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Increasing temperature of cooling granular gases
Nikolai V. Brilliantov1, Arno Formella2 & Thorsten Pöschel 3

The kinetic energy of a force-free granular gas decays monotonously due to inelastic colli-

sions of the particles. For a homogeneous granular gas of identical particles, the corre-

sponding decay of granular temperature is quantified by Haff’s law. Here, we report that for a

granular gas of aggregating particles, the granular temperature does not necessarily decay

but may even increase. Surprisingly, the increase of temperature is accompanied by the

continuous loss of total gas energy. This stunning effect arises from a subtle interplay

between decaying kinetic energy and gradual reduction of the number of degrees of freedom

associated with the particles’ dynamics. We derive a set of kinetic equations of Smoluchowski

type for the concentrations of aggregates of different sizes and their energies. We find scaling

solutions to these equations and a condition for the aggregation mechanism predicting

growth of temperature. Numerical direct simulation Monte Carlo results confirm the theo-

retical predictions.
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D ilute systems of inelastically colliding particles, also called
granular gases, belong to the most intensively studied
systems in the physics of granular matter1,2. Granular

gases may be investigated using the tools of kinetic theory and
hydrodynamics of molecular gases, with some modifications.
These modifications are necessary to take into account the loss of
mechanical energy due to particle collisions, quantified by the
coefficient of restitution, defined as the ratio of post-collisional
and pre-collisional relative normal velocity. Granular gases are
inherently unstable as they tend to develop self-organized clus-
ters3,4 and other instabilities5. Although these instabilities
inspired physicists to study granular gases, even the first stage in
the evolution of a granular gas when it is homogeneous and
isotropic reveals a rich phenomenology, which are fundamentally
different from molecular gases. These may be exemplified by
various types of correlations4,6–9 and deviations from the Max-
well velocity distribution10–16. Based on an enormous amount of
scientific literature in the past 25 years, by now the homogeneous
state of granular gases is well understood1,17–19.

An important feature of natural granular gases is the
agglomeration of particles due to forces of different type. Such
phenomena can be found, e.g., in form of soot-agglomeration in
smoke gas20, in aerosols21,22, as well as in astrophysical systems
such as dust in interplanetary space, in planetary rings consisting
of aggregative ice particles23 and protoplanetary disks24–28. While
simple approaches assume that particle collision are always
aggregative28–32, more detailed models27,28,33 take into account
that only collisions at small impact rate lead to aggregation, while
for larger impact velocity particles rebound or shatter28,33.
Naturally, the mechanism of particle interactions determines
conditions under which the particles aggregate, thus, a realistic
model of aggregation should consider the physics of particle
interactions, such as surface adhesion27,28,33, or van der Waals
interactions34, electrostatics of charged or dipolar particles35, or
gravity34.

Although it has been shown that the incorporation of aggre-
gation changes the properties of granular gases
considerably28,30,31,33,35–38, by now the role of the physical
aggregation mechanism was not considered. Moreover, while the
size distribution of aggregates has been analyzed27,28,33,35, a
constant mean kinetic energy was assumed; a coupling between
the evolution of the size distribution and that of the mean kinetic
energy of the aggregates has not been investigated. It is however
well known that the mean kinetic energy of the system is not
constant but decreases with time30,31,36–38, which strongly
influences the kinetics of ballistic aggregation.

For an initially uniform gas of monomers, we analyze the
evolution of the size distribution of aggregates and the average
kinetic energy of these species for different realistic mechanisms
of ballistic aggregation. From the Boltzmann equation for a multi-
component granular gas1, we derive a set of coupled equations of
Smoluchowski type for the concentration of aggregates of dif-
ferent sizes and the corresponding average kinetic energies. We
obtain different regimes of the system’s evolution characterized
by either decreasing or increasing temperature. The increase of
temperature is a surprising result given that all collisions of
particles are dissipative.

Results
Kinetic theory. We consider a dilute and uniform gas of granular
particles and introduce the mass–velocity distribution function,
fi ≡ f (mi, vi, t), which is the concentration of particles of i
monomer masses at velocity vi at time t. Its evolution obeys the

Boltzmann equation28,33:

∂
∂t

f mk; vk; tð Þ ¼ Iaggk þ Iresk ; ð1Þ

where Iaggk and Iresk are, respectively, the collision integrals for the
aggregative and restitutive collisions. Let us introduce the
aggregation model and explain the structure of Iagg and Ires.
When non-adhesive granular particles of mass mi and mj collide,
the energy of their relative motion, Eij ¼ 1

2mimjv2ij= mi þmj
� �

with vij = vi − vj, is reduced by the factor ε2. The coefficient of
restitution, ε ≤ 1, thus, characterizes the inelastic nature of par-
ticle collisions1. For adhesive particles considered here, we
assume that the particles agglomerate if the post-collisional
relative kinetic energy is smaller than the energy needed to
overcome the energy barrier Wij due to attractive forces, that is,
ε2Eij � Wij. The energy, Wij, depends on the size or the particles
and the nature of the attractive forces. For instance, for adhesive
forces, Wij ¼ A � rirj

� �4=3
ri þ rj
� ��4=3

, where the constant A
depends on material parameters and ri/j are the particles’ radii39.
Let a particle of mass mi consist of i monomers of mass m0 and
radius r0. Then an aggregate of mass mi =m0i is of radius ri ~ i1/3.
The general form

Wij ¼ a
i1=3j1=3
� �λ1
i1=3 þ j1=3ð Þλ2

; ð2Þ

characterizes the dependence of Wij on the size of colliding
particles, where a is a constant of the dimension of energy. The
choice of λ1/2 describes a variety of attractive interactions. For
example, λ1 = λ2 = 4/3 corresponds to the adhesive surface inter-
actions introduced above; λ1 = 3, λ2 = 1 characterizes gravitational,
or Coulomb interaction when the particles’ charges scale as their
masses. Similarly, λ1 = λ2 = 3 stands for dipole–dipole interac-
tions35, etc. Note that in the aggregation condition, we do not
consider explicitly the particle rotation; we assume that its impact
on the agglomeration kinetics may be effectively accounted for by
the factor a in Eq. (2).

