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interaction sites with a multi-input
neural network model

Junxiong Huang,1,5 Weikang Li,1,5 Bin Xiao,1,5 Chunqing Zhao,1,5 Hancheng Zheng,1,4 Yingrui Li,1,3,4,5,*

and Jun Wang1,2,4,5,6,*
SUMMARY

The protein-peptide interaction plays a pivotal role in fields such as drug development, yet remains under-
explored experimentally and challenging to model computationally. Herein, we introduce PepCA, a
sequence-based approach for predicting peptide-binding sites on proteins. A primary obstacle in predict-
ing peptide-protein interactions is the difficulty in acquiring precise protein structures, coupled with the
uncertainty of polypeptide configurations. To address this, we first encode protein sequences using the
Evolutionary Scale Modeling 2 (ESM-2) pre-trained model to extract latent structural information. Addi-
tionally, we have developed a multi-input coattention mechanism to concurrently update the encoding
of both peptide and protein residues. PepCA integrates this module within an encoder-decoder structure.
This model’s high precision in identifying binding sites significantly advances the field of computational
biology, offering vital insights for peptide drug development and protein science.

INTRODUCTION

Peptides play important roles in various life processes, including signal transduction, programmed cell apoptosis, gene transcription, etc.1–3

Due to their exceptional safety, excellent tolerability, and unique structural properties, peptides have become an exceptional choice for drug

development.4–6 Peptides mainly interact with a variety of proteins to perform their functions. Therefore, accurately predicting peptide-pro-

tein interactions (PepPIs) is the basis for peptide drug discovery and development. However, experimental identification of PepPIs is a time-

consuming and costly method.1 To address this challenge, computational methods have been widely employed to meet the requirements of

peptide drug development. Peptide docking is a computational technique that predicts PepPIs by modeling the structural conformations of

peptide-protein complexes. Various dockingmethods such as FlexPepDock,7 HADDOCK,8 Pep-SiteFinder,9 andADCP10 are utilized for pep-

tide drug development. Additionally, there are template-based approaches, such as SPOT-Peptide11 and Interpep2,12 which further expand

the toolkit available for accurately modeling these complex interactions. While peptide docking methods are capable of readily determining

the binding structure of peptides with proteins, most of the docking methods are not well suited for peptides owing to their flexibility and

larger molecular size.13,14 With the increasing use of artificial intelligence (AI) in the pharmaceutical industry, numerous AI-basedmethods for

predicting PepPIs are emerging. These AI-based computational methodologies can be classified into two broad categories: structure-based

methods and sequence-based methods. Structure-based approaches utilize protein-peptide complex details for predictions. Notable tech-

niques include PepSite,15 which uses position-specific scoring matrices and distance constraints to locate binding sites, and Peptimap,16

which employs molecular probes for binding residue mapping. Machine-learning-based algorithms include SPRINT-Str,17 a random forest

predictor using structural features like accessible surface area and secondary structure. Recently, PepNN-Struct18 was developed, integrating

graph and multihead attention mechanisms with peptide and protein embeddings to refine binding residue identification. In contrast,

sequence-based methods employ sequence-centric information and have become essential in predicting peptide-binding residues in pro-

teins. Prominent options in this field include the SPRINT-Seq,19 the consensus-based PepBind,20 and based on transformer, supplemented by

the innovative PepNN-Seq18 and PepBCL.21 These advancements collectively demonstrate the dynamic and ongoing evolution in the field of

PepPI prediction, showcasing the integration of various computational strategies and machine learning models.

Despite these methodologies achieving high precision in the prediction of peptide-protein binding sites within their respective

domains, the field continues to face distinct challenges in PepPI predictions. Structure-based methods rely on the availability of
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high-quality peptide-protein complex structures, which are often limited.22 Moreover, these methods require considerable computa-

tional resources due to the complexity of structural data, thus potentially limiting their scalability and applicability.23 Meanwhile,

methods such as AlphaFold for predicting protein structures heavily depend on evolutionary data and may fail for novel

proteins that lack extensive evolutionary background.24–26 Lastly, the dynamic nature of proteins, with conformational changes under

varying circumstances, can result in inaccuracies.27 Hence, these methods may encounter challenges in generalizing to underrepre-

sented proteins in the training data. Sequence-based methods can avoid most of the issues mentioned by relying solely on amino

acid sequences, which may overlook vital structural information and often do not directly account for three-dimensional spatial inter-

actions.28,29 However, these methods also have their own limitations. Generally, sequence-based approaches are considered to have

lower predictive accuracy compared to structure-based methods, especially for complex binding sites, and the presence of biological

noise in sequence data can further complicate predictions. In relative terms, if the accuracy of sequence-based methods can be signif-

icantly enhanced, despite potentially not matching the sophistication of the latest structure-based methods, they still retain extensive

applicability across the entire spectrum of PePIs.

