, 5 mM
or 10 mM of Sodium butyrate, or 9 nM or 18 nM of TSA or the appropriate vehicle control. Twenty-four hours later, LTR-driven luciferase activity was
determined and expressed relative to vehicle control. Data is shown as mean and SD of three independent experiments. Significance was determined with
an unpaired student’s T test. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0144229.g003
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Fig 4. The effect of DYRK1A inhibition and downregulation is mediated via NFAT. (A) To analyze the effect of DYRK1A inhibition on the amount of
NFAT or NF-kB bound to the viral LTR, a ChIP-qPCR analysis was performed in TZM-bl cells treated with either 240 μM of INDY, the DMSO control, or 12.5
ng/ml TNFα. Sheared DNA was immunoprecipitated with either control IgG, anti-NFAT, or anti-NF-κB antibodies and levels of bound LTR DNA were
analyzed by qPCR. (B) The effect of DYRK1A downregulation on LTR driven transcription in the presence of 10μMNF-kB inhibitor BAY or 300 ng/ml NFAT
inhibitor FK506 (C) was analyzed by co-transfection of HEK293T cells in 96-wells plates with 5 ng of LTR-luciferase reporter construct and 12.5 ng, 25 ng or
50 ng of shDYRK1A or the shControl vector. Luciferase activity was analyzed 48-hours post-transfection as a measure for LTR activity and expressed
relative to the shControl. Data is shown as mean and SD of three independent experiments. (D) Nuclear localization of NFAT was studied in TZM-bl cells
cultured for 24 hours in the absence or presence of 240 μM INDY. Subsequently, cells were stained with Hoechst and anti-NFAT and analysed by confocal
fluorescent microscopy. Results are representative of at least two independent experiments. Significance was determined with an unpaired student’s T test.
*p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0144229.g004
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NFAT, thereby promoting its translocation from the nucleus to the cytosol [32,33]. The
increase in HIV-1 transcription upon DYRK1A inhibition might therefore be the result of an
increased nuclear localization and subsequent binding of NFAT to the HIV-1 LTR. We there-
fore analyzed NFAT translocation upon inhibition of DYRK1A by INDY by confocal micros-
copy. TZM-bl cells were treated with INDY and subsequently stained with Hoechst and an
antibody against NFAT. Treatment with INDY resulted in a translocation of NFAT into the
nucleus, which further confirms that DYRK1A affects HIV-1 transcription by regulating the
nuclear localization of NFAT (Fig 4D).

Discussion
Retroviral transcription is a complex process and is regulated by both viral and host proteins.
In the present study we show that DYRK1A can control HIV-1 replication at a transcriptional
level. Downregulation of DYRK1A expression by shRNA or inhibition by INDY increased
viral replication at a transcriptional level. DYRK1A mediated inhibition was dependent of
NFAT and/or NF-kB, since transcription using a LTR construct lacking the NFAT and NF-kB
binding sites was not affected by DYRK1A. When we analyzed the amount of NFAT and NF-
kB bound to the viral LTR, we observed that inhibition of DYRK1A induced recruitment of
NFAT to the viral LTR. This was further supported by the finding that inhibition of NFAT but
not NF-kB abrogated the effect of DYKR1A knock-down on LTR-driven transcription.
DYRK1A is known to phosphorylate NFAT, which results in translocation of NFAT from the
nucleus into the cytoplasm [32,33]. Indeed, we observed increased translocation of NFAT
upon DYRK1A inhibition by INDY. Thus, our data show that DYRK1A inhibition or downre-
gulation of DYRK1A expression results in higher nuclear NFAT levels and increased binding
of NFAT to the HIV-1 LTR.

It has been suggested that the inactivation of RelA/p65 by SIRT1 can be prevented by the
binding of the HIV-1 Tat protein to the deacetylation domain of SIRT1 [52,53]. However, our
data suggests that the effect of DYRK1A is not mediated via SIRT1 and NF-kB (Fig 4B), and
also co-transfection of TAT did not affect the increase in luciferase activity upon DYRK1A
knock-down (S2B Fig).

