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Abstract
Diabetes mellitus, commonly referred to as diabetes, is a combination of many metabolic diseases. Insulin deficiency in our 
body is the main cause of diabetes. Insulin is one of the most well studied proteins, yet the genesis of its discovery was not 
getting much attention so far. Nevertheless, the history of the discovery of insulin is an exemplary of solving observational 
and scientific riddles, drudgery, patience and even professional turmoil. It is an inspiration for all medical personnel and 
scientists who are practising in the field of molecular medicine. Additionally, the genetic and epigenetic regulation of dif-
ferent types of diabetes needs to be addressed because of the widespread nature of the disease. Diabetes not only involves 
genetic predisposition but environmental factors, lifestyle etc. can be the major contributor for its inception. Nonetheless, 
viral infections at an early age are also found to trigger the onset of type I diabetes. In this review article, the history of the 
discovery of insulin is detailed along with the justification for the genetic and epigenetic regulatory mechanisms of diabetes 
and explained how viral infections can also trigger the onset of diabetes.
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RNase, RIG-I  Retinoic acid inducible gene-I
RNA  Polymerase
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syndrome-coronavirus-2;
SUF  Sulfonylureas
T1D  Type I diabetes
T2D  Type II diabetes
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Introduction

Looking at the past, it is very easy to understand that since 
the beginning of creation, man would have liked to make his 
life continually easier. Perhaps the emergence of science is 
the result of different arguments and thoughts and conscious-
ness in the pursuit of that desire. In the present age, science 
has given us the gift of internet, smart phones, e-mail, and 
many more conveniences. Just as it is meaningless to live in 
this age without use of many of these things, similarly, it is 
difficult for a diabetic individual to live a simple and beau-
tiful life without the wonderful invention of the twentieth 
century, “Insulin”.

Diabetes mellitus, commonly referred to as diabetes, is 
not a disease confined to a definitive boundary, but a combi-
nation of many metabolic diseases. Insulin deficiency in our 
body is the main cause of diabetes. Insulin is secreted from 
the pancreas to help the cells of the body to take up glu-
cose (sugar) from the blood, which normal cells can utilize 
to generate energy. The failure of the pancreas to generate 
enough insulin or the body's inability to use insulin properly, 
either of these or both in combinations can cause diabetes. 
The disease not only increases the amount of glucose level 
in the blood (hyperglycemia) but also abnormalities occur in 
the metabolism of proteins and fats [51]. Prolonged uncon-
trolled hyperglycemia initially causes changes in blood ves-
sels and abnormal blood flow. As a result, different cells in 
the body undergo various changes; several complications 
arise in the body and the advancement of the diabetic con-
dition continues. It should be noted here that the effects of 
this deadly disease are not limited to any particular organ; 
once established, it damages the function of most important 

organs of the body and without proper treatment those 
organs can become permanently paralyzed [50]. Notable 
among these are heart disease, stroke, diabetic retinopathy, 
kidney failure and anaemia [20, 21]. This review briefly 
describes the various harmful aspects of diabetes, the ground 
breaking discovery of insulin, the role of insulin in the treat-
ment of diabetes, the genetic and epigenetic aspects of the 
disease and the role of viral infections in triggering its onset.

History of the discovery of insulin

During the early years of reason, physicians would describe 
diseases in their own way and treat patients based on their 
knowledge of the surrounding ecology. Day after day, an 
almost sugar-free diet, sometimes 450 cal or less per day 
(although more calories are needed to survive) in many 
cases pushed diabetic patients to death [37]. The discovery 
of insulin has undoubtedly put an end to thousands of years 
of extreme frustration and failure. Diabetes is one of the 
longest studied diseases in medical science. Probably, this 
disease was first mentioned in ancient Egyptian medicine 
since 1552 BC [120]. The word ‘diabetes’ was probably used 
first by the Greek physician Demetrios, meaning "siphon." 
Much later, in 1674, the British physician Thomas Wills 
named the disease “diabetes mellitus” to distinguish it from 
“diabetes insipidus” [82]. In 1776, Matthew Dobson, curious 
to see why some ants are being attracted to urine, turned his 
attention to this mystery. He later discovered that diabetic 
patients had high levels of sugar in their urine, so it tasted 
sweet, known as glycosuria [77].

During the period known as the "Pre-Insulin Age”, or 
the “Age of Failure, and Depression," a list of the strangest 
foods was recommended to control the disease. Sugar-free 
diets, carbohydrate-controlled low-fat diets and starvation 
diets were particularly notable among the recommended 
food lists. However, no such treatment or diet has actually 
been of any use in curing diabetes [123].

Challenging path of insulin discovery

During the period between 335 and 280 BC, the Greek anat-
omist and surgeon Herophilus was the first to identify the 
pancreas gland in the human body, although it was named 
much later [120]. The endocrine gland was discovered by 
the German physician Paul Langerhans in 1869, which was 
later renamed as ‘Isles of Langerhans’, meaning the island 
of Langerhans. Langerhans first proposed presence of two 
types of cells in the pancreas, but he could not reveal the 
exact location and activity of those cells [73]. Later, in 
1875, the German physiologist and histologist Rudolf Hei-
denhein, based on the experimental result, proposed that 
changes occur in the physiological structure of that gland 
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when something is secreted. In 1884, Vaillard and Arno-
zan examined the lining of the pancreas and found that the 
pancreas was damaged after duct ligation, but there was no 
effect on the islets of Langerhans [9].