To address the aforementioned challenges, we have developed an end-to-end designed, multi-input model, PepCA, for predicting

protein-peptide binding residues. This model is improved from the traditional transformer30 and coattention.31 This approach marks

the application of a multi-input model in the protein-peptide binding domain, utilizing multi-input by processing peptide and protein se-

quences as two distinct but integrated inputs. Through this integration, PepCA facilitates synchronous updates of both peptide and pro-

tein sequences, enhancing its ability to discern variations in binding sites arising from interactions between the same protein and different

peptides.

Crucially, the model requires only the sequences of the protein and peptide for its operation. It synergistically combines these sequences

with latent protein structural features extracted from the ESM-232 (Evolutionary Scale Modeling 2) pre-trained model, which is derived from

protein sequences. This integration facilitates a robust prediction of protein-binding sites. The efficacy of PepCA is empirically validated

across four benchmark datasets, wherein it consistently outperforms existingmodels. This marks a significant advancement in the field of pro-

tein-peptide interaction prediction, showcasing the potential of multi-input models in enhancing the accuracy and specificity of binding site

identification.
RESULTS
Overview of PepCA

In this study, we introduce a neural network architecture designed for the precise prediction of protein-peptide binding sites, as depicted in

Figure 1. Our model’s architecture is systematically segmented into four integral modules, each contributing uniquely to the task at hand: (1)

sequence embedding module, (2) encoder, (3) decoder, and (4) output module.

The sequence embedding module in our PepCA model utilizes the ESM-2 protein language model (pLM) as its pre-trained framework,

effectively translating protein sequences. Peptide sequences undergo integer encoding before being processed through a learnable encod-

ing layer. This dual approach facilitates the conversion of sequences into detailed embedding matrices, essential for subsequent analysis.

Additionally, ESMFold,32 a derivative of ESM-2, has proven its superiority in predicting protein structures without relying on multiple

sequence alignment (MSA) results, outperforming AlphaFold2.33 Therefore, despite being primarily a sequence model, the developers

believe it can extract useful structural features from amino acid sequences.32 By employing this pre-trained model for protein sequence en-

coding, our model may still be able to capture some structural features of proteins. Consequently, we have integrated ESM-2 into our PepCA

for protein encoding, leveraging its advanced capabilities for accurate protein-peptide interactions prediction. A notable innovation in our

model is the integration of an attention-basedmodule, derived and refined from themulti-input coattention model. Now termed ‘‘multihead

coattention,’’ this module is instrumental in synchronously updating the peptide and protein embeddings. Its design ensures equal distribu-

tion of unnormalized attention values across both protein and peptide residues, critical for capturing the reciprocal influence and dynamic

interplay in the binding process. The encoder module processes the enhanced protein feature matrix, while the decoder module engages

in cross-attention mechanisms with the initial input matrix. This interaction facilitates the generation of complex and informative representa-

tions of the binding dynamics. Finally, the output module is meticulously crafted to compute residue-level peptide-binding probabilities. Its

precision allows for the identification andquantification of specific residues’ involvement in peptide bindingwithin the input sequence, under-

scoring the model’s capability in pinpointing binding sites with high accuracy.
Dataset

In this research, we selected four widely recognized benchmark datasets to accurately assess and juxtapose our new method with previous

approaches. For ease of reference, we labeled them as TS092, TS251, TS639, and TS125. Specifically, TS092was introduced through the appli-

cation of the PepNN.18 Concurrently, TS251 was developed utilizing the Interpep.34 Dataset TS639 was generated by leveraging the

PepBind20 technique. Lastly, TS125 was conceived via the SPRINT-Seq.19 It is important to mention that each dataset was independently pro-

cessed using software like ‘‘blastclust’’ from the BLAST package35 or MMseq236 to reduce sequence identity to 30%, which helps minimize

evaluation bias. Peptide-binding residues are defined as those residues containing at least one atom, which is positioned at a distance of

less than 3.5 Å18–20,34 from any atomwithin the peptide. A comprehensive overview of these datasets is presented in Table 1. Further specifics

on how these datasets were used in model training and evaluation are detailed further.
2 iScience 27, 110850, October 18, 2024



Figure 1. The workflow and architecture of PepCA

(A) Model’s embedding layer.

(B) Multi-input multihead coattention component, responsible for concurrently extracting the sequence features of peptides and proteins.

(C) Cross-attention component that amalgamates the characteristics of both peptides and proteins.