For the case that particles aggregate, that is, ε2Eij ≤Wij, the
corresponding collision integral reads28,33

Iaggk ¼ 1
2

P
iþj¼k

σ2ij
R
dvidvjdeΘ �vij � e

� �
vij � e
�� ��

fifjδ mkvk �mivi �mjvj
� �

Θij

�P
j
σ2kj
R
dvjdeΘ �vkj � e

� �
vkj � e
�� ��fkfj Θkj:

ð3Þ

Here Θij ≡Θ(Wij − ε2Eij), with the Heaviside step-function, Θ(x),
guarantees that the aggregation condition is fulfilled; mk =mi +mj

and mkvk = vimi +mjvj, due to the mass and momentum
conservation, σij = ri + rj and the inter-center unit vector e at the
collision instant. The factors in the integrand in Eq. (3) have their
usual meaning1: σ2ij vij � e

�� �� is the volume of the collision cylinder
and Θ (−vij ⋅ e) selects only approaching particles. The first sum
in the right-hand side of Eq. (3) refers to collisions, where a
particle of size k is formed from smaller particles of size i and j,
while the second sum describes the collisions of k-particles with
all other aggregates. In case of restitutive collisions, the collision
integral has its usual form1,

Iresk ¼
X
i

σ2ki

Z
dvideΘ �vki � eð Þ vki � ej j ε�2fk′′ � fi′′� fkfi

� �
Θ ε2Eki �Wki
� �

;

ð4Þ

with the additional factor Θ (ε2Eij −Wij) to exclude an
aggregation at the impact. Here, fk=i′′ ¼ fk=i vk=i′′; t

� �
, with vk′′

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02803-7

2 NATURE COMMUNICATIONS |  (2018) 9:797 |DOI: 10.1038/s41467-017-02803-7 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


and vi′′ being the velocities of the inverse collision, that results
with the post-collision velocities vk and vi1.

Let us introduce the number density, ni, of particles of size i,
their partial temperature Ti, the total number density, N, and the
average temperature, T40:

ni ¼
R
dvif mi; við Þ N ¼P

i
ni

3niT ¼ Rdvimiv 2
i f mi; við Þ NT ¼P

i
niTi:

ð5Þ

We assume that the distribution function may be approximated
by a Maxwellian,

f mi; vi; tð Þ ¼ niðtÞ
π3=2v30 iðtÞ

e�v2i =v
2
0i ; ð6Þ

where v20iðtÞ ¼ 2TiðtÞ=mi is the mean thermal velocity of the
particles of size i. Multiplying Eq. (1) with unity and with mkv2k,
using Eqs. (3) and (4) and integrating over vk, we obtain

d
dt nk ¼ 1

2

P
iþj¼k

Cijninj � nk
P
j
Cijnj

d
dt nkθk ¼ 1

2

P
iþj¼k

Bij
ninjθiθj
θiþθj

�P
j
Dkj

nknjθkθj
θiþθj

;
ð7Þ

where θi = Ti/mi and the coefficients Cij, Bij, and Dij depend on σij,
Wij, mi, mj, and θi, θj, see “Methods” section for details. The set of
Eq. (7) for the concentrations of species (i.e., of the agglomerates
of size k) and their average kinetic energy are the extended
Smoluchowski-type equations: They describe the aggregation
processes when different species have time-dependent individual
temperatures. For non-aggregative particles, that is for Wij = 0, we
obtain Cij = Bij = 0 and Dij = ξij(θi + θj)/(njθj), where ξij are the
cooling coefficients41,42. The set of Eq. (7) then reduces to
dTk=dt ¼ �Tk

P
i ξki in agreement with refs.41,42.

From numerical simulations (see below) we find that the
partial temperatures evolve as Ti(t) = ϕiT(t), where the constants
ϕi weakly depend on i. For the qualitative analysis we assume
Ti(t) ≈ T(t), where T(t) is the characteristic temperature of the
system. Then Eq. (7) reduce to

d
dt

nk ¼ 1
2

X
iþj¼k

Cij Tð Þninj � nk
X
j

Cij Tð Þnj ð8Þ

d
dt

NT ¼ �
X
i;j

PijðTÞninj; ð9Þ

with

Cij ¼ νij 1� 1þ ~Wij=T
� �

e� ~Wij=T
h i
νij ¼ 2σ2ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πT=μij

q
Pij ¼ 2

3 νijT 1� Gij þ 1
2 1� ε2ð ÞGij

� �
Gij ¼ 1þ ~Wij=T þ 1

2
~W2
ij=T

2
� �

e� ~Wij=T ;

ð10Þ

and we abbreviate ~Wij � Wij=ε2 and μij =mimj/(mi +mj). Below,
we will consider some limiting cases.