In 1889, two German physicians, Joseph von Mering 
and Oscar Minkowski, dissected out the pancreas of a dog 
and made it artificially diabetic. The next day they noticed 
that the dog had been micturating all day and the urine con-
tained a lot of sugar. Thus, it was established that diabetes 
is caused by the absence of something within the pancreas 
[14]. Thereafter, scientists around the world began search-
ing for the substance within the pancreas. While conduct-
ing experiments in this area, it was noted that the diabetic 
patients were not recovered after consuming pancreatic 
extract in various ways. On the contrary, poisoning effect 
was noted in some cases. In the midst of such an extreme 
despair, researchers revealed that the islets of Langerhans 
are performing a specific function that was completely dif-
ferent from the rest of the pancreas [25]. In 1906, pathologist 
Dewitt tied a cat's pancreatic duct to extract beneficial dia-
betic insulates from the islets of Langerhans. Although the 
insulate was not very effective, yet it was able to maintain 
glycolytic activity consistently [33]. Subsequently, in 1908, 
application of pancreatic alcohol extract to diabetic patients 
showed good results [8]. After reviewing the results of all 
these experiments, scientists from different countries univo-
cally concluded in 1912 that even if the exocrine pancreas is 
damaged, hyperglycemia and glycosuria are escapable, but 
it is inevitable if the islet of Langerhans is destroyed. Thus, 
considering the importance of the islets of Langerhans, an 
attempt was made to separate it from the rest of the pan-
creas. Unfortunately, despite the tireless efforts of scientists 
in many parts of the world, the two entities were not yet 
successfully separated.

Eugene Gley, a French physiologist and endocri-
nologist, was inspired by the hypothesis that "Islets of 
Langerhans are able to resist glucose in the urine" pro-
posed by the French histologist Gustav-Edward Lagus. He 
applied pancreatic extracts from a dog to a diabetic dog 
and noticed that the dog's hyperglycemia, glycosuria and 
other symptoms of diabetes were reduced significantly. 
The next question was, did the improvement in the diabetic 
dog come from the secretion of the islets of Langerhans or 
from the rest of the pancreas? To prove that, he injected 
islets of Langerhans tissue extract to a diabetic dog; as a 
result the dog was found to be in much better condition 
and its glycosuria and other symptoms of diabetes were 
significantly improved. After 25 years, Banting and Best 
repeated the experiment and insulin was discovered. How-
ever, at the end of the experiment Gley wrote a report in 
1905, sent the report in a sealed envelope to the Biological 
Society of France and instructed not to open it without 
his permission, even under pressure of higher authorities. 

Gley never performed this test again after 1890. When 
Banting and Best announced their discovery to the Inter-
national forum in 1921, Gley ordered the envelope to be 
opened and realized that he had unknowingly invented 
insulin [120].

In the final step of the discovery of insulin, the credit 
actually conferred to four scientists. They were Banting, 
Best, McLeod and Collip. On October 20, 1920, as Bant-
ing was preparing to give a lecture on the ‘Role of the 
pancreas in the carbohydrate metabolism’, when he came 
across a research paper of Moses Baron in the November 
issue of the Journal of Surgery, Gynaecology and Obstetrics 
published by the University of Minnesota. During routine 
autopsy, Baron noticed a sporadic occurrence of stones in 
the pancreas. Even occasional was the fact that the stone 
blocked all the major ducts of the pancreas. Baron observed 
that the islets of Langerhans were not affected in any way, 
even though all of the acinar cells had been destroyed by 
the stone. After literature survey, he also realized that this 
phenomenon is comparable to the experimental results of 
tying the flow of pancreatic ducts. Studying the research of 
Baron with great care, Banting after reviewing the research 
done by Baron realized that when the ducts are open, i.e. 
under normal conditions, the digestive fluid of the pancreas 
absorbs the fluid from the islets of Langerhans; however 
this is not possible if they are closed. Banting, therefore, 
concluded that the destruction of various pancreatic cells 
starts after a while when the pancreatic duct was closed. 
Nonetheless, insulin was found in the fluid secreted from the 
remaining portion of what remained i.e., islets of Langer-
hans. Banting knew very little about the prior efforts made 
by different scientist to discover insulin and their failure and 
illusion. Such ignorance helped him to remain committed to 
his ideas [10, 124].

F. R. Miller, the Head of the Department of Physiology, 
who knew about Banting’s hypothesis, advised him to go 
to John James Richard McLeod and express his new ideas. 
McLeod was a professor of physiology at the University of 
Toronto. Moreover, he was also a leading scientist in the 
study of sugar metabolism. Banting first met McLeod on 
November 7, 1920, but after talking to Banting, McLeod 
realized that Banting was of limited merit; he did not know 
much about the proceedings in the world of science and 
was only a scholar of biblical knowledge. He discouraged 
Banting, informing him that many eminent scientists could 
not isolate this hormone (insulin) despite many attempts. 
Banting returned back disappointedly, but few days later 
he met McLeod again. Eventually McLeod agreed, perhaps 
realizing Banting’s huge past experience of surgery in the 
war camp during World War I. Therefore, Banting could be 
able to excise much efficiently, the duct of the pancreas of 
a normal dog replacing it to another diabetic dog. Moreo-
ver, many former researchers tried but all of them failed to 
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observe the end result i.e., when all digestive cells in the 
pancreas were damaged [56, 116, 124].

During this time, two assistant students, Charles Herbert 
Best and Edward Clark Noble, joined his laboratory as dem-
onstrators in the hope of obtaining a Master of Arts (MA) 
degree. McLeod introduced them to Banting and instructed 
them to help Banting to prove his hypothesis [80, 124]. Bant-
ing and Best did a great job together, both of whom were 
aware and respectful of the techniques of the two and an 
effective bond was established [108].