(D) Output layer.
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PepCA outperforms baseline methods in binding point prediction

To evaluate the performance of our newly proposed PepCA model, we compared it with two state-of-the-art methodologies: PepNN-Seq18

and PepBCL.21 These approaches represent the latest developments in end-to-end prediction technologies post-2021. When testing our

model on datasets TS251 and TS639, we also included Interpep,34 PepBind, and PepCNN37 in our comparison. However, Interpep is a struc-

ture-based method, whereas PepBind and PepCNN employ various predictive tools to derive protein features for input into its model. Given

these fundamental methodological differences, our study did not engage in an extensive comparison with these additional techniques and

focused on methods more similar to our sequence-based, end-to-end predictive framework. Additionally, during our comparisons on the

TS125 dataset, we also included traditional machine learning methods such as SPRINT-Seq19 to broaden the scope of our evaluation.

We conducted performance evaluations of our model on four benchmark datasets: TS092, TS251, TS639, and TS125. To assess the efficacy

of all models, we employed five key metrics: sensitivity, specificity, precision, the Matthews correlation coefficient (MCC), and the area under

the receiver operating characteristic curve (AUC). Furthermore, since the methods being compared are each trained exclusively on their
iScience 27, 110850, October 18, 2024 3



Table 1. Summary of datasets

Dataset

TS092 TS251 TS639 TS125

Training Testing Training Testing Training Testing Training Testing

Set Set Set Set Set Set Set Set

Number of proteins 2,828 92 251 251 640 639 1,115 125

Number of residues 689,320 23,173 54,488 58,604 157,225 150,328 266,434 30,870

Number of binding residues 85,533 2,523 6,627 6,617 8,259 8,490 14,829 1,716

Number of non-binding residues 603,787 20,650 47,861 51,987 148,966 141,838 251,605 29,154
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respective datasets, to ensure a fair comparison of their differences, our model was also trained and tested separately on four distinct data-

sets. The comparative results are shown in Table 2, respectively. Due to the fact that most methods do not make their trainedmodels publicly

available, the results of our comparative analysis are directly extracted from their respective studies.

As depicted in Table 2, our neural network model PepCA significantly outperforms sequence-based methods such as SPRINT-Seq,

PepBind, Visual, PepNN-Seq, and PepBCL across four datasets. PepCNN integrates features from pre-trained pLM, evolutionary relation-

ships in the protein sequences using an MSA tool, and the structural attributes in terms of the solvent exposure of the residues in the se-

quences. PepCA achieves comparable or superior performance metrics, particularly in AUC, MCC, and sensitivity. This underscores the

robustness of PepCA, driven solely by features from pre-trained language models, in accurately predicting peptide-protein binding site.

Additionally, it is important to note that existing methods are almost exclusively trained on benchmark datasets, which often display a sig-

nificant imbalance between the number of binding and non-binding sites, resulting in lower sensitivity. However, as can be seen from the

table, our method consistently maintains a high level of sensitivity, only falling short of visual in the TS125 dataset. In all other cases, it achieves

the highest level of sensitivity. Consequently, our approach is more likely to avoid missing many true protein-peptide binding sites in real-

world applications.

In order to assess the specific scenarios for each dataset, we utilized the trainedmodel provided by PepNN-Seq to re-predict the proteins

in the four test sets. Additionally, to maintain consistent comparisons and due to the failure in loading the pre-trained PepBCL models, we

used the source code from PepBCL to train models on all four datasets: TS092, TS251, TS639, and TS125. It is worth noting that the perfor-

mancemetrics of the models retrained using PepBCL on the four datasets differed slightly from those reported in the publications. Addition-

ally, due to issues with precision, Figure 2 for the PepNN-Seq method shown in the graphs may slightly differ from those in Table 2. In

Figures 2A–2D, it is observable that within the datasets TS092, TS251, TS639, and TS125, the receiver operating characteristic (ROC) curves

of PepCA consistently surpass those of other existing methods, culminating in the achievement of the highest AUC scores. As illustrated in

Figure 2E, for the comparison of individual protein AUC values, we generated boxplots. These plots reveal that, in comparison to the PepNN-

Seq and PepBCL models, the PepCA model consistently demonstrated superior median AUC values across all four datasets (TS092, TS251,

TS639, and TS125). Notably, the median, indicated by the central line within each blue box (PepCA), is positioned above the corresponding

orange box (PepNN-Seq) and green box (PepBCL). This suggests that, at least in terms of central tendency, PepCA demonstrates superior

predictive capabilities in identifying protein-ligand binding sites over PepNN-Seq and PepBCL.