Hot gas limit. For a=Tð Þ � 1, that is, ~Wij=T � 1 for all parti-
cles, the aggregation barrier is much smaller than the average
kinetic energy of the particles. From Eq. (10) then follows Cij ~ (a/
T)2 and Pij contains two terms, one ~(1 − ε2) and the other one
~(a/T)3. This entails different regimes of gas behavior:

Non-aggregative cooling occurs when (a/T)→ 0, thus, Cij ≈ 0,
Eq. (8) yields _nk ¼ _N ¼ 0, which implies the equation

_T ¼ �ζT3=2; ζ ¼
X
i;j

2
3

ffiffiffiffiffi
2π
μij

s
1� ε2
� �

σ2ij
ninj
N

; ð11Þ

with Haff’s solution43 for a non-aggregative cooling gas, T ~ (1 +
t/τ0)−2, where τ0 ¼ ζ

ffiffiffiffiffiffiffiffiffiffi
Tð0Þp

.
Partial aggregation with cooling takes place for smaller

temperature. In this case, we take into account aggregation but
disregard the cooling due to aggregation. Then Cij ~ (a/T)2 and
Pij ~ (1 − ε2); in more detail, Cij ¼ b1T�3=2~Cij and Pij ¼ b2T3=2~Pij,
with the dimensionless kernels

~Cij ¼ ijð Þ2λ1=3�1=2 iþ jð Þ1=2 i1=3 þ j1=3
� �2�2λ2 ð12Þ

~Pij ¼ ijð Þ�1=2 iþ jð Þ1=2 i1=3 þ j1=3
� �2

; ð13Þ

and constants b1 = k0(a/ε2)2, b2 = (2/3)k0(1 − ε2) and
k0 ¼ r20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=m0

p
. The kernels are homogeneous functions of i

and j:

~Csi sj ¼ sμc ~Cij; ~Psi sj ¼ sμp~Pij; ð14Þ

where μp = 1/6 and μc = 2(2λ1 − λ2)/3 + 1/6 = (2/3)Λ + 1/6. Here
we introduce Λ = 2λ1 − λ2, where Λ/3 is the homogeneity degree
of the attraction barrier (2).

For large time, t, Smoluchowski equations with homogeneous
kernels give rise to scaling solutions44–46, therefore, we seek
solution to Eqs. (8) and (9) in the scaling form

nk ’ t�2zΦðk=tzÞ; T � t�β: ð15Þ

From Eq. (15) follows N(t) ~ t = −z. Substituting Eq. (15) into Eqs.
(8) and (9), using the homogeneity of kernels and approximating
the discrete variables by continuous variables, ~Cij ! ~Cði; jÞ, one
obtains the equation for the scaling function Φ(x) (see more
details in “Methods” section),

w xΦ′þ 2Φ½ � ¼ Φ xð Þ R1
0
dy ~C x; yð ÞΦ yð Þ

� 1
2

Rx
0
dy ~C x � yð ÞΦ x � yð ÞΦ yð Þ;

ð16Þ

where w is the separation constant45,46. Equation (16) is to be
supplemented by the relations for the exponents z and β, which
follow from the requirement that the power of t should be the
same on both sides of Eqs. (8) and (9):

z 1� μcð Þ ¼ 1þ 3β=2; z 1� μp

� �
¼ 1� β=2: ð17Þ

Solving for z and β and using the expressions for μc and μp, we
obtain for this regime,

z ¼ 2
5� Λ

; β ¼ Λ
5� Λ

: ð18Þ

Note that the scaling analysis is valid if z> 0, therefore, 5 −Λ> 0.
If this condition is violated a more subtle analysis is needed; this
may indicate a gelation44–46 or run-away growth35.

Aggregation with temperature growth may take place for a
molecular gas (ε = 1) or nearly elastic granular gas. In this case,
1� ε2ð Þ � a=Tð Þ3 and we obtain, Cij ¼ b1T�3=2~Cij, with ~Cij
given by Eq. (13), while Pij ~ (a/T)3. It may also be written as
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Pij ¼ b3T�3=2~Pij, where b3 = (2/9)k0(a/ε2)3 and ~Pij reads

~Pij ¼ ijð Þλ1�1=2 iþ jð Þ1=2 i1=3 þ j1=3
� �2�3λ2

; ð19Þ

that is, ~Pij is a homogeneous function with the homogeneity
constant μp,1 =Λ + 1/6.

The scaling analysis given above yields again Eq. (16) for the
scaling function and the relations for the exponents z and β:

z 1� μcð Þ ¼ 1þ 3β=2; z 1� μp;1

� �
¼ 1þ 5β=2: ð20Þ

From Eq. (20), we find

z ¼ 6
5� Λ

; β ¼ � 2Λ
5� Λ

: ð21Þ

The above result is surprising: If Λ> 0, which corresponds to the
increase of the attractive barrier with aggregates’ size, the
exponent β is negative, that is, T � t βj j, and the characteristic
temperature of an aggregating gas increases! This effect may be
understood as follows: For an elastic or nearly elastic gas, the
aggregation conditions (defined by the constants λ1 and λ2) may
lead to a regime, when the total number of particles N decays
faster than the total energy of the system. In this regime, the
increase of the gas temperature occurs during its cooling, hence it
behaves like a system with a negative-specific heat47,48, see the
discussion below.

Cold gas limit. Complete aggregation with cooling occurs in the
limit ða=TÞ 	 1, such that Wij=T 	 1 for all species. The
aggregation barrier is much larger than the average kinetic energy
of the particles, therefore, almost all the collisions lead to
aggregation. Then from Eq. (10) follows, Cij ¼ νij ¼ 2k0T1=2~Cij
and Pij ¼ ð2=3ÞTνij ¼ ð4=3Þk0T3=2~Pij where

~Cij ¼ ~Pij ¼ ijð Þ�1=2 iþ jð Þ1=2 i1=3 þ j1=3
� �2

; ð22Þ

that is, both kernels ~Cij and ~Pij are homogeneous with the
homogeneity constant μc,1 = μp,2 = 1/6. From Eq. (22) followsP

i;j Pijninj ¼ ð2=3ÞTPi;j Cijninj, then Eqs. (8) and (9) entail the

equation:

T
dN
dt

þ N
dT
dt

¼ 4
3
T
dN
dt

: ð23Þ

The scaling analysis of Eqs. (8) and (23) yields again Eq. (16) for
Φ(x) and the relations

z 1� μp;2

� �
¼ 1� β=2; z ¼ 3β; ð24Þ

which finally give the exponents,

z ¼ 1; β ¼ 1=3: ð25Þ

This is the aggregation regime of ordinary Smoluchowski type,
when all collisions lead to agglomeration of the particles.