Work began on May 17, 1921. Insulin was discovered 
within a few days in the Department of Physiology at the 
University of Toronto. Under McLeod's guidance, the two 
demonstrators began their research with great care. McLeod 
went on a holiday to Scotland on 14th June, informing them 
of all the means of communication. At first, they ligated 
an already dissected dog's pancreas and stored it in the 
cold. After the duct system of the pancreas was completely 
destroyed, they placed it inside a diabetic dog through sur-
gery. As a result, the dog recovered [112].

When McLeod returned from vacation on September 
21, he could not believe that the research had progressed so 
far. He questioned the accuracy of their information. Bant-
ing was always in a bad mood and used to talk to others 
with disrespect. So, McLeod was utterly humiliated by his 
behaviour and could no longer restrain himself. As a result, 
various bitter arguments started. In fact, McLeod wanted 
the two of them to repeat all the work done; they started 
insulin purification so that the results could be confirmed. 
He also explained to them a special test to prevent the blood 
sugar from falling due to the effects of dilution. Banting then 
wanted a separate room to continue his research work and a 
helper to look after the dogs. Moreover, he also requested a 
certain amount of salary for himself. When McLeod refused, 
Banting threatened to give up the job and move to the Mayo 
Clinic or the Rockefeller Institute. At first, McLeod did not 
pay much attention to his departure, but after a couple of 
days, he had realized his importance for continuing the work, 
and finally accepted Banting's terms. Banting then asked 
McLeod if biochemist J. B. Collip could join their team. 
McLeod advised not to expand the team at that time. Finally, 
Banting resumed his work with Best. The repeat experiments 
were done precisely and they got the same result. McLeod 
was convinced with the result, yet realized that there was 
still much work needed to be done although Banting wanted 
to move forward for the clinical tests. At this point of time, 
McLeod accepted Banting's request to include Collip in 
their research team. The responsibility given to Collip was 
to purify the insulin-carrying extract from the dog's ductless 
pancreas as much as possible so that the pure extract could 
be applied to the diabetic patient as needed. It is worth men-
tioning here that Collip was experienced in healing animals 
by injecting fluid from different glands [124, 125].

Finally on January 11, 1922, Banting, Best, McLeod and 
Collip, all were ready to inject insulin into the body of a 
14-year-old diabetic patient, named Thompson. Unfortu-
nately, there was no permission for Banting, Best or Collip 
to be present in person at the Toronto Medical School, where 
15 ml of pancreatic extract was injected to Thompson's body. 
However, one of the symptoms of diabetes, i.e., ketoacidosis 
(increase in the level of ketone bodies in the blood due to 
diabetes) did not change. The level of glycemia and glyco-
suria decreased a little. Conversely, various toxicities (e.g., 
sterile abscesses) also occurred at the injection site. Thus, 
the first clinical trial failed. Everyone was very disappointed! 
Collip could not accept the failure and worked hard to purify 
the insulin extract, the treatment began again on January 23, 
1922 by injecting the purified extract to Thompson's body. 
He began to improve as a result of daily injections. The 
ketone bodies disappeared from the urine, the blood sugar 
level dropped and he started to look much brighter. His abil-
ity to work also began to increase. In fact, it was the first suc-
cessful experiment on diabetic humans based on the internal 
secretions of the pancreas. Thompson was the first person 
in the world to return to normal life with diabetes. The news 
spread like wildfire all over the world. Banting and McLeod 
were awarded the Nobel Prize in 1923, the very next year, 
in recognition of such research for the welfare of the human 
race. Unfortunately, Best and Collip were deprived for this 
award. Banting could not accept the omission of Best; he 
immediately announced that he would give half of his prize 
money to Best. Likewise, McLeod paid half of his reward 
money to Collip [10, 108].

Commercial production and beginning of chemical 
synthesis of insulin

Subsequent to the discovery of insulin, attempts were made 
to produce insulin commercially around the globe. The 
University of Toronto licensed pharmaceutical companies 
to produce insulin without royalties. Within a year of the 
first injection, people around the world began receiving insu-
lin. Insulin took a special place among the earliest notable 
proteins. Abel generated a pure crystal of this protein in the 
year 1926 [49]. With the help of X-ray crystallography, the 
scientists were able to know the three-dimensional shape of 
insulin from that crystal and how insulin works with other 
molecules in the body. In 1955, Frederick Sanger success-
fully determined the full amino acid sequence of this protein 
and was awarded the Nobel Prize in 1959 in recognition of 
his work (Table 1). In fact, insulin was the first protein to 
be chemically synthesized in a laboratory in 1963 [106]. 
Notably, even ninety years after the discovery, diabetics still 
rely primarily on insulin derived from the pancreas of other 
animals. Although insulin of other animals work well on 
the whole, their composition is slightly different from that 
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of human insulin, so occasional side effects (such as rashes) 
do occur.

Biotechnological interventions to produce human 
insulin

In 1978, human insulin was produced as the first protein with 
the help of biotechnology. Subsequently, in 1997, the FDA 
(Food and Drug Administration) allowed the use of modified 
insulin (named insulin lispro or Humolog) that is specifically 
formulated to work immediately after injection.

Modified insulin gene developed in the laboratory, 
inserted into a loop of bacterial DNA called plasmid and 
transfected into a bacterium generates the recombinant bac-
terium. Such recombinant bacteria placed in fermentation 
tanks produce insulin using the inserted gene. This insulin is 
harvested and purified for medical use. Insulin preparations 
using recombinant DNA technology began in the 1980s. It 
was one of the first instances of generation of a substance for 
medicinal purpose using technological innovation. Insulin 
aspart or NovoRapid is generated in Saccharomyces cerevi-
siae via recombinant DNA technology [119].