Relative to the other twomodels, the interquartile range of PepCA indicatesmore consistent performance. Additionally, the consistency of

PepCA’s AUC values across all datasets is exceptional, with its lower quartile never falling below the highest lower quartile of the other

models.Moreover, despite the presence of outliers and someoverlapwithin the quartile ranges, the overall distribution of the PepCAmodel’s

predictions tends to skew toward higher AUC values. This tendency is moderately evident in the TS092 and TS251 datasets, where themedian

of PepCA nearly matches the 75th percentile of PepNN-Seq. These observations underscore the robustness and reliability of the PepCA

model, which maintains higher or competitive median AUC values compared to PepNN-Seq and PepBCL, suggesting a potentially more ac-

curate predictive performance in protein analysis. To more clearly articulate our assertion that individual proteins’ AUC values in our model

markedly exceed those in the other two models, we conducted a t test analysis on these values across four datasets. Our observations re-

vealed that only in the TS092 and TS125 dataset was there no statistically significant difference. This lack of marked significance in the

TS092 and TS125 dataset is likely attributable to its constrained sample scope. Conversely, in the other datasets, the p values were consis-

tently below 0.05, denoting significant disparities in the performance of our model across these more expansive and varied datasets.

The performance of ourmodel in datasets other than TS092 and TS125wasmarkedly superior. The p values less than 0.05 in these datasets

demonstrate a clear statistical advantage of our model over the PepBCL model. This suggests that our model is particularly effective in

dealing with a wide range of protein samples, exhibiting robustness and adaptability in varied analytical scenarios. In Figure 2F, we randomly

selected a protein-peptide complex (PDB ID: 6ICA) from the TS092 test set, where it is evident that our model’s predictions are closer to the

actual scenario compared to the other two models. Overall, PepCA demonstrated superior performance, underscoring its efficacy in this

domain.

Simultaneously, to further validate the universality of our model, we tested it on four different datasets using the models trained on the

respective datasets. The results show little variation in the AUC values. Using the results from the same dataset for training and testing as

a benchmark, the AUC values when tested on other datasets fall mostly within 0.01 below the benchmark, with the lowest drop being
4 iScience 27, 110850, October 18, 2024



Table 2. Comparison of the proposed PepCA and other methods

Test dataset Model Sensitivity Specificity Precision MCC AUC

TS092 PepNN-Seq18

PepCA (ours)

– – – 0.272 0.781

0.405 0.935 0.434 0.351 0.817

TS251 PepNN-Seq18

Interpep34

PepCA (ours)

– – – 0.277 0.769

– – – – 0.793

0.471 0.902 0 380 0.340 0.796

TS639 PepBind20

PepNN-Seq18

PepBCL21

PepCNN37

PepCA (ours)

0.317 – 0.450 0.348 0.767

– – – 0.251 0.792

0.252 0.983 0.470 0.312 0.804

0.217 0.986 0.479 0.297 0.826

0.399 0.945 0.343 0.302 0.826

TS125 PepSite15

Peptimap16

SPRINT-Seq19

PepBind20

Visual38

PepNN-Seq18

PepBCL21

PepCNN37

PepCA (ours)

0.180 0.970 – 0.200 0.610

0.320 0.950 – 0.270 0.630

0.210 0.960 – 0.200 0.680

0.344 – 0.469 0.372 0.793

0.670 0.680 – 0.170 0.730

– – – 0.278 0.794

0.315 0.984 0.540 0.383 0.815

0.254 0.988 0.55 0.350 0.843

0.386 0.967 0.405 0.360 0.848
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0.019 in one instance. In cases where the AUC values were above the benchmark, the highest increase observedwas 0.04. Moreover, the AUC

value was consistently superior to the PepNN-Seq model on all datasets. Refer to Table S1 for detailed data.
Performance enhancement in modeling through pre-trained pLMs

In our advanced PepCAmodel, we utilized ESM-2, a state-of-the-art pLM, for pre-training to encode protein sequences into high-dimensional

matrices. This integration is pivotal for capturing the complex biological nuances inherent in protein structures.39–41 Known for its deep

learning prowess in handling large-scale protein datasets, the model infuses our system with a comprehensive understanding of protein dy-

namics and interactions. As illustrated in Figure 3, the performance of the PepCAmodel using the ESM-2 pre-trainedmodel significantly sur-

passes that of its counterparts without this enhancement. Ablation studies comparing models with and without this pre-training revealed a

substantial performance enhancement, attributable to the model’s robust ability to distill and incorporate rich biological information.

Although excellent in encoding protein sequences, a decline in overall performance was observed when themodel was used to encode pep-

tide sequences as well. This may be due to its training primarily on protein databases, and the inherent differences between protein and pep-

tide sequences hindering its effectiveness in capturing peptide features.
The advent of PepCA and its superiority over single protein sequence prediction methods

One of the improvements of our model is the ability to input protein and peptide sequences simultaneously, which enables the model to

identify the binding sites when the same protein interacts with different peptides. This advancement effectively addresses the limitations

observed in single-protein sequence models, including the previously utilized PepBCL framework. As illustrated in Figure S1, the model’s

capability is exemplified by analyzing the protein 6J8F_B (chain B in 6J8F) in complex with peptides 6J8F_A (chain A in 6J8F) and 6J8F_C