Numerical confirmation. To check the predictions of the pre-
vious section, we performed large-scale Monte Carlo simulations.
The details of the numerical method are given in “Methods”
section below. Figure 1 shows the evolution of the partial tem-
peratures, Ti, of i-mers.

While for an ordinary granular gas, temperature would
monotonously decay due to Haff’s law, T(t) ~ t−2, in case of a
gas of aggregative particles, temperature evolves non-
monotonously by revealing a number of different regimes.
We start with a homogeneous gas of monomers at temperature
T1(0) = 1. Then initially, the condition ða=TÞ � 1 is satisfied and
the gas cools according to Haff’s law. This corresponds to the
regime of the non-aggregative cooling for a hot gas described by
Eq. (11). In the course of time, temperature drops down, the
aggregation becomes non-negligible such that the evolution of
temperature deviates from Haff’s law; the system now evolves
according to the regime of partial aggregation with cooling. With
further decrease of temperature and increase of the ratio (a/T),
aggregation dominates over dissipative loss for the evolution of
temperature. This corresponds to the regime of aggregation with
temperature growth, where the characteristic temperature of the
system increases as T � t βj j, see Eq. (21). Eventually, the latter
regime terminates because the condition ð1� ε2Þ � ðWij=TÞ3
needed for this regime is violated with increasing temperature.
The larger the size i of a particle, the larger the value of Wij and
hence the large temperature Ti, when the change of the regimes
takes place; this is clearly visible in Fig. 1. In the final state of its
evolution, the gas approaches the limit of a cold gas, when almost
all collisions are aggregative. In this regime, the temperature
decays with time as T ~ t−1/3, in agreement with the theoretical
prediction, Eq. (25).

Figure 2 shows the regime of aggregation with temperature
growth in more detail. In agreement with the theoretical
prediction, Eq. (21), the increase of temperature in this regime
becomes steeper with increasing value of Λ, which is proportional
to the homogeneity degree Λ/3 of the aggregation barrier.

It is also interesting to estimate the onset time, th, when the
granular temperature starts to increase. This regime occurs in a
hot granular gas when ð1� ε2Þ � a=Tð Þ3� 1. If initially (a/T)3

is much smaller than (1 − ε2), the regime of non-aggregative
cooling takes place and temperature decreases according to Haff’s
law, T(t) ~ 1/(t/τ0)2. Here, τ�1

0 ¼ ð1� ε2Þ4η=σ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tð0Þ=πmp

=
1� ε2ð Þτ�1

c =6 with η being the packing fraction of the gas (see
the “Methods” section) and τc is the initial mean collision time. In
the course of time, temperature decrease so that (a/T)3 grows. For
the order of magnitude estimate of the onset time th one can use
the condition (1 − ε2) ≈ (a/T(th))3. For the parameters ε = 0.99, a
= 0.1, T(0) = 1, σ = 1, m = 1, and η = 0.05 used in the simulations
depicted in Figs. 1 and 2, we obtain th ’ 500. This qualitatively
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Fig. 1 Partial temperatures of i-mers. Evolution of the partial temperatures,
Ti, of i-mers for a granular gas of 107 particles for λ1= λ2= 4/3, a= 0.1, and
ε= 0.99. Initially, the gas of monomers has the temperature, T1(0)= 1. The
dashed lines show the limiting cases of a hot gas (regime of non-
aggregative cooling) when the temperature follows Haff’s law, T ~ t−2, and
cold gas when almost all collisions are aggregative and T ~ t−1/3. Both cases
are in agreement with the theory, see Eqs. (11) and (25)
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agrees with the numerical result, of th ≈ 1000, which corresponds
to approximately 600 collisions with the duration of τc ’ 1:5, see
Figs. 1 and 2.

Conditions for experimental observations. We estimate the
range of parameters where the surprising phenomenon of
increasing temperature of a cooling granular gas may be observed.
As it follows from the above analysis, this is expected for a hot
gas, when ð1� ε2Þ � ða=TÞ3 � 1. Note, however, that while the
condition ð1� ε2Þ � ða=TÞ3 allows a simplified analytical
treatment, a milder condition (1 − ε2)< (a/T)3 ensures the
increase of temperature as well.

Let us consider the case of adhesive interactions associated with
the van der Waals forces34,49. In this case, the adhesion energy
Wij defined in Eq. (2) reads39,

Wij ¼ q0 π5γ5R4
ijD

2
� �1=3

; ð26Þ

where γ is the adhesion coefficient, which is twice the surface free
energy per unit area of a solid in vacuum, Rij = rirj/(ri + rj),
D ¼ 3

2 ð1� ν2Þ=Y , with ν and Y being, respectively, Poisson ratio
and Young modulus, and q0 = 1.457 is a numerical constant. With
ri = r0i1/3, where r0 is the monomer radius, we estimate,

Wij ¼ a
i1=3j1=3
� �4=3
i1=3 þ j1=3ð Þ4=3

;

which implies the homogeneity exponents λ1 = λ2 = 4/3 and the
constant a in Eq. (2):

a3 ¼ q30π
5γ5r40D

2: ð27Þ

Since the homogeneity degree of Wij is positive, Λ/3 = (2λ1 − λ2)/
3 = 4/9> 0, the regime of aggregation with temperature growth is
possible.