The insulin analogues later approved for human use were 
aspart insulin (NovoRapid), glargine insulin (Lantus), gluli-
sine insulin (Apidra), detemir insulin (Levemir) and inhal-
able insulin, Exubera & Afrezza, in 2000, 2000, 2004, 2005, 
2006 and 2014 respectively [104]. "Degludec Insulin" was 
withdrawn from the market in 2013 for severe side-effects 
with other drugs, but in 2015 it was again allowed to use 
with some changes in its composition [39].

In 2019, a team of researchers at MIT, US have discov-
ered an insulin capsule that can be used like any other cap-
sule [43]. If it gets FDA approval, type 1 diabetic patients 
will be able to take this capsule every day instead of 
injections.

Genetic regulations of diabetes

Type I diabetes

Type I Diabetes (T1D) is associated with pancreatic β-cell 
destruction mediated insulin deficiency [102]. T1D is 
associated with some modes of autoimmune destruction 
mediated diabetes [55]. Autoimmune diabetes is some-
times associated with genetic mutation mediated altera-
tions in immune functions. For example, autoimmune 
polyglandular syndrome type 1 (APS1) is initiated by the 
mutation of the autoimmune regulator (AIRE) gene and 
is symptomatically linked with T1D [1, 55]. On the other 
hand, mutation of the STAT3 gene may lead to polyauto-
immunopathy and is associated with autoimmune neonatal 
diabetes [43].

T1D exhibits 1.3–4% risk in the children of female dia-
betic patients and a 6–9% risk in the children of male dia-
betic patients [36, 88]. The risk of T1D is 70% higher in 
identical twins than non-identical ones [103]. In T1D, the 
rate of affected children varies greatly; 0.1 per 100,000/year 
in China & Venezuela and 40.9 per 100,000/year in Finland 
[34]. In Sardinia, a high rate of occurance of such phenom-
ena has been reported, an observation discordant in respect 
to the whole of Italy. Several European countries and differ-
ent parts of North America have been reported to show high 
or moderate rate of such incidence. In Asia, it is consider-
ably low. Though T1D can be elicited at any stage of life, 
but its exhibits elevated rate of onset from birth to 14 years 
of age. The occurrence of this disease is increased in low 
income countries. Environmental factors play an important 
role in islet autoimmunity. Therefore, improvement of living 
standards enhances the chance of development of autoim-
munity. The incidence of this disease is associated with sea-
sonal changes with highest incidence in winter and autumn 
[85].

Table 1  Timetable of events related to insulin discovery

Year Research team Discovery

1776 Matthew Dobson Diabetic patients exhibit glycosuria
1869 Paul Langerhans Isles of Langerhans in pancreas
1875 Rudolf Heidenhein Physiological structure of pancreas change after secretory activity
1884 Vaillard & Arnozan Islets of Langerhans unaffected after duct ligation
1889 Joseph von Mering & Oscar Minkowski Diabetes is caused by the absence of something within the pancreas
1890 Eugene Gley Islets of Langerhans tissue extract reduces hyperglycemic complications
1920 Moses Baron Islets of Langerhans not affected due to duct blockade by pancreatic stone
1921 Frederick Banting, Charles Best, James Collip Discovery and purification of insulin
1922 Frederick Banting, John McLeod, Charles Best, 

James Collip
Insulin extract successfully reduces diabetic complications in a 14 year old patient

1926 John Abel Pure crystal of insulin
1955 Frederick Sanger Full amino acid sequence of insulin
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Chromosome 6p21 bears the HLA region which imparts 
50% of the familial accumulation of T1D. Other than the 
HLA region, insulin gene (INS) exhibits a strong association 
with T1D. Chromosome 11p15 bears INS and the region 
exhibits polymorphisms by virtue of 3 variable number 
tandem repeats (VNTR). These polymorphisms control the 
level of insulin mRNA in the thymus and influences immune 
tolerance towards insulin [100, 118].

Several genetic polymorphisms are linked with T1D. The 
protein tyrosine phosphatase non-receptor type 22 (PTPN22) 
gene on chromosome 1p13 exhibits polymorphisms and 
encodes lymphoid specific phosphatase (LYP) [93]. LYP 
suppresses activation of T cells and is linked with T1D [68]. 
On the other hand, the interferon induced helicase 1 (IFIH1), 
interleukin-2 receptor subunit alpha (IL2RA), ubiquitin 
associated SH3 domain containing protein A (UBASH3A) 
and basic leucine zipper transcription factor 2 (BACH2) are 
important genetic loci associated with T1D [23, 24, 114, 
121]. Additionally, the Gli similar 3 protein (GLIS3) genetic 
locus is also linked to neonatal diabetes and T1D [11]. It is 
associated with the generation and apoptosis of pancreatic 
β cells and the expression of INS [91].

Next Generation Sequencing (NGS) helps in the iden-
tification of most of the genetic variants observed in the 
genome of an individual, irrespective of their respective 
frequencies. It is a more powerful tool than Genome Wide 
Association Studies (GWAS). Several studies related to NGS 
applications in T1D have been carried. For example, (1) 
NGS has led to the identification of HLA-DRB 3,4,5 to be 
associated with increased risk of T1D in children, (2) NGS 
has identified HNF1B and K-ATP channel genetic variants 
to be more involved with monogenic diabetes [35, 134].

Type II diabetes

Type II Diabetes (T2D) is associated with a reduction in 
insulin sensitivity or insulin resistance mediated hypergly-
cemic condition. In T2D, detection of onset of the disease 
is difficult. Lack of noticeable acute metabolic disturbance 
(as observed in type 1 diabetes) makes the detection of early 
onset of the disease quite problematic, thereby resulting in 
about one half of the population remaining undiagnosed. In 
rural areas, the number of affected individuals is relatively 
low compare to urban populations with western lifestyles. 
According to thrifty gene hypothesis, increased chances 
of deposition of fat and T2D are observed in individuals 
migrating from a region of food scarcity to an area of food 
abundance. In UK, the number of diabetic South Asian and 
African Caribbeans is high in number compared to European 
populations [44]. There is no significant sexual biasness in 
affected individuals and the chance increases along with 
advancement of age [45].

