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Age is a recognized risk factor for amyotrophic lateral sclerosis (ALS), a paralytic
disease characterized by progressive loss of motor neurons and neuroinflammation.
A hallmark of aging is the accumulation of senescent cells. Yet, the pathogenic role
of cellular senescence in ALS remains poorly understood. In rats bearing the ALS-
linked SOD1G93A mutation, microgliosis contribute to motor neuron death, and its
pharmacologic downregulation results in increased survival. Here, we have explored
whether gliosis and motor neuron loss were associated with cellular senescence in
the spinal cord during paralysis progression. In the lumbar spinal cord of symptomatic
SOD1G93A rats, numerous cells displayed nuclear p16INK4a as well as loss of nuclear
Lamin B1 expression, two recognized senescence-associated markers. The number
of p16INK4a-positive nuclei increased by four-fold while Lamin B1-negative nuclei
increased by 1,2-fold, respect to non-transgenic or asymptomatic transgenic rats.
p16INK4a-positive nuclei and Lamin B1-negative nuclei were typically localized in a
subset of hypertrophic Iba1-positive microglia, occasionally exhibiting nuclear giant
multinucleated cell aggregates and abnormal nuclear morphology. Next, we analyzed
senescence markers in cell cultures of microglia obtained from the spinal cord of
symptomatic SOD1G93A rats. Although microglia actively proliferated in cultures, a
subset of them developed senescence markers after few days in vitro and subsequent
passages. Senescent SOD1G93A microglia in culture conditions were characterized
by large and flat morphology, senescence-associated beta-Galactosidase (SA-β-Gal)
activity as well as positive labeling for p16INK4a, p53, matrix metalloproteinase-1
(MMP-1) and nitrotyrosine, suggesting a senescent-associated secretory phenotype
(SASP). Remarkably, in the degenerating lumbar spinal cord other cell types,
including ChAT-positive motor neurons and GFAP-expressing astrocytes, also displayed
nuclear p16INK4a staining. These results suggest that cellular senescence is closely
associated with inflammation and motor neuron loss occurring after paralysis onset
in SOD1G93A rats. The emergence of senescent cells could mediate key pathogenic
mechanisms in ALS.

Keywords: microglia, ALS, senescence, astrocytes, motor neurons, aging, SASP

Frontiers in Aging Neuroscience | www.frontiersin.org 1 February 2019 | Volume 11 | Article 42

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2019.00042
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2019.00042
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2019.00042&domain=pdf&date_stamp=2019-02-28
https://www.frontiersin.org/articles/10.3389/fnagi.2019.00042/full
http://loop.frontiersin.org/people/121375/overview
http://loop.frontiersin.org/people/690944/overview
http://loop.frontiersin.org/people/690869/overview
http://loop.frontiersin.org/people/690864/overview
http://loop.frontiersin.org/people/690879/overview
http://loop.frontiersin.org/people/656952/overview
http://loop.frontiersin.org/people/181738/overview
http://loop.frontiersin.org/people/652525/overview
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00042 February 26, 2019 Time: 15:10 # 2

Trias et al. Microglial Senescence in ALS

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is an adult-onset
neurodegenerative disease characterized by progressive
upper and lower motor neuron degeneration, leading to
muscle weakness and paralysis (Tsai et al., 2017). Although
the etiology of ALS remains unknown, age is considered the
strongest independent risk factor, most patients being diagnosed
between the ages of 50 and 85 (Kiernan et al., 2011). ALS is
also characterized by the ineluctable progression of motor
deficits, with a variable but short survival of about 20 months
(Hardiman et al., 2017). Age of diagnosis is also considered a
strong predictor of survival, with hazard ratios progressively
increasing each decade for individuals older than 50 years
(Crockford et al., 2018). Age-dependence of motor phenotypes
has also been described in rodent and fly models (Iguchi et al.,
2013; Sreedharan et al., 2015), further supporting ALS as an
aging-related condition.