Using the data available in the literature for the restitution
coefficient50,51 and material parameters (γ, Y, ν, and the material
density ρ) we obtain, that for a granular gas of very hard ceramic
particles (Y = 370 × 109 GPa) of diameter σ = 1 mm moving at the
characteristic velocity v0 = 0.16 ms−1 T ¼ mv20=3

� �
, the value of

1� ε2 ’ 0:073 is indeed significantly smaller than

ða=TÞ3 ’ 0:32. For the opposite case of rather soft acrylic
particles (Y = 3 × 109 GPa), similar estimates indicate that such
regime may be realized for a granular gas of particles of the same
size but for the characteristic velocity v0 = 0.27 ms−1; in this case,
1� ε2 ’ 0:15 and ða=TÞ3 ’ 0:48. Hence, we conclude that the
regime of increasing temperature of a cooling granular gas may be
observed for many realistic systems.

Let us estimate the onset time th for real systems discussed
above, which are prepared at the hot gas conditions, ða=TÞ3 �
1� ε2ð Þ and then freely evolve. Suppose that initially (a/T(0))3 =
0.001. Then using the estimates for th outlined above, we obtain
that th = 17 s for the first system of (hard) ceramic particles of
diameter σ = 1 mm; the gas is to be prepared with the packing
fraction η = 0.05 and initial characteristic velocity v0(0) = 3 ms−1.
Similarly, we obtain th = 72 s for the second system of (soft)
acrylic particles of the same diameter, prepared at the same
packing fraction with the characteristic velocity v0(0) = 6 ms−1.

Experimental investigations of cooling granular gases are not
simple since to assure force-free conditions, the action of gravity
has to be suppressed. Such experiments have been performed,
either under true microgravity conditions aboard the space
station52, in parabolic flights53,54, or in sounding rockets55,56, or
by means of magnetic levitation57. By now, however, the focus of
these experiments was to check experimentally the cooling law
theoretically predicted by Haff and others43. Hence, the
experiments have been designed to assure purely repulsive
interaction of the particles, that is, to keep attractive forces as
small as possible. This might be the reason why the temporary
increase of temperature reported in our paper was not mentioned
in any of these studies. As it follows from the estimates given
above, to ensure the emergence of the regime of interest, one
needs to prepare a system at particular conditions.

Analogy with systems of negative-specific heat. It is worth to
note that the behavior of an aggregating granular gas with
increasing temperature may be interpreted as a manifestation of a
negative-specific heat: The energy of the system decreases in
dissipative collisions, while the granular temperature grows, that
is, the smaller the energy of the gas, the larger its temperature.
The negative-specific heat characterizes equilibrium systems with
long-range (e.g., gravitational) interactions, see e.g., refs. 47,48.
Such analogy is very interesting and tempting. Still however, the
direct application of this concept to non-equilibrium systems,
addressed in our study, is to be justified by further analysis. In
particular, one needs to investigate the opposite process, when
temperature decreases with increasing system energy. This may
be possible for an extended model, which includes shattering
collisions and mechanisms of energy input into the system. Then,
if the number of particles, emerging in shattering impacts,
increases faster than energy of the system, thanks to the energy
input, the temperature of the gas would decrease, manifesting a
negative heat capacity. To apply the concept of negative heat
capacity to aggregating gases, a detailed analysis of the thermo-
dynamic additivity47,48 in their cooling and heating states will
also be needed. We leave these fascinating problems for future
studies.

Discussion
By means of kinetic theory, we show that a force-free gas of
aggregative particles behaves fundamentally different than an
ordinary granular gas of purely repulsive particles. In both cases,
the kinetic energy decreases monotonously due to dissipative
collisions of the particles. However, while the temperature of
ordinary granular gases decreases monotonously as well,
according to Haff’s law, T(t) ~ t−2, the evolution of granular gases
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Fig. 2 Evolution of temperature for different aggregation mechanisms. The
rate of temperature growth in the regime of increasing temperature
depends on the aggregation mechanism, quantified by the parameter Λ.
This parameter characterizes the dependence of the aggregation barrier on
the agglomerate size. a N= 107, ε= 0.99, a= 0.1, Λ= 0.4, thus β= −0.173,
see Eq. (21); b same but Λ= 1.6, thus β= −0.941. With increasing value of
Λ, the increase of temperature becomes steeper, in agreement with the
theoretical predictions, T � t βj j , of Eq. (21)
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of aggregating particles demonstrates subsequent regimes of very
different nature. These regimes are characterized by either
decreasing or increasing temperature. The astonishing fact that
the temperature of a gas of particles, which dissipate energy
increases, may be understood as follows: although the total energy
of the system decreases, the total number of particles diminishes
faster due to agglomeration, yielding a boost of energy per par-
ticle. This surprising effect is possible if the aggregation barrier
increases with the size of the aggregates (i.e., Λ> 0), and, as we
have shown above, may be observed for many realistic systems.
Interestingly, the increase of temperature with decaying energy
corresponds to a negative-specific heat for equilibrium sys-
tems47,48; the application of this concept to non-equilibrium
systems requires however further analysis.

Technically, we derived an extended set of Smoluchowski
equations: equations for concentrations of different species, nk,
which correspond to standard Smoluchowski equations and
equations for the partial temperatures of the species, Tk. Using the
approximation Tk(t) ≈ T(t), we elaborate a scaling theory and
reveal several regimes of temperature evolution, including the
surprising regime of increasing temperature of a cooling gas.
Numerical Monte Carlo simulations confirm the predictions of
our theory.

Methods
Kinetic kernels of extended Smoluchowski equations. To derive the first set of
rate Eq. (7) for nk(t), we integrate the Boltzmann equation, Eq. (1), over vk. Since
nk ¼

R
dvkfk vk; tð Þ, the left-hand side of the Boltzmann equation turns then into

dnk/dt and gives the rate of change of the concentrations nk. The right-hand side
gives the contributions to dnk/dt from different parts of the collision integral. Since
the restitutive (non-aggregating) collisions preserve the number of particles, we
find Z

dvkI
res
k ¼ 0: ð28Þ

To compute
R
dvkI

agg
k , we assume that the velocity distribution function may be

approximated by a Maxwellian, Eq. (6). For a non-aggregating granular gas, the
velocity distribution function deviates from Maxwellian; the deviation may be
expressed in terms of Sonine polynomials expansion10–14,16. These deviations are
however small and, as it has been shown in refs. 41,42,58, may be neglected when the
cooling coefficients ξij are computed. Therefore, the approximation (6) is justified.