(chain C in 6J8F). Notably, while there are overlapping regions in the binding sites, the majority of interactions are distinct, predominantly

occurring at the respective binding sites of each peptide. In the protein-peptide complex designated as 6TYT, analogous outcomes were

observed. These results illustrate the effectiveness of ourmodel in dealingwith the interaction dynamics between single proteins andmultiple

peptides.
Evaluation of PepCA model performance using random and natural peptide sequences

In this study, we assessed the capability of the PepCAmodel to predict peptide-binding sites using peptides of random lengths less than 30

amino acids (based on TS125 and TS639) as input sequences. Our findings demonstrate that themodel exhibits enhanced performance when

provided with natural peptide sequences as opposed to random sequences. Furthermore, comparative analysis with the PepBCL model,

which solely outputs protein sequences, indicated that PepCA’s performance is comparable or superior when random peptides are input,
iScience 27, 110850, October 18, 2024 5



Figure 2. Comparative analysis of PepCA and two similar models across four benchmark datasets

(A) ROC curves on all residues in the dataset using predictions from PepCA, PepNN-Seq, and PepBCL trained on dataset TS092.

(B) ROC curves on all residues in the dataset using predictions from PepCA, PepNN-Seq, and PepBCL trained on dataset TS251.

(C) ROC curves on all residues in the dataset using predictions from PepCA, PepNN-Seq, and PepBCL trained on dataset TS639.

(D) ROC curves on all residues in the dataset using predictions from PepCA, PepNN-Seq, and PepBCL trained on dataset TS125.

(E) Comparison of the distribution of AUCs on different input proteins using predictions from PepCA, PepNN-Seq, and PepBCL trained on four different datasets.

(F) Comparative analysis of the PepCA, PepNN-Seq, and PepBCL effects on a specific protein randomly selected from the TS092 test set, PDB ID is 6ICA.
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as evidenced by results on the TS639 and TS125 datasets. Collectively, these results suggest that while PepCA maintains a commendable

performance advantage in scenarios where peptide sequences binding to proteins are unknown, the accuracy of the model is improved

by using defined natural peptide sequences. For detailed results, refer to Table 3.
Model interpretability through attention mechanism comparative analysis with molecular dynamics

The experimental findings demonstrate that the proposed model is highly effective in predicting protein-peptide binding residues, as evi-

denced by its commendable 70% overlap in the top 10 residues identified through attention scores for 6RMV_A_C and those obtained

from molecular dynamics simulations (Table S2). Molecular dynamics simulations reveal key residues based on their dynamic interactions

and stability within the protein-peptide complex, indicating their central role in maintaining the structural integrity and facilitating the binding

process. This significant congruence highlights the model’s ability to not only capture the abstract patterns of sequence but also to align its

learning with biologically relevant interactions such as hydrogen bonds, electrostatic interactions, and hydrophobic contacts, which are crit-

ical for the biological function of the complex. By assigning high attention scores to many of the same residues pinpointed as crucial by mo-

lecular dynamics, our model underscores its utility in practical applications like drug design and protein engineering. Furthermore, this over-

lap acts as a validation of our model’s effectiveness and provides an insightful glimpse into the ‘‘black box’’ of deep learning, illustrating how

the attention mechanism within the model prioritizes biologically significant regions, thus offering a clearer understanding of how such

models can be interpretatively and reliably applied to complex biological data.
DISCUSSION

In our study, we present PepCA, a multi-input neural network for accurately predicting protein-peptide binding sites. PepCA processes both

protein and peptide sequences through integrated inputs, outperforming existing models like PepNN-Seq18 and PepBCL.21 Our model
6 iScience 27, 110850, October 18, 2024



Figure 3. Comparison of model effects with and without ESM-2 pre-trained model in three datasets

(A) ROC curves on all residues in the dataset TS092.

(B) ROC curves on all residues in the dataset TS251.

(C) ROC curves on all residues in the dataset TS639.
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employs ESM-232 for feature extraction, which is trained on protein structure data. As such, ESM-2 is capable of effectively extracting structural

features directly from protein sequences. This enables PepCA to utilize structural features of proteins solely from sequence information. Our

model combines the advantages of structure-based and sequence-based methods, overcoming their individual limitations. However, it is

imperative to note that, despite our model’s commendable performance in sequence-based end-to-end methodologies, it exhibits certain

limitations when compared to structurally focused approaches like PepNN-Struct18 and predictionmethods that utilize tools like DSSP,42 such

as DeepProSite.43 Specifically, in the context of the TS639 dataset, the respective AUC values for these twomethods stand at 0.838 and 0.861,

underscoring a comparative disadvantage of our model. This comparative shortfall in our model’s performance can be attributed to its reli-

ance on extracting features solely from protein and peptide sequences. Currently, this method of feature extraction is not the most accurate,

as it overlooks the intricacies of protein and peptide structures. On the other hand, approaches that obtain detailed protein and peptide

structures and employ tools like DSSP, though demonstrably more precise, are markedly expensive and time-consuming. This trade-off be-

tween accuracy and efficiency is a significant consideration in the development and application of computational models in proteomics.