Various studies indicate that motor neuron degeneration in
ALS is often associated with increased oxidative and nitrative
damage, mitochondrial dysfunction, ER-stress, defective RNA
processing, and protein homeostasis (Cassina et al., 2008; Morgan
and Orrell, 2016). In parallel, glial cells also become activated,
proliferate and display inflammatory features characteristic of
gliosis (Philips and Rothstein, 2014; Trias et al., 2018a). These
kinds of cellular stresses combined with DNA damage or strong
mitogenic signaling in vulnerable cells have the potential to
induce cellular senescence (Rodier et al., 2009), a basic and
heterogenous mechanism by which damaged cells adapt to
maintain survival and prevent potentially deleterious expansion
or oncogenic transformation during aging (Munoz-Espin and
Serrano, 2014). A fundamental feature of cellular senescence is
the arrest of the cell cycle through p16INK4A-mediated pathway,
which is usually associated with p53 nuclear expression (Prieur
et al., 2011). p53 becomes activated in response to a variety
of cellular stressors including DNA damage and oxidative
stress leading to an increased half-life of the p53 protein,
phosphorylation and nuclear translocation. In turn, nuclear p53
can function as a transcription factor to regulate the cell cycle,
apoptosis, genomic stability or senescence response (Rufini et al.,
2013). Nuclear expression of p16INK4A is considered a robust
molecular marker of cellular aging, as its expression increases in
a variety of aged tissues (Baker et al., 2011). Another remarkable
senescence-associated marker is the loss of nuclear Lamin B1
(Freund et al., 2012), which together with other lamins, is
essential to maintain nucleus stability, size and shape (Dechat
et al., 2008). The loss of nuclear Lamin B1 in particular is
recognized as a senescence marker, functionally associated with
the induction of p16INK4A and p53 (Freund et al., 2012).

In addition, senescent cells develop profound phenotypic
and functional changes, including an increase in senescence-
associated beta-galactosidase (SA-β-Gal) activity, reflecting an
increased number of lysosomes (Dimri et al., 1995). In
addition, senescent cells enlarge and flatten with a tendency
to form multinucleated cell aggregates (Leikam et al., 2015),
accumulate oxidative and nitrative damage (Lamoke et al.,
2015) and typically display a senescent-associated secretory

phenotype (SASP) (Tchkonia et al., 2013), releasing trophic
factors, pro-inflammatory signaling molecules, extracellular
matrix components and proteases (Rodier et al., 2009). Recent
evidence indicate cells expressing senescence markers contribute
to the chronic inflammatory environment and progressive
degeneration in different tissues from aged animals (Childs et al.,
2015), thus acquiring pathogenic significance.

Previous studies in neurodegenerative conditions show that
the emergence of glial and neuronal senescent phenotypes
displaying inflammatory features contribute to synaptic and
neuronal loss (Arendt et al., 1996; Frost, 2016), with the
senescence marker p16INK4a being frequently found in a
subpopulation of astrocytes (Bhat et al., 2012). In accordance,
a senescence phenotype in human astrocytes can be induced
by toxic species of amyloid beta in cell cultures (Bhat et al.,
2012). Also, brain astrocytes bearing senescence markers have
been identified in normal aging and disease conditions (Salminen
et al., 2011; Chinta et al., 2013). Both in ALS animal models
and patients, aged astrocytes develop senescence markers such
as p16INK4A, p53, p21, and SA-β-gal, becoming toxic for motor
neurons (Martin, 2000; Das and Svendsen, 2015; Turnquist
et al., 2016), suggesting a causal pathogenic role in mediating
motor neuron loss. To what extent activated microglia follow
senescence-associated phenotypes during the course of paralysis
progression in ALS remains to be analyzed.

Microgliosis is a recognized pathological feature in ALS
patients (Brettschneider et al., 2012). Extensive microglia
activation has also been described in transgenic rodent models
of inherited ALS carrying SOD1 mutations (Lewis et al., 2014).
In SOD1G93A rats, the rapid spread of paralysis is associated
with marked microglial cell activation in the surroundings of
motor neurons, leading to the emergence of aberrant phenotypes
including astrocyte-like hypertrophic cells and giant multicellular
clusters (Fendrick et al., 2007; Diaz-Amarilla et al., 2011; Trias
et al., 2013). Activated microglia expressing mutant SOD1 in
ALS have the potential to induce motor neuron death (Liao
et al., 2012; Frakes et al., 2014). Removal of mutant SOD1
transgene from microglia and neurons significantly increases
survival in of SOD1G37R mice (Boillee et al., 2006). The unique
nature of microglia with the potential for self-renewal and
telomere shortening led to the hypothesis that these cells can
exhibit senescence (Eitan et al., 2014; Caldeira et al., 2017).
Age-dependent and senescence-driven impairments of microglia
functions and responses have been suggested to play essential
roles during the onset and progression of neurodegenerative
diseases (Luo et al., 2010; Spittau, 2017). However, it remains
unknown whether deleterious gliosis and phenotypically aberrant
glia in ALS are causally associated with the emergence of
senescent cells in the degenerating spinal cord.