Here we observed that DYRK1A is a potent regulator of viral transcription and acts through
translocation of the transcription factor NFAT. Sequestration of transcription factors like
NFAT has been shown to play a major role in the development of HIV-1 latency [54,55]. Inter-
estingly, we observed that treatment of TZM-bl and J-Lat cells with DYRK1A inhibitor INDY
resulted in activation of transcriptionally silent HIV-1 LTR promoters. The reactivation of pro-
viral transcription by INDY was comparable to the reactivation achieved with two commonly
used broad-spectrum HDAC inhibitors and TNFα. Reversal of viral latency in an attempt to
purge the viral reservoir through killing of infected cells by cytolytic T cells or cytopathic effects
of viral replication, using several HDAC inhibitors was successful to some extent [56–58].
However, it has been demonstrated that only a small proportion of latent proviruses can be
reactivated with HDAC inhibitors [59,60]. This underscores the need to understand viral
latency and cellular factors involved. The identification of cellular factors such as DYRK1A
that regulate viral transcription will provide more insights in the complex process of viral tran-
scription and might provide new therapeutic opportunities for drug development targeting the
viral reservoir.

Conclusions
DYRK1A controls HIV-1 replication at a transcriptional level and the effect of DYRK1A on
provirus transcription is mediated by limiting the nuclear localization of transcription factor
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NFAT. Inhibition of DYRK1A resulted in the reactivation of latent integrated provirus, which
indicates that DYRK1A is involved in the regulation of viral latency. Therefore, DYRK1A
might be an attractive candidate for therapeutic strategies targeting the viral reservoir.

Methods

Ethics Statement
This study has been conducted in accordance with the ethical principles set out in the declara-
tion of Helsinki, and was approved by the Medical Ethics Committee of the Academic Medical
Center and the Ethics Advisory Body of the Sanquin Blood Supply Foundation in Amsterdam,
The Netherlands. Written informed consent was obtained from all participants.

Cell lines and virus production
HEK293T cells were cultured in Dulbecco's Modified Eagle Medium without Hepes (DMEM)
(Lonza, Basel, Switzerland) supplemented with 10% (v/v) inactivated fetal calf serum (FCS),
penicillin (100 U/ml) and streptomycin (100 μg/ml) [61,62]. TZM-bl cells were cultured in
Iscove's modified Dulbecco medium supplemented with 10% fetal calf serum, penicillin (100
U/ml), streptomycin (100 U/ml) (Lonza) [63–67]. J-Lat cells were cultured in Roswell Park
Memorial Institute Medium (RPMI) (Lonza) supplemented with 10% (v/v) heat-inactivated
fetal calf serum (FCS), penicillin (100 U/ml) and streptomycin (100 μg/ml) [44,45]. All cells
were maintained in a humidified 10% CO2 incubator at 37°C. VSV-G pseudotyped NL4-3.Luc.
R-E- luciferase reporter virus was produced by transfection of pNL4-3.Luc.R-E- with
pCMV-VSV-G in HEK293T cells [68,69]. Transfections were performed with the calcium
phosphate method [70]. In short, plasmid DNA was diluted in 0.042M HEPES containing
0.15M CaCl2, subsequently mixed with an equal volume of 2× HEPES buffered saline pH 7.2,
incubated at room temperature for 15 min and added to the culture medium. After 24 h incu-
bation in a humidified 3% CO2 incubator at 37°C, the culture medium was replaced and cul-
tures were continued at 10% CO2 at 37°C. Virus was harvested at 48 and 72 h after transfection
and passed through a 0.22 μm filter. HIV-1 virus titers were quantified by determining the
TCID50 on 293T cells [71].