The collision integral for aggregative collisions, given by Eq. (3) may be written
as a sum of two parts,

Iaggk vkð Þ � Iagg;1k � Iagg;2k : ð29Þ

First, we compute
R
dvkI

agg;2
k ,R

dvkI
agg;2
k ¼ P

j
σ2kj
R
dvk
R
dvj
R
deΘ �vkj � e

� �
vkj � e
�� ��

fk vkð Þfj vj
� �

Θ Wij � ε2Eij
� �

¼ P
j

σ2kjnknj
π3v30;kv

3
0;j

R
dvkdvjdeΘ �vkj � e

� �
vkj � e
�� ��

e�v2k=v
2
0;k�v2j =v

2
0;jΘ Wij � ε2

μkjv
2
kj

2

� �
;

ð30Þ

where we use Eq. (6) for the velocity distribution function. The integrals in the
above equation are Gaussian and hence may be straightforwardly calculated. We
perform this calculation for a particular pair, k and j. With the substitute

vk ¼ uþ w
μkj
mk

� pkj

� 	
; vj ¼ u� w

μkj
mj

þ pkj

� 	
; ð31Þ

where

pkj ¼ μkj
mkv20;k

� ��1
� mjv20;j

� ��1

v�2
0;k þ v�2

0;j
; ð32Þ

the above integral with respect to vk, vj, and e may be generally written asZ
du dw deΘ �w � eð Þ w � ej juαwβ w � ej jγ e�akju2�bkjw2

Θ
1
ε2

Wij � 1
2
μkjw

2

� 	
; ð33Þ

where akj ¼ v�2
0;k þ v�2

0;j , bkj ¼ v20;k þ v20;j

� ��1
, and α = β = γ = 0, for the particular

case of the integrals in Eq. (30). We also take into account that the Jacobian of
transformation from (vk, vj) to (u, w) is equal to unity. Integration over u gives
(π/akj)3/2. Integration over the unit vector e gives 4π and we are left with the
integral over w. Integration over directions of the vector w gives π, so finally we
need to compute the remaining integral:

hkj ¼
Z ffiffiffiffiffiffi

2Wkj

ε2μkj

q
0

dww3e�bkjw2 ¼ 1
2b2kj

1� e
2bkjWkj

ε2μkj 1þ 2bkjWkj

ε2μkj

 !" #
: ð34Þ

As the result we obtain:Z
dvkI

agg;2
k ¼

X
j

σ2kjnknj

π3v30;kv
3
0;j
4π2

π

akj

� 	3=2

hkj: ð35Þ

Similarly, one can find the integral in Eq. (33) for other values of α ≠ 0, β ≠ 0, and
γ ≠ 0.

Let us now calculate
R
dvkI

agg;1
k . First, we notice thatR

dvkδ mkvk �mivi �mjvj
� � ¼ 1, since the other part of the integrand does not

depend on vk. Then the remaining integration is exactly the same as for Iagg;2k ,
which have been already performed, therefore we find:

Z
dvkI

agg;1
k ¼ 1

2

X
iþj¼k

σ2ijninj

π3v30;iv
3
0;j
4π2

π

aij

� 	3=2

hij: ð36Þ

Hence, after some algebra, we obtain,

d
dt

nk ¼ 1
2

X
iþj¼k

Cijninj � nk
X
j

Cijnj; ð37Þ

where

Cij ¼ 2
ffiffiffiffiffi
2π

p
σ2ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θi þ θj

p
1� Fij
� �

Fij ¼ 1þ Qij
� �

e�Qij

Qij ¼ Wij

ε2μij θiþθjð Þ
θ ¼ Ti=mi:

ð38Þ

To derive the second set of rate equations in the system, Eq. (7), for nk(t)θk(t),
we multiply the Boltzmann equation, Eq. (3) with mkv2k=2 and integrate over vk.
Since 3nkTk ¼

R
dvkmkv2k fk vk; tð Þ, the left-hand side of the equation turns into

3mkd/dt(nkθk). In the right-hand side of this equation we again encounter the
Gaussian integrals, as in Eq. (33), but with different values of α, β, and γ. These
integrals may be computed exactly in the same way as it has been shown above for
the particular case, α = β = γ = 0. Finally, we arrive at the set of equations for θk =
Tk/mk,

d
dt

nkθk ¼ 1
2

X
iþj¼k

Bij
ninjθiθj
θi þ θj

�
X
j

Dkj
nknjθkθj
θk þ θj

ð39Þ

with the coefficients:

Bij ¼ 2
ffiffiffiffiffi
2π

p
σ2ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θi þ θj

p
´ 1� Fij þ 4

3

θiΔij�θjΔjið Þ2
θiθj

1� Gij
� �
 �

Dij ¼ 2
ffiffiffiffiffi
2π

p
σ2ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θi þ θj

p
´ 1� Fij þ 4

3
θi
θj

1� Gij
� �þ 4

3
μij
miθj

θi þ θj
� �h

´ 1þ εð Þ 1� 1
2 1þ εð Þ μij

miθi
θi þ θj
� �� �

Gij

i
Gij ¼ e�Qij 1þ Qij þ 1

2Q
2
ij

� �

ð40Þ

where Qij has been defined above and Δij =mi/(mi +mj).
For Wij = 0 we obtain Cij = Bij = 0 and