In this study, we analyzed the expression of senescence
markers in the spinal cord and primary cultures of microglia
from adult SOD1G93A rats. In an attempt to determine the
relationship between the emergence of senescent glia phenotypes
and progressive motor neuron loss, we analyzed senescence
markers at disease onset and then at advanced paralysis, a
time period of only 2 weeks while rapid paralysis develops in
SOD1G93A rats.
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MATERIALS AND METHODS

Animals and Study Approval
All procedures using laboratory animals were performed in
accordance with the international guidelines for the use of live
animals and were approved by either the Oregon State University
Institutional Animal Care Use Committee or for experiments
performed in Uruguay in strict accordance with the requirements
of the Institut Pasteur de Montevideo Bioethics Committee
under the ethical regulations of the Uruguayan Law N◦ 18.611
governing animal experimentation. Uruguayan law follows the
Guide for the Care and Use of Laboratory Animals of the National
Institutes of Health (United States). Male hemizygous NTac:SD-
TgN(SOD1G93A)L26H rats (Taconic), originally developed by
Howland et al. (2002), were bred locally by crossing with wild-
type Sprague–Dawley female rats. Male SOD1G93A progenies
were used for further breeding to maintain the line. Rats were
housed in a centralized animal facility with a 12-h light-dark cycle
with ad libitum access to food and water. Symptomatic disease
onset was determined by a periodic clinical examination for
abnormal gait, typically expressed as subtle limping or dragging
of one hind limb. Rats were killed well before they reached the
end stage of the disease.

Experimental Conditions
At least three male rats were analyzed for each experiment. Four
different conditions were studied as follow: (1) non-transgenic
(NonTg) rats of 160–180 days; (2) transgenic SOD1G93A rats
of 125–135 days (asymptomatic); (3) transgenic SOD1G93A rats
of 170–180 days (onset); and (4) transgenic SOD1G93A rats of
190–200 days (symptomatic 15d paralysis).

Determination of Disease Onset and
End-Stage
As described previously (Trias et al., 2017), all rats were
weighed and evaluated for motor activity daily. Disease onset was
determined for each animal when pronounced muscle atrophy
was accompanied by abnormal gait, typically expressed as subtle
limping or dragging of one hind limb. When necessary, end-
stage was defined by a lack of righting reflexes or the inability to
reach food and water.

Immunohistochemical Staining of Rat
Spinal Cords
Animals were deeply anesthetized and perfused transcardially
with 0.9% saline and 4% paraformaldehyde in 0.1 M PBS (pH
7.2–7.4) at a constant flow of 1 mL/min. The fixed spinal cord
was removed, post-fixed by immersion for 24 h, and then cut into
transverse serial 25 µm sections with a cryostat. Serial sections
were collected in PBS for immunohistochemistry. Free-floating
sections were permeabilized for 30 min at room temperature
with 0.3% Triton X-100 in PBS, passed through washing buffered
solutions, blocked with 5% BSA:PBS for 1 h at room temperature,
and incubated overnight at 4◦C in a solution of 0.3% Triton
X-100 and PBS containing the primary antibodies overnight at
4◦C. After washing, sections were incubated in 1:1000-diluted

secondary antibodies during 3 h at room temperature. Using a
stereological approach, p16INK4a-positive nuclei, Iba1-/p16INK4a-
positive cells, Lamin B1/DAPI and ChAT-/p16INK4a-positive cells
were counted in 25-µm spinal cord sections using confocal
microphotograph with a magnification of 25×. At least 15
sections per spinal cord were analyzed (n = 3). ImageJ software
was used for analysis. For p53 quantification in the spinal
cord, p53 density was measured using ImageJ. At least five
sections per animal were analyzed (n = 3) as previously described
(Trias et al., 2018b).

Antibodies Used
Primary antibodies: 1:200 mouse monoclonal anti-
CDKN2A/p16INK4a (abcam, #ab54210), 1:300 rabbit polyclonal
anti-p53 (abcam, #ab131442), 1:400 rabbit polyclonal anti-MMP-
1 (Novus Biologicals, #NBP1-72209), 1:300 mouse monoclonal
anti-Iba1 (Merck, #MABN92), 1:400 muse monoclonal anti-
CD68 (abcam, #ab31630), 1:400 rabbit polyclonal anti-ChAT
(Merck, #AB143), 1:500 rabbit polyclonal anti-GFAP (Sigma,
#G9269), 1:300 mouse monoclonal anti-S100β (Sigma, #S2532),
1:250 rabbit polyclonal anti-Lamin B1 (abcam, #ab16048), 1:300
mouse monoclonal anti-misfolded SOD1 B8H19 (Medimabs, #
MM-0070-P), and 1:250 rabbit polyclonal anti-Nitro tyrosine
(abcam, #ab42789). Secondary antibodies: 1:500 goat anti-rabbit-