LTR-driven transcription in HEK293T, TZM-bl and J-Lat cells
HEK293T cells were transfected with pLKO.1 constructs expressing a shRNA against
DYRK1A, a control shRNA (TRCN199464 or SHC001; Sigma-Aldrich, USA [72]) and/or the
long terminal repeat (HXB2 LTR) luciferase reporter constructs pBlue30 LTR-luc [73], and
pBlue30 LTRΔNFAT/ΔNF-kB-luc and/or HIV-1 Tat expression construct sv-Tat using the cal-
cium phosphate method. Forty-eight hours after transfection, LTR-driven luciferase activity
was analyzed. The effect of DYRK1A inhibition on LTR driven transcription was analyzed by
transfecting HEK293T cells in 96-wells plates with 5 ng of LTR-luciferase reporter construct.
Twenty-four hours post transfection cells were treated with 24 μM, 48 μM or 120 μM of either
INDY (Glixx Laboratories Cat #:GLXC-02452, USA), or the DMSO control and/or 10 μM
BAY 11–7082 (Calbiochem/MERCKMillipore, USA) or 300 ng/ml FK506 (Calbiochem/
MERCKMillipore, USA). After an additional 24-hours luciferase activity was determined. To
analyzed the effect of DYRK1A inhibition on reactivation of a silent HIV-1 LTR, TZM-bl were
treated with either 48 μM, 120 μM, or 240 μM of INDY (Glixx), 5 mM or 10 mM of Sodium
butyrate (Sigma-Aldrich), 9 nM or 18 nM of trichostatin A (TSA) (Sigma-Aldrich) or the
appropriate vehicle control. Twenty-four hours later, LTR-driven luciferase activity was deter-
mined by using the luciferase activity reagent (LAR) containing 0.83 mM of ATP, 18.7 mM
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MgCl2, 0.78 μMNa2H2P2O7, 38.9 mM Tris (pH 7.8), 0.39% glycerol, 0.03% Triton x-100,
2.6 μM dithiothreitol and 0.83 mM of d-Luciferin (Duchefa Biochemie B.V., Haarlem, The
Netherlands). 25 μl of LAR was added to the transfected cells and luminescence was immedi-
ately measured using a luminometer (Berthold Technologies, Germany).

J-Lat cells were cultured in the presence or absence of 24 μM, 48 μM, 120 μM or 240 μM
INDY(Glixx) or 12.5 ng/ml TNFα (Peprotech, UK) as a positive control. Twenty-four after
treatment cells medium was aspirated and cells were fixed with 1x BD CellFIX (BD biosciences,
USA) and analysed for GFP expression with the FacsCanto II (BD biosciences), results were
analyzed in FlowJo, version 9.4.3 (Tree Star, USA).

Infection of HEK293T cells
HEK293T cells were transfected with pLKO.1 constructs expressing a shRNA against
DYRK1A or a control shRNA. Forty-eight hours after transfection, cells were inoculated at a
multiplicity of infection (MOI) of 0.01 with NL4-3 luciferase VSV-G-pseudotyped single-
round reporter virus. Forty-eight hours after infection luciferase activity was analyzed as a mea-
sure for viral replication. To analyze the effect of DYRK1A inhibition on HIV-1 replication,
HEK293T cells were inoculated at a multiplicity of infection (MOI) of 0.01 with NL4-3 lucifer-
ase VSV-G-pseudotyped single-round reporter virus. Twenty-four hours post infection cells
were treated with 24 μM, 48 μM or 120 μM of either INDY (Glixx) or DMSO control and after
an additional 24-hours luciferase activity was determined as a measure for viral replication.

PBMC culture and infection
PBMC were obtained from buffy coats from healthy blood donors. Cells were isolated by den-
sity gradient centrifugation on Lymphoprep (Axis-Shield, Oslo, Norway) and were stimulated
for 3 days in Iscove modified Dulbecco medium supplemented with 10% fetal bovine serum,
penicillin (100 U/ml), streptomycin (100 U/ml), Ciproxin (5 μg/ml), and phytohemagglutinin
(PHA; 5 μg/ml) at a cell concentration of 5 × 106 per ml. After inoculation, the cells (106/ml)
were cultured in medium supplemented with 10% fetal bovine serum, penicillin (100 U/ml),
streptomycin (100 U/ml), Ciproxin (5 μg/ml), recombinant interleukin-2 (20 U/ml; Chiron
Benelux, Amsterdam, The Netherlands) and Polybrene (hexadimethrine bromide) (5 μg/ml;
Sigma, Zwijndrecht, The Netherlands). PBMC stimulated with PHA were inoculated at a MOI
of 0.1 with NL4-3 luciferase VSV-G-pseudotyped single-round reporter virus. After 24-hours
specific DYRK1A inhibitor INDY (Glixx) or the DMSO control was added to the culture
medium and after another 24-hours luciferase activity was analyzed as a measure for viral
replication.