Applications of NGS to T2D patient samples have led to 
various advances in research. Some of them are: (1) mapping 
of rare as well as common genetic variants (e.g., identifica-
tion of COBLL1 and MACF1 from Danish population stud-
ies), (2) identification of epigenetic markers (e.g., TCF7L2 
as blood biomarker), (3) RNA-Seq mediated transcriptional 
profiling of cellular and tissue samples (e.g., identification 
of miR-375 RNA affecting genes of pancreatic islets), etc. 
[4, 41, 89, 126].

For the treatment of T2D, metformin, sulfonylureas/
glinides, thiazolidinediones and GLP‐1 receptor agonists/
DPP‐4 inhibitors are used. Genome wide association stud-
ies (GWAS) have provided strong connection of gene-drug 
interactions. The variants of organic cation transporter fam-
ily (OCTs) encoded by SLC22A1 of chromosome 6q25.3, 
ATM of chromosome 11q22.3, and SLC2A2 loci of chro-
mosome 3q26.2 are associated with Metformin (MET) 
response; CYP2C9 of chromosome 10q23.33, TCF7L2 of 
chromosome 10q25.2/10q25.3, ABCC8 of chromosome 
11p15.1, KCNJ11 of chromosome 11p15.1 and IRS1 loci 
of chromosome 2q36.3 are associated with sulfonylureas/
glinides (SUF) response; PPARG locus is associated with 
thiazolidinediones (TZDs) response; and GLP1R locus is 
associated with GLP‐1 receptor agonists/DPP‐4 inhibi-
tors response [81]. Such pharmacogenomic studies help in 
the identification of drug responses associated with allelic 
variants and holds immense potential in catalyzing tailored 
therapies.

Homozygotic carriers of a loss of function mutation of 
TBC1D4 exhibits a tenfold higher risk of T2D among Inuit 
populations of Greenland. The mutant allele carriers bear 
low concentration of glucose transporter type 4 (GLUT4) in 
their skeletal muscles than the non-carriers [72, 86]. Thus, 
inadequate GLUT4 mediated glucose uptake during post-
prandial hyperglycaemia increases the risk of T2D. On the 
other hand, exome sequencing has led to the detection of a 
loss of function mutation in ADCY3 which is associated 
with obesity and diabetes in the same Inuit population [54]. 
Several T2D susceptibility variants observed in various pop-
ulations include that of GRB10, BCL2, FAM19A2, NAT2, 
PPARγ, IRS-1, TCF7L2, TCERG1L, SC4MOL, ARL15 and 
PPP1R3B [5, 17, 26, 29, 61, 65, 67, 78, 99, 111, 122].

Machine learning techniques can be used for predicting 
disease susceptibility among populations. In a recent study, 
decision tree (WEKA), random forest (WEKA) and neural 
network (MATLAB) techniques were used for the prediction 
of diabetes mellitus in a Chinese population. There were 14 
chosen attributes: age, breathe, pulse rate, left systolic pres-
sure (LSP), height, right systolic pressure (RSP), left dias-
tolic pressure (LDP), weight, right diastolic pressure (RDP), 
waistline, physique index, low density lipoprotein (LDL), 
fasting glucose and high density lipoprotein (HDL). It was 
observed that fasting glucose exhibited better performance 
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in test results. Therefore, it is an important index for predic-
tion. However, due to the nature of the data set, the type of 
diabetes could not be predicted [136]. Further advancement 
of research in this field holds potential in unveiling methods 
for the accurate prediction of diabetic onset (T1D or T2D) 
based on data of genetic susceptibility markers.

Epigenetic influence in diabetes

Epigenetics refers to the heritable changes of gene expres-
sion under environmental influence without altering DNA 
sequence [15]. Environmental factors control the activation 
or inhibition of a particular gene expression by regulating 
transcription factor accessibility to DNA. Among epigenetic 
modifications, DNA methylation, histone modifications and 
altered microRNA mediated genetic expression trigger the 
onset of several autoimmune disorders including T1D [68]. 
The main environmental factors responsible for onset of 
T2D are intra-utero environments, advancement of age, low 
birth weight, obesity of mother that ultimately cause intrau-
terine growth retardation (IUGR) of child [63]. The impacts 
of IUGR on adulthood lead to pancreatic abnormalities by 
interfering in cells proliferation, differentiation, and matura-
tion that cause onset of T2D.

DNA modifications in T1D

DNA methylation

During DNA methylation, DNA methyl-transferases 
(DNMT) catalyse the addition of methyl group on the fifth 
carbon cytosine in the CpG island to form 5-methylcyto-
sine [66]. Basically, DNMT1, DNMT3a, and DNMT3b 
are responsible for this conversion [31]. DNMT1 causes 
methylation of newly synthesized un-methylated daughter 
strands during DNA replication to keep methylation pat-
tern of genome in check. On the other hand, DNMT3a and 
DNMT3b are essential for de novo DNA methylation pro-
cess. On the contrary, in the process of DNA demethylation, 
oxidation of 5-mC and thymine DNA glycosylase (TDG) 
mediated removal of modified base generates cytosine 
occurs by replacing 5-mC. Additionally, a family of ten-
eleven translocation (TET) methyl-cytosine dioxygenases are 
also involved in the process of demethylation [69]. Altered 
methylation status of DNA changes the expression profile 
of genes related to insulin secretion, beta cell survival, and 
autoimmunity and therefore trigger the onset of T1D [137]. 
In a particular study, genome wide methylation profiling of 
monozygotic (MZ) twins showed discordancy of T1D due to 
T1D related methylation of genes regulating inflammation, 
immunity, and apoptosis. Moreover, there were 88 CpG sites 
showing differential methylation in T1D-discordant MZ twin 