Dij ¼ 8
3

ffiffiffiffiffi
2π

p
σ2ij

μij
miθj

θi þ θj
� �3=2

1þ εð Þ
1� 1

2 1þ εð Þ μij
miθi

θi þ θj
� �h i

¼ ξij
θiþθj
njθj

;
ð41Þ

where ξij are the cooling coefficients for a non-aggregating granular mixture41,42,58.
Then Eq. (39) takes the form,

dTk

dt
¼ �Tk

X
j

Dkjnjθj
θk þ θj

¼ �Tk

X
j

ξkj; ð42Þ

in agreement with refs. 41,42,58.
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If Ti = T for all i, we find Qij ¼ Wij=ðε2TÞ ¼ ~Wij=T and arrive at Eq. (11) for
Cij. The coefficients Pij of Eq. (10) may be obtained noticing that

Pij ¼ 1
2

miDij þmjDji � mi þmj
� �

Bij
� 


: ð43Þ

Using then Eqs. (40) for Bij and Dij, we arrive for Ti = T at Pij, given by Eq. (10).

Scaling analysis of the extended Smoluchowski equations. Generally, it is not
possible to solve analytically the infinite set of Eqs. (8) and (9), however, one can
find a scaling solution, which reflects the most prominent features of the exact
solution. To understand the nature of the scaling approach, we first consider a non-
rigorous, qualitative analysis and then focus on its rigorous counterpart. Exploiting
the basic scaling hypothesis45,46 we assume that for large time and large k a scaling
solution to Eqs. (8) and (9) is attained. Hence, we seek the solution to these
equations in the form

nk ’ s�2Φ k=sð Þ; ð44Þ

where s(t) is the characteristic aggregate size. It may be defined through the second
moment as s =M2/M1, where Mα ¼P1

i¼k k
αnk and M1 = const. is the total mass

which is conserved. Multiplying Eq. (8) with k2 we obtain

ds
dt

¼ 1
M1

X
i;j

Cijninjij � Css

X
i

nii

 !2

� T�3=2sμc ; ð45Þ

where we use the condition of the mass conservation along with the result of the
main text for the dimensionless kernel:

Css � T�3=2~Css � T�3=2sμc ~C11 � T�3=2sμc : ð46Þ

Taking into account that the total number of aggregates and its average size are
related as N ~M1/s ~ 1/s, we recast Eq. (9) into the form

d
dt

T
s

� 	
� �

X
i;j

Pijninj � �Pss
X
i

ni

 !2

� �T3=2sμpN2 � �T3=2sμp s�2; ð47Þ

where we again use the relation for the dimensionless kernel: Pss � T3=2~Pss ~
T3=2sμp ~P11 � T3=2sμp . If we now assume the scaling behavior for temperature,
T ~ t−β, and substitute it into Eqs. (45) and (47), we find from the condition of
consistency the relations (17).

Turn now to more rigorous analysis. As it has been shown above, in the limit of
hot granular gas as well as in the cold gas limit, the kinetic kernels of Eq. (8) may be
written as:

Cij ¼ cTνc ~Cij; Pij ¼ pTνp ~Pij; ð48Þ

where c, p, and νc, νp are constants and ~Cij and ~Pij are the dimensionless
homogeneous functions of i and j with the homogeneity exponents μc and μp,
respectively. We also assume that the evolution of temperature obeys a power law,
T ~ t−β, while the concentrations nk obey the scaling form,

nk ¼ 1
t2z

Φ
k
tz

� 	
: ð49Þ

Following the approach of ref.45, we write the left-hand side of Eq. (9) as:

dnk
dt

¼ � 2z
t2zþ1

Φ� 1
t2z

zk
tzþ1

Φ′ ¼ � z
t2zþ1

2Φþ x
dΦ
dx

� 	
; ð50Þ

where x = k/tz. This is equal to the right-hand side, which we write, changing from
the discrete variables i, j to the continuous ones, Cij→ C(i, j) as:

dnk
dt ¼ 1

2 cT
νc
R k
0dj

~C k� j; jð Þ 1
t2z Φ

k�j
tz

� �
1
t2z Φ

j
tz
� �

�cTνc 1
t2z Φ

k
tz
� �R1

0 dj ~C k; jð Þ 1
t2z Φ

j
tz
� �

¼ �cTνc tμcz�3z
R1
0 dy ~C x; yð ÞΦ xð ÞΦ yð Þ�

� 1
2

R x
0dy

~C x � y; yð ÞΦ x � yð ÞΦ yð Þ
:
ð51Þ

where we take into account that k = xtz, j = ytz and use

~C xtz ; ytzð Þ ¼ tzð Þμc ~C x; yð Þ ð52Þ

and similar relations that hold true for homogeneous kernels. Hence, Eq. (9)
transforms into

z
t2zþ1 2Φþ x dΦ

dx

� �¼ cTνc tμcz�3z
R1
0 dy ~Cðx; yÞΦðxÞΦðyÞ�

� 1
2

R x
0dy

~Cðx � y; yÞΦðx � yÞΦðyÞ� ð53Þ

If we divide both sides of the above equation by cTνc tμcz�3z 2Φþ xΦ′ð Þ, we observe
that one side of the equation depends only on t while the other one on x and y. This

implies the following condition45

z
c
tνcβþz 1�μcð Þ�1 ¼ w ¼ const; ð54Þ

where w is the separation constant. This condition yields Eq. (16) for Φ(x) and the
relation

νcβ þ zð1� μcÞ � 1 ¼ 0 : ð55Þ

For the scaling solution (49), one can write for N ¼Pi ni :

N ¼
Z 1

0
dk

1
t2z

Φ
k
tz

� 	
¼ Ct�z ; C ¼

Z 1

0
dxΦðxÞ: ð56Þ

Then one can write for Eq. (10):

d
dt NT � t�z�β�1

¼ pTνp
R1
0 dx

R1
0 dy~P xtz ; ytzð Þ 1

t2z ΦðxÞΦðyÞ
� t�βνpþz μp�2ð Þ;

ð57Þ

which gives another scaling relation:

�z � β � 1 ¼ �βνp þ z μp � 2
� �

: ð58Þ

The scaling relations, Eqs. (55) and (58), correspond to the pairs of scaling
relations, Eqs. (18), (20), and (24) for different values of νc and νp, that one has for
different aggregation regimes.