PepCA’s design, featuring sequence embedding, encoder, decoder, and the multihead coattention module compute precise residue-level

binding probabilities, enhanced by pre-training with ESM-2. This integration of advanced deep learning and multi-input data processing

marks a significant progression in computational biology and bioinformatics. PepCA’s interpretability is a key aspect, aligning its attention

scores with molecular dynamics results to understand binding mechanisms. This approach moves beyond the ‘‘black box’’ nature of many

deep learning models, offering insights into protein-peptide interactions. PepCA not only predicts binding sites with high accuracy but

also advances our understanding of these complex interactions.

The model’s potential in drug development and biomolecular research is notable, particularly in designing peptide-based therapeutics.

PepCA’s interpretability, demonstrated through attention score visualization and alignment with molecular dynamics, sheds light on binding

patterns, enhancing the field of bioinformatics.

In conclusion, PepCA sets a new standard in protein-peptide interaction prediction by integrating sequence and structural data with

advanced deep learning techniques. Future research could extend this model to accommodate more peptide and protein types, further

advancing protein science.
Limitations of the study

This study introduces an innovative model for predicting protein-peptide interactions. However, it faces limitations, such as potential gener-

alizability issues with atypical protein structures; dependence on high-quality sequence data; computational resource intensity; lack of

consideration for dynamic protein conformational changes; and challenges in model interpretability and scalability to large datasets or
Table 3. Comparison of natural peptides and random peptides

Test dataset Model Sensitivity Specificity Precision MCC AUC

TS639 PepBCL21

PepCA (random peptides)

0.252 0.983 0.470 0.312 0.804

0.391 0.939 0.279 0.282 0.805

PepCA 0.399 0.945 0.343 0.302 0.826

TS125 PepBCL21

PepCA (random peptides)

PepCA

0.315 0.984 0.540 0.383 0.815

0.307 0.977 0.439 0.337 0.820

0.386 0.967 0.405 0.360 0.848
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proteome-wide analyses. Additionally, the reliance on sequences sourced from the PDB rather than full-length native sequences in this study,

due to some sequences without structure information in the PDB, needs to be considered in the future study.
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� Any additional information required is available from the lead contact upon request.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science Foundation of China (U23A6012, 82072818) and the Science and Technology Development Fund
Macau SAR (file no. 006/2023/SKL).

AUTHOR CONTRIBUTIONS

J.W., Y.L., and J.H. conceived the concept. Y.L. and J.H. designedmethodology and performed the experiments. J.H. and H.Z. conducted the coding and trained
themodels. J.H., W.L., B.X., and C.Z. analyzed the results. J.W. and Y.L. supervised the entire project. J.H. andW.L. wrote the initial draft of the paper. All authors
contributed to the revision of the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE
d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
B Trainning
d METHOD DETAILS

B Peptide sequence embedding module
B Protein sequence embedding module with ESM-2
B Transformer-based encoder with multihead coattention
B Transformer-based decoder with crossattention
B MD simulations

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.110850.

Received: April 16, 2024

Revised: June 13, 2024

Accepted: August 27, 2024

Published: August 30, 2024
REFERENCES

1. Rubinstein, M., and Niv, M.Y. (2009). Peptidic

modulators of protein-protein interactions:
progress and challenges in computational
design. Biopolymers 91, 505–513.

2. Pawson, T., and Nash, P. (2003). Assembly of
cell regulatory systems through protein
interaction domains. Science 300, 445–452.

3. Zhang, Q.C., Petrey, D., Deng, L., Qiang, L.,
Shi, Y., Thu, C.A., Bisikirska, B., Lefebvre, C.,
Accili, D., Hunter, T., et al. (2012). Structure-
8 iScience 27, 110850, October 18, 2024
based prediction of protein–protein
interactions on a genome-wide scale. Nature
490, 556–560.

4. Lau, J.L., and Dunn, M.K. (2018). Therapeutic
peptides: Historical perspectives, current
development trends, and future directions.
Bioorg. Med. Chem. 26, 2700–2707.

5. Lee, A.C.-L., Harris, J.L., Khanna, K.K., and
Hong, J.-H. (2019). A comprehensive review
on current advances in peptide drug
development and design. Int. J. Mol. Sci.
20, 2383.

6. Muttenthaler, M., King, G.F., Adams, D.J.,
and Alewood, P.F. (2021). Trends in peptide
drug discovery. Nat. Rev. Drug Discov. 20,
309–325.