MTT cell viability assay
Cell viability was determined by Thiazolyl blue tetrazolium blue (MTT) assay as described pre-
viously [74]. In brief, cells were incubated for 24 hours with the inhibitors. Subsequently, MTT
(Sigma-Aldrich) was added to a final concentration of 0.5 mg/mL and cells were incubated for
another 3 h in a humidified 5% CO2 incubator at 37°C. Next, medium was aspirated, 100 μL
DMSO was added, and absorbance was measured at 580 nm. Background was determined by
measuring absorption at 655 nm and subtracted from the measurement at 580 nm.

Western blot analysis
The effect of DYRK1A knockdown by shRNAs on protein levels was analyzed by western blot.
Two days post-transfection, HEK293T cells were lysed in RIPA-buffer (150 mMNaCl, 1%
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Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0) containing Com-
plete1 EDTA free protease inhibitor (Roche, Basel, Switzerland). After adding NuPAGE LDS
4x sample buffer (Invitrogen) and 0.1M DTT, samples were heated at 95°C for 10 min. The
Odyssey Protein Weight Marker was used as a size reference (LI-COR, Lincoln, NE, USA). Pro-
teins were separated by SDS-PAGE (NuPAGE 10% Bis-Tris precast gel and MES SDS running
buffer (Invitrogen) and transferred to a nitrocellulose membrane (Protran, Schleicher &
Schuell, Dassel, Germany) using NuPAGE transfer buffer. After blocking for 2 hours with PBS
containing 5% Protifar (Nutricia, Schiphol, The Netherlands) and 0.5% bovine serum albumin,
the blot was incubated with anti-DYRK1A antibody (1:200; H00001859-M01; Abnova, Taipei
City, Taiwan) and anti-β-actin antibody (1:200; SC-1616; Santa Cruz Biotechnology, Santa
Cruz, CA, USA). IRDye 800CW conjugated Goat anti-Mouse IgG (1:15000; 926–32210,
LI-COR, Lincoln, NE, USA) and IRDye 680LT conjugated Donkey anti-Goat IgG (1:15000;
926–32224, LI-COR) were used as secondary antibodies to visualize expression using the Odys-
sey infrared image system (LI-COR). Image J software was used to quantify protein expression
and DYRK1A expression was corrected by β-actin expression by taking the ration between
DRYK1A and β-actin expression.

Immunofluorescence Microscopy
TZM-bl cells were cultured onto 15 mm cover slips (MENZEL-GLÄSER Lot# 94711285, Ger-
many) and treated with 240μM of INDY (Glixx) or the DMSO control. After twenty-four
hours of incubation, cells were washed with PBS and fixated with 70% ice cold ethanol for 10
min. After fixation, the cells were washed with PBS and incubated with 5μg of anti-NFATc1
antibody (H-110: Santa Cruz, USA) for 30 min at 4°C. Next, cells were blocked for 30 min with
PBS containing 0.5% bovine serum albumin. After a wash with PBS, cells were incubated with
the secondary antibody: 1: 400 Donkey anti-Rabbit IgG (H+L) Secondary Antibody, Alexa
Fluor1 546 conjugate (#A10040, Invitrogen) and Hoechst 1:10,000 (H1398, Invitrogen) for 45
min at room temperature. Images were captured using a Leica confocal microscope TCS SP-8
X (Leica Microsystems, USA) and analyzed and processed using Leica Application Suite (Leica
Microsystems).

Chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) assays were performed using the CHIP-IT Express
Enzymatic kit (Active Motif, Cat # 53009,Carlsbad, California, USA) according to the manu-
facturers protocol. In short, TZM-bl cells were treated with either 240 μM INDY (Glixx), 12.
ng/ml TNFα (Peprotech), or DMSO vehicle control in a 15 cm plate [63–67]. After 24-hours,
cells were crosslinked with 1% formaldehyde for 10 min at room temperature before the reac-
tion was stopped by adding glycine for 10 min at room temperature. Cells were removed from
the plates with cells scrapers and provided cell-scrape solution. To release the nuclei, cells were
lysed in the provided lysis buffer and incubated on ice for 30 min. Cell lysates were enzymati-
cally sheared using the provided enzymatic shearing cocktail supplemented with 60 units of
XbaI (Roche) and 30 units of NspI (New England Biolabs, Ipswich, Massachusetts, USA). The
sheared lysates were immunoprecipitated overnight at 4°C with 2 μg of either the anti-NFATc1
antibody (H-110: Santa Cruz, California, USA), the anti-NF-κB p65 antibody (sc-372x, Santa
Cruz, Biotechnology), or control mouse IgG (Active Motif, Cat # 53010) and 25μl Protein G
Magnetic Beads. Beads were subsequently washed two times with 800 μl of ChIP buffer 1 and
two times with 800 μl of ChIP buffer 2. Bound complexes were eluted by a 15 min incubation
at room temperature in 50 μl of the provided elution buffer AM2. Chromatin was reverse
cross-linked by addition of 50 μl of the provided reverse Cross-linking Buffer and incubation at
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95°C for 15 min. Subsequently, 2 μl of the provided proteinase K was added and chromatin
was incubated for 1 hour at 37°C. Next, the levels of HIV-1 LTR were quantified by qPCR with
the following primers and probes: RU5-F 5’-GTGCCCGTCTGTTGTGTGAC-3’, RU5-R 5’-
GGCGCCACTGCTAGAGATTT-3’ and RU5-P 5’-(FAM)-CTAGAGATCCCTCAGACCCTTT
TAGTCAGTGTG-(TAMRA)-3’ [75]. DNA enrichment was calculated according to the man-
ufacturer’s instructions: Fold enrichment = ChIP target DNA quantity / ChIP control IgG
DNA quantity. qPCRs were performed on a LightCycler1 2.0 (Roche) using the following pro-
gram: pre-incubation steps of 2 min 50°C and 2 min 95°C and 45 amplification steps of 5s
94°C and 30s 60°C.

Supporting Information
S1 Fig. Effect of shRNAs (A) and inhibitors (B) on cell viability of HEK293T cells and (C)
TZM-bl cells. Cell viability was assessed by MTT assay. Results are plotted as the mean and SD
of at least two independent experiments and plotted as the fold change as compared to the
untreated control cells.
(TIF)

S2 Fig. (A) The effect of NF-kb inhibitor Bay and NFAT inhibitor FK506 on basal LTR-driven
luciferase expression in HEK293T cells. HEK293T cells were transfected in 96-wells plates with
5 ng of LTR-luciferase reporter construct and treated with 10 μm Bay or 300 ng/ml FK506 24
hours post transfection. Luciferase activity was analyzed 48-hours post-transfection as a mea-
sure for LTR activity and expressed relative to the No drug control. Data is shown as mean and
SD of three independent experiments. (B) The effect of DYRK1A downregulation on LTR
driven transcription in the presence of HIV-Tat was analyzed by co-transfection of HEK293T
cells in 96-wells plates with 5 ng of LTR-luciferase reporter construct, 5 ng SV-Tat and 12.5 ng,
25 ng or 50 ng of shDYRK1A or the shControl vector. Luciferase activity was analyzed
48-hours post-transfection as a measure for LTR activity and expressed relative to the shCon-
trol. Data is shown as mean and SD of three independent experiments. Significance was deter-
mined with an unpaired student’s T test. �p<0.05, ��p<0.01, ���p<0.001.
(TIF)
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