pairs. In pancreatic β cells and thymic epithelial cells, meth-
ylation of INS gene promoter is associated with T1D onset 
[47, 109]. Heavy methylation at CpG–69, –102, –180, –206 
and low methylation at CpG–19, –135, and –234 in INS gene 
has been found in patients with T1D compared to healthy 
controls. Pro-inflammatory cytokine mediated methyl trans-
ferase activation causes methylation of Ins1 exon-2 and Ins2 
exon-1 which control the expression of INS gene. Besides 
INS gene, epigenetic modulation of Interleukin 2 receptor 
a-chain gene (IL2RA) also initiates T1D development. High 
expression of Interleukin 2 receptor on regulatory T cell 
surface suppresses the auto-reactive T cells activity. High 
methylation of IL2RA CpGs–373 and –456 in T1D patients 
generates autoimmunity [13]. Various complications associ-
ated with T1D like diabetic nephropathy are also regulated 
by epigenetic modulation. In T1D patients, methylation CpG 
site near transcription start site of UNC13B gene triggers the 
onset of diabetic nephropathy [12].

Micro‑RNA modifications

The micro-RNAs (miRNAs) are single stranded non-coding 
RNA molecules that act as RNA silencer and thereby act as 
post-transcriptional regulator [115]. Inside the nucleus, in 
the presence of RNA polymerase (RNase) II and III, primary 
miRNA is transcribed and processed to precursor miRNA 
with the help of Drosha/DGCR8. After being released in 
the cytoplasm, it is finally converted to mature miRNA by 
RNase III dicer complex [22]. Mature miRNAs bind to 3′ 
UTR of targeted mRNA, and repress protein production by 
destabilizing target mRNA [40]. miRNAs play an important 
role in controlling cellular processes like proliferation, dif-
ferentiation, glucose homeostasis, apoptosis, carcinogenesis, 
inflammation etc. The association of miRNAs with the pro-
duction and secretion of insulin is well documented [57]. In 
T1D, altered miRNA levels affect insulin secretion, immune-
regulation and the mitogen-activated protein kinase (MAPK) 
signaling pathway [6]. During proliferation of β-cells, some 
of the miRNAs show positive impact while others exhibit 
negative impact. miR-375 targets various growth inhibiting 
genes to control β-cell proliferation [76]. miR-375 knock out 
mice exhibits diminished β-cell mass as miR-375 inhibits 
the activity of Cadm1 which represses G1/S transition and 
cellular growth [98]. Similarly, miR-181a exhibits protective 
effects by inducing β-cell proliferation [133]. On the other 
hand, increased expression of miR-24 in db/db mice is asso-
ciated with the aging of the mice [135]. miR-29a inhibits 
proliferation of INS-1E cells (pancreatic islet β cells) and 
diminished insulin secretion from β-cell [7]. Although miR-
29 has an important role in β-cell proliferation, it can nega-
tively control insulin secretion by targeting Stx-1a which is 
associated with insulin exocytosis [52]. miR-155-5p upregu-
lation in human islet derived exosomes targets mRNA of the 
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transcriptional and immune response regulator gene. This 
miR-155-5p also evokes inflammatory response in T1D by 
interacting with toll-like receptors, resulting in the activa-
tion of the NF-kB pathway [48]. miR-146a-5p negatively 
regulates IL-6 activity whereas in T1D, low level of miR-
146a-5p expression is associated with increased IL-6 pro-
duction. Therefore, miR-146a-5p can control inflammation 
by negative feedback effect on NF- kB and its low level 
activity in T1D triggers inflammation [92]. Furthermore, 
in T1D patients, upregulated expression of miR-23b, miR-
98, and miR-590-5p in cytotoxic CD8+T cells suppress the 
function of various apoptotic gene (like TRAIL, FAS) and 
facilities survival and enhanced proliferation of auto-reactive 
T lymphocytes [28].

Circulatory miRNA can be used as a potential biomarker 
for early detection of T1D. Increased expression of circu-
lating miR-125b-5p and miR-365a-3p is associated with 
increased HbA1c level (glycated haemoglobin) whereas uri-
nary miR-377 is positively correlated with upsurge HbA1c 
level and urinary albumin creatinine ratio of T1D patients 
[38].

Histone modifications

Histones modifications refer to post translational modifi-
cation of histone protein by various processes like meth-
ylation, acetylation, phosphorylation, ubiquitination, and 
sumoylation. In histone methylation, methyl group addi-
tion to arginine or lysine residues leads to the activation or 
suppression of transcription based on the degree of modi-
fication whereas, in histone demethylation, lysine specific 
demethylase-1 (LSD1) demethylated mono- and di- meth-
ylated lysine, specially H3K3 and H3K4 region [68, 107]. 
The histone acetylation and de-acetylation indicate addition 
or removal of acetyl group with the help of histone-acetyl-
transferases (HATs) and histone-deacetylases (HDACs), 
respectively. Histone acetylation increases the accessibility 
of transcription factor to the DNA by opening the chromatin 
structure via reduction of electrostatic attraction between 
DNA and histone [53].