7. Raveh, B., London, N., Zimmerman, L., and
Schueler-Furman, O. (2011). Rosetta
flexpepdock ab-initio: simultaneous folding,

mailto:wangjun@icarbonx.com
https://github.com/cloudaner115/PepCA
https://github.com/cloudaner115/PepCA
https://github.com/cloudaner115/PepCA
https://doi.org/10.1016/j.isci.2024.110850
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref1
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref1
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref1
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref1
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref2
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref2
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref2
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref3
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref3
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref3
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref3
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref3
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref3
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref4
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref4
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref4
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref4
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref5
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref5
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref5
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref5
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref5
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref6
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref6
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref6
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref6
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref7
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref7
http://refhub.elsevier.com/S2589-0042(24)02075-3/sref7


ll
OPEN ACCESS

iScience
Article
docking and refinement of peptides onto
their receptors. PLoS One 6, e18934.

8. Dominguez, C., Boelens, R., and Bonvin,
A.M.J.J. (2003). HADDOCK: a protein- protein
docking approach based on biochemical or
biophysical information. J. Am. Chem. Soc.
125, 1731–1737.

9. Saladin, A., Rey, J., Thévenet, P., Zacharias,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Dataset in this paper This paper https://github.com/cloudaner115/PepCA

Software and algorithms

Python Python Software Foundation https://www.python.org/

PyTorch PyTorch Foundation https://pytorch.org/

Pandas AQR Capital Management https://pandas.pydata.org/

PepCA This paper https://github.com/cloudaner115/PepCA
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Trainning

Training was done using an AdamWoptimizer with a learning rate of 1e-6 during the pre-training and fine-tuning of PepCA, on an Nvidia A10

GPU. A weighted cross-entropy loss was optimized to take into account the fact that the training dataset is skewed towards non-binding

residues.
METHOD DETAILS

Peptide sequence embedding module

In computational proteomics, converting peptide sequences into a numerical format, known as ‘integer encoding’, is crucial. This involves

assigning a unique integer to each amino acid, typically in alphabetical order. For example, in the sequence ‘ACD’, ‘A’ (Alanine) is encoded

as 1, ‘C’ (Cysteine) as 2, and ‘D’ (Aspartic acid) as 3. This method transforms complex peptide structures into a standardized numerical format,

enabling the application of advanced computational models, like machine learning, to analyze and predict peptide structures and functions

more effectively.
Protein sequence embedding module with ESM-2

Our protein coding approach uses the 650million parameter ESM-232 protein languagemodel (pLM) developed at Meta AI. This architecture

facilitates the characterization of protein sequences, eliminating the need to generateMSAs. ESM-2 represents a cutting-edge deep learning

model specifically tailored for protein sequence encoding and interpretation. Trained on a vast dataset of protein sequences, it captures

evolutionary relationships and structural features between proteins. In protein encoding, ESM-2 transforms protein sequences into rich,

high-dimensional representations that encapsulate biological characteristics and functional information of the sequences.
Transformer-based encoder with multihead coattention

In this study, we introduce a approach for processing protein and peptide sequences, distinct from traditional attention mechanisms, termed

multihead coattention. This method enables parallel processing of two different types of input data: protein sequences and peptide se-

quences. The core architecture of multihead coattention is based on the coattention module. Coattention31 is a widely used technique in

deep learning for handlingmultiple input sources, representing a variant of the attentionmechanismdesigned tomodel two ormore different

inputs or data sources concurrently. This approach has demonstrated significant potential in fields such as natural language processing, com-

puter vision, and multi-input learning.

In our research, the multihead coattention method is specifically tailored for handling interactions between protein and peptide se-

quences. The method encompasses the following key steps: Firstly, features are extracted from each input source, namely protein and pep-

tide sequences. Subsequently, the similarity or association between the features of these different input sources is computed. Finally, based

on the computed similarity matrix, attention weights are generated to weight the input features. This weighting mechanism enables us to

effectively focus on those sequence regions that are particularly important for the interaction between proteins and peptides, thereby

enhancing the accuracy of predicting protein-peptide interactions. The coattention mechanism is described as follows:

8>><
>>:

Prot = Prot seqWProt

Pep = Pep seqWPep

Vprot = Prot seqWVprot

Vpep = Pep seqWVpep

(Equation 1)
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Similarity = Prot$Pep (Equation 2)
Attentionprot = softmax

�
Similarityffiffiffiffiffi

dk

p
�
Vpep (Equation 3)
Attentionpep = softmax

�
SimilarityTffiffiffiffiffi

dk

p
�
Vprot (Equation 4)

In this framework, Prot seq˛RLprot3dmodel represents the protein matrix encoded by a pre-trained model, and Pep seq˛RLpep3dmodel denotes

the peptidematrix encoded by the encoding layer. Subsequently, they are individually transformed through the linear layersWProt andWPep,

yielding newmatrices Prot˛RLprot3dk and Pep˛RLpep3dk for proteins and peptides, respectively. Concurrently, they are processed through the

linear layers WVprot and WVpep respectively, resulting in the protein value matrix Vprot ˛RLprot3dv and the peptide value matrix Vpep ˛ RLpep3dv .