Direct simulation Monte Carlo. To confirm the theoretical results, we perform
numerical direct Monte Carlo simulations (DSMC). DSMC is a numerical tech-
nique used to directly solve the Boltzmann equation. It was first elaborated by
Bird59 for the simulation of molecular gases and later generalized and applied to
the Enskog equation for dissipative granular gases, see e.g., refs. 60–64. As there is an
extended introductory literature on the application of DSMC to granular gases, e.g.
refs. 65,66, here we describe only the details of our approach where we deviate from
the standard DSMC.

Laboratory time for non-aggregating particles. For reasons which will be clear
below, our DSMC algorithm does not rely on the laboratory (real) time but on the
number of performed collisions. For the simple case of non-aggregating particles
where the total number of particles is preserved, we compute the laboratory time à
posteriori from the number of collisions via the collision frequency, ν:

ν ¼ 4

ffiffiffi
π

2

r
Np

V
σ2v0 ¼ CΔt

NpΔt

����
T;Np¼const

: ð59Þ

That is, during a short interval of time, Δt, where the temperature, T, does not
change noticeably in a homogeneous system of Np particles in volume V, there
occur CΔt collisions. Here, we use the notation,

v0 ¼
ffiffiffiffiffiffi
2T
m

r
; T ¼ 2E

3Np
; E ¼

X
i

1
2
mv2i ; ð60Þ

where m and σ are respectively the mass and diameter of the particles. Then an
interval of the laboratory time Δt may be computed through the number of col-
lisions CΔt as:

Δt ¼ CΔt

Npνx
; ð61Þ

where we introduce the notation,

νx � 16

ffiffiffi
π

2

r
Np

V
3m
4πρ

� 	2=3
ffiffiffiffiffiffi
2T
m

r �����
T;Np¼const

; ð62Þ

with ρ being the density of the particles’ material. In our simulations we use σ = 1,
m = 1, ρ = 6/π, T(0) = 1 and the packing fraction η = (π/6)σ3(N/V) = 0.05, which
guarantees the accuracy of DSMC. The initial mean collision time in these units is
τc = ν−1 = 1.48.

DSMC simulation of aggregative particles. When the particles of a dissipative
gas agglomerate, obviously, their total number is not preserved. In our simulations,
we start with typically 108 monomers and in the course of time larger and larger
particles emerge, such that after some time not monomers, but much larger par-
ticles dominate. Simultaneously, the total number of particles decreases persis-
tently. After a relatively short period of time it will not be possible to obtain reliable
data due to the poor statistics. Therefore, we keep the number of particles in the
system approximately constant by regularly expanding the system: we start the
simulation with Np monomers, but when arriving by agglomeration at particle
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number Np/2, we duplicate all particles. That is, each particle is replaced by two
particles of identical velocity and mass. Effectively, this operation corresponds to
doubling the system volume, V, which defines a scaling variable

F ¼ V
V0

; ð63Þ

where V0 is the initial system volume. After the first doubling, F = 2, after the
second, F = 4, etc. Consequently, the data obtained as result of the simulation have
to be re-scaled before applying Eqs. (61) and (62):

Np ¼ NMC

F
; CΔt ¼ CMC

Δt
F

: ð64Þ

Here, NMC is the number of particles, simulated at the current time corresponding
to a certain temperature. Similarly, all other variables with index MC. This way, the
number of particles in the simulation is always in the interval Np = [N0/2 + 1, N0],
where N0 is the initial number of particles. This expansion of the system size allows
to obtain good statistical data independently of the aggregation process.

Laboratory time for agglomerating particles. The composition of a granular gas
of aggregating particles changes in time. That is, at a given time, the system consists
of N(1) monomers, N(2) dimers,…,N(i) i-mers. The abundance of monomers can be
considered as a subsystem of particles, the same for dimers and, in general, for i-
mers. For the case of agglomerating particles, we use the fact that in dilute systems,
subsystems of particles behave independent of one another. Obviously, since these
subsystems coexist, there are many ways to determine the laboratory time from the
number of collisions via Eq. (61), where we use the data from subsystem i: N(i),
m(i), T(i). Consequently, from the simulation results we obtain many different
laboratory times, which are, of course, theoretically identical, but not numerically
due to the evolution of the system and the finite system size: near the beginning of
the simulation, most of the particles are monomers, therefore, the statistics of the
monomers delivers the most reliable results while the statistics based on 20-mers is
unreliable since the abundance of 20-mers is yet small. For a given particle size, i,
there is a certain interval of time when the abundance of i-mers is the largest
subsystem from which we obtain the most reliable data. For earlier time, the
statistics is poor since most of the particles are yet smaller than i, for later times, the
statistics is poor as well since most of the i-mers vanished from the system by
agglomeration. Consequently, in our simulation we determine the laboratory time
from the most reliable species, I, consisting of the largest number of particles at the
given time. Therefore, we compute

F ¼ VMC
V0

; NðIÞ ¼ NðIÞ
MC
F

CðIÞ ¼ CðIÞ
MC
F ; TðIÞ ¼ 2

3
EðIÞ
NðIÞ

mðIÞ ¼ I; EðIÞ ¼P
i2I

1
2m

ðIÞv2i

νx ¼ 16
ffiffi
π
2

p
NðIÞ
V0

3mðIÞ
4πρ

� �2=3 ffiffiffiffiffiffiffi
2TðIÞ
mðIÞ

q
:

ð65Þ

Data availability. All relevant data are available from the authors.
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