Modification of histone protein alters the chromatin 
structure that causes the onset of various pathophysiologi-
cal conditions including T1D. In T1D patients, increased H3 
lysine-9 di-methylation (H3K9me2) was found in CLTA4 
gene and other genes related to auto-immunity and inflam-
mation. Moreover, huge variation in H3 lysine-9 acetyla-
tion (H3K9Ac) in the upstream regions of HLA-DRB1 and 
HLA-DQB1, is intensely associated with T1D [84]. In T1D 
patients, increased level of H4 acetylation compared to T1D 
patients with cardiovascular complications indicates that his-
tone acetylation may protect against T1D associated compli-
cation development [18].

DNA modifications in T2D

DNA methylation

The process of DNA methylation in the islets depends 
on methylation of lysine 9 on H3 (H3K9) by the enzyme 
DNA methyl-transferase [110]. This causes the epigenetic 
change in IUGR islet where HDAC/mSin3A complex 
interaction with Pdx1 leads to deacetylation and inhibits 
Pdx1 transcription and resulting in pancreatic agenesis 
[62]. Although minor Pdx1 protein level depletion does 
not affect usual β cell mass, it impairs β cell insulin secre-
tion activity. Epigenome-wide association study (EGWAS) 
shows that methylation on CpG site in ABCG1 gene pre-
sent on 21st chromosome is linked with insulin resistance. 
This methylation on ABCG1 is associated with fasting 
insulin and can therefore be used as a disease marker 
[58]. EGWAS analysis on Indian populations suffering 
from T2DM shows that methylation of ABCG1, PHOS-
PHO1, SOCS3, SREBF1, and TXNIP is associated with 
early incidence of T2DM [16]. DNA methylation at the 
ABCG1 locus cg06500161 of DNA is positively correlated 
with HbA1c, fasting insulin, and triglyceride levels in the 
blood of diabetic twin among monozygotic twins which 
are discordant for T2D. DNA methylation at PHOSPHO1 
locus cg02650017 is positively associated with HDL lev-
els in diabetic in comparison to non-diabetic monozygotic 
twins [27]. In Mexican American populations, methylation 
of TXNIP, ABCG1 and SAMD12 is responsible for herit-
ability of T2D [70].

Modification of histone protein activity in IUGR rat 
muscle indicates insulin resistance [62, 94]. Under normal 
conditions, transport of glucose from blood to cell fol-
lowed passive diffusion with the help of GLUT4 mainly in 
adipose tissue, skeletal muscles, and cardiac muscle [64]. 
The expression of GLUT4 is regulated by myoblast deter-
mination protein (MyoD) and myocyte enhancing factor 2 
(MEF2) factors [87]. Upregulated expression of MEF2D 
and downregulated expression of both MYoD and MEF2A 
cause repressed GLUT4 expression. Another pathway that 
controls IUGR GLUT4 transcription was H3K14 (histone 
3 lysine 14) deacetylation. HDAC1-HDAC4 mediated 
deacetylation of H3K14 facilitates the recruitment of 
the suppressor of variegation 3–9 homolog 1 (Suv39H1) 
methylase that causes H3K9 dimethylation and increased 
attachment of heterochromatin protein 1. This leads to 
IUGR GLUT4 gene repression [101]. These indicate peri-
natal nutrition deficiency mediated IUGR leads to histone 
modification that eventually decreases GLUT4 expression 
and glucose transportation inside the cells. Figure 1 rep-
resents various genetics and epigenetics reasons of Type 
1 and Type 2 diabetes.
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Micro‑RNA modifications

During T2DM, miRNAs effectively control insulin signal-
ling and insulin resistance (IR) [41]. Interaction between 
ligand and receptor is crucial for insulin signalling. Elevated 
expression of miR-195 and miR-15b causes downregulation 
of insulin receptor by binding to its 3′-UTR site and result-
ing in signalling disruption [129, 131]. Increased expression 
of miR-29a suppresses insulin receptor substrate 1 (IRS-1) 
by directly interacting with its 3′-UTR site [130]. Overex-
pression of miR-103/107 interferes with IRS-1 and caveolae 
(Cav-1) interaction and decreases IRS-1 stability [117]. In 
IRS-1-deficient condition, IRS-2 acts as an alternative sub-
strate and interaction of its 3′-UTR with miR-135a negative 
impacts insulin signalling [2].

To predict the early onset of T2DM, the presence of 
miRNAs in the circulation is a reliable biomarker. It has 
been found that plasma miR-126 is associated with T2DM. 
It is the only mRNA whose activity is decreases in T2DM 
patients [132]. Moreover, on comparison of miRNA expres-
sion profile between pre-diabetic and T2DM individuals, 
miR-320b, miR-1249, and miR-572 have been found to be 
potential biomarkers for early detection of T2DM [128]. 
Advancement of T2DM triggers the onset of various health 
complications. Among them, in diabetic nephropathy (DN), 
expression profile of miR-29a/b/c, miR-21, and miR-192 is 

upregulated [19]. During DN, miR-21 causes PTEN sup-
pression, while miR-29c inhibits SPRY1 expression that 
regulates mesangial matrix accumulation and albuminuria 
in diabetic murine models [74, 79]. Interestingly, another 
type of miRNA that may serve as a candidate marker for DN 
are urinary miRNAs. Aberrant urinary miR-320c, isolated 
from urinary exosomes, may impact the TGF-β signalling 
pathway by targeting THBS1 and can be used as a novel 
marker for disease progression in DN [30].

Histone modification

Pdx1, a homeodomain-containing transcription factor, plays 
a key role in early generation of both exocrine and endocrine 
pancreas and on β cell development in later stages. In IUGR 
rats, there was the repression of Pdx1 expression gradually 
after birth due to epigenetic alteration. In IUGR rat, isolated 
β cells from pancreas showed the reduced level of histone 
acetylation in H3 and H4 at Pdx1 promoter [96]. Decreased 
acetylation of H3, and H4 hinder the interaction of upstream 
transcription factor 1 (USF1) to the promoter region of 
PDX1. USF1 is crucial for PDX1 transcription and reduced 
USF1 PDX1 interaction causing transcriptional silencing of 
PDX1 [113]. In IGUR rat, increased histone deacetylation 
along with decreased trimethylation of H3K4 and increased 
H3K9 dimethylation caused chromatin gene repression [96]. 