Using the multihead coattention method, we can fuse the embedding vectors of protein and peptide to get better results.

Transformer-based decoder with crossattention

The cross-attentionmechanism plays a pivotal role in our model, facilitating the interaction between the protein sequencematrix, denoted as

Q, and the peptide sequence matrix, referred to as KV . This mechanism is integral to capturing the interdependencies between these two

distinct biological sequences. The process can be mathematically formulated as follows:

Crossattention
�
Prot;Pep; Pep

�
= softmax

�
ProtPepTffiffiffiffiffi

dk

p
�
Pep (Equation 5)

Here, the matrix Prot represents the encoded representations of the protein sequences, whereas Pep embodies the combined key (Pep) and

value (Pep) matrices, encoding the peptide sequences. The attention mechanism computes the dot product of the query Prot with the trans-

pose of the key Pep, followed by scaling the result with the square root of the dimension of the key space (
ffiffiffiffiffiffi
dk

p
). This scaling is crucial for

stabilizing the gradients during training, particularly when the dimensionality is high.

The resultantmatrix is then passed through a softmax layer to obtain the attention weights, ensuring that they sum to one and highlight the

most relevant features in the peptide sequenceswith respect to the protein queries. Finally, theseweights are applied to the valuematrix Pep,

producing an output that is a weighted sum of the values based on the alignment between the protein and peptide sequences.

This cross-attention module is a critical component of our architecture, enabling the model to dynamically focus on specific parts of the

peptide sequences that are most relevant to a given protein sequence. Such a mechanism is instrumental in learning the complex relation-

ships and interactions between proteins and peptides, which is a fundamental aspect of our study.

MD simulations

The X-ray co-crystal structures of system in this study was extracted from PDB database (PDB ID: 6RMV). The LEaP program form

AMBERTOOLS package was used to complement all absent hydrogen atoms of initial structures, and counter ions were added to insure

the entire neutrality of this system. Finally, a truncated octahedral TIP3P water box was centered around the protein with 10 Ådistance.

MD simulations for the studied systemwas performed using theGROMACS2021 program. Prior toMD simulations, this systemwas subjected

to energy minimization process that contains a 5000 steps of steepest descent minimization followed by 5000 steps of conjugate gradient

minimization. In the second, this system was heated gradually from 0 to 300 K in 500 ps. Third, each system was subjected to an equilibrium

process for 1 ns under NPT ensemble. Then, the MD simulations for the studied system was preformed under NPT ensembles with periodic

boundary conditions and 2 fs step time for 1000 ns. The data obtained from MD simulation was analyzed by CPPTRAJ module embedded in

AMBERTOOLS. Figures in this study were generated with PyMOL and Chimera. The binding free energies (DGbind) for this system was

computed using MM-PBSA method implemented in AMBERTOOLS with the following equations:

DGbind = Gcomplex � Gprotein � Gligand (Equation 6)
G = EMM +Gsol � TS (Equation 7)
EMM = Eint +Eele +Evdw (Equation 8)
DGsol = GPB +GSA (Equation 9)

Gprotein, Gligand, and Gcomplex in Equation 6 represent the free energy of the protein, ligand, and the protein-ligand complex, respec-

tively. EMM, Gsol, and TS in Equation 7 represent the components of molecular mechanics in gas phase, the stabilization energy on account

of solvation, and a vibrational entropy term, respectively. Eint, Eele, and Evdw are on behalf of the internal, Coulomb, and van der Waals

interaction term, respectively. EMM is the sum of the terms of Eint, Eele, and Evdw. GPB and GSA are the polar and nonpolar contributions

of the solvation free energy (DGsol). GPB computed using the Poisson-Boltzman (PB) model, whereas GSA is calculated on account of the

solvent accessible surface area (SASA). In order to gain a detailed understanding of the interactions between protein with the ligand peptide,
iScience 27, 110850, October 18, 2024 11
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the MM-PBSA decomposition analysis was applied to decompose the total binding free energy into ligand-residue pairs. Based on the

decomposition energy results, all residues contributing smaller than -1 kcal/mol were considered as key residues.
QUANTIFICATION AND STATISTICAL ANALYSIS

In Figure 2E, we employed the T-test to conduct a differential analysis between PepCA and two other comparative methods. The sample

sizes, denoted as ‘n’, for these tests were 92, 251, 639, and 125, respectively, corresponding to the number of complexes in the test set.

We considered the differences to be statistically significant when the p-values were less than 0.05.
12 iScience 27, 110850, October 18, 2024
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