Fig. 1  Flow diagram depicting various genetics and epigenetics reasons of Type 1 and Type 2 diabetes
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These factors altogether disrupt glucose homeostasis and 
upsurge oxidative stress in IUGR.

Viral infection and type I diabetes

Viral infection leads to the activation of antigen presentation 
and release of inflammatory cytokines. Molecular mimicry, 
inflammatory cytokines, repeated viral infections, induction 
of Class I Major Histocompatibility Complex (MHC) and 
the localized release of interferons induce the autoreactive 
effector T cell mediated destruction of pancreatic β cells and 
cause enhancement of T1D. On the other hand, sequester-
ing of effector T cells or their elimination by inflammatory 
cytokines from the pancreatic islets during acute or chronic 
infections and repeated infection mediated accumulation 
and viral persistence directed induction of protective regu-
latory T cells prevent the destruction of pancreatic β cells 
and cause the abrogation of T1D. Thus, viral infections at an 
early age can trigger the onset of T1D (Fig. 2) [42].

Viral infection of pancreatic β cells mediated inflamma-
tion and dysglycemia can elicit oxidative and endoplasmic 
reticulum (ER) stress mediated changes in cellular proteins 
through carbonylation, alternative splicing, deamidation, 
initiation of defective ribosomes, phosphorylation, citrul-
lination, sumoylation etc. This promotes the generation of 
neo-epitopes which elevate the immunogenicity of the β 
cells and the responses of autoreactive T and B cells [97].

Enteroviral (EV) infection can lead to destruction of 
pancreatic β cells by directly killing them or by eliciting 

inflammatory response in the pancreatic islets to attract auto-
reactive T cells at the site of inflammation [105]. The viral 
persistence and high viral load mediated responses include 
upregulation of melanoma differentiation-associated protein 
5 (MDA 5), myxovirus resistance protein (MxA), human 
leukocyte antigen-I (HLA-I), retinoic acid inducible gene-I 
(RIG-I) etc. EV infection leads to the release of interfer-
ons and the induction of ER stress and unfolding protein 
response (UPR) activity. Inflammatory cytokines and EV 
antigens lead to the development of adaptive autoimmunity, 
which in turn, further augments destruction of pancreatic β 
cells [3]. This promotes T1D.

Viruses associated with T1D include enteroviruses like 
coxsackievirus B (CVB), rotavirus, mumps virus, cytomeg-
alovirus and rubella virus with varying degrees of patho-
genicity [32, 46, 59, 60, 83, 95].

TEDDY (The Environmental Determinants of Diabetes in 
the Young) analyses assess the effect of environmental fac-
tors like viral infections in the onset of autoimmune diabetes. 
It demands monitoring of children during any viral infection 
for higher genetic risk of T1D [42].

SARS-COV-2 infection has the potential to destroy pan-
creatic β cells, reduce insulin secretion and induce T1D. 
On the other hand, treatment of SARS-COV-2 infected 
patients, suffering from hyperglycemia, with steroids, 
induces hyperinflammation, insulin resistance (T2D) and 
severity of COVID-19 symptoms [71]. SARS-COV-2 
infection increases the level of inflammatory cytokines, 
lipopolysaccharides and Natural Killer (NK) cells, which 
lead to lung fibrosis and acute lung damage. It also induces 

Fig. 2  Flow diagram showing different means of viral infection may lead to Type I diabetes



293Nucleus (2022) 65:283–297 

1 3

oxidative stress mediated hyperglycemia and angiotensin 
II mediated insulin resistance [75]. SARS-CoV-2 enters 
the host cell through the angiotensin converting enzyme 
2 (ACE2) receptor, thereby disrupting ACE2 mediated 
catalysis of the conversion of angiotensin II to angiotensin 
(1–7) [90]. The elevated level of angiotensin II inhibits the 
insulin dependent activation of phosphoinositide 3-kinase 
(PI3K) pathway and disrupts translocation of Glut-4 in 
insulin-sensitive tissues, thereby resulting in systemic 
insulin resistance [127]. The hyperglycemic condition 
leads to further progression of lung pathophysiology.

Conclusion

The history of the discovery of insulin is a fascinating 
story of sacrifice, patience, toil, solving complex observa-
tional scientific riddles and occupational complexities. It is 
an inspiration for future researchers in the field of protein 
biology, drug discovery and other aspects of pharmacol-
ogy. Based on the present global situation in relation to the 
disease, the genetic and epigenetic regulations of diabetes 
need to be studied with utmost care and importance. While 
genetic predisposition analyses cater to a deterministic 
path, the epigenetic studies address the stochastic and self-
controllable triggers of the disease. Since genetic regula-
tion is one of the major contributors for T1D, lifestyle 
itself is a major factor for T2D and the medics need to 
address the patients accordingly for a proper cure. Recent 
studies have also revealed that viral infections at an early 
stage can also contribute to the onset of the disease in 
some individuals. More extensive research in the discussed 
fields is still awaiting.

Finally, let's go back to that old saying in a new way and 
say that there is no substitute for research on various top-
ics, whether it is diabetes or something else, for us to live 
a beautiful and healthy life. As new problems come along, 
new research paths open up with the blessings of logic and 
science. The pursuit of science with relentless effort and 
endless patience, which people could not have imagined 
before, will easily come under our control and make the 
path of the next generation easier and more beautiful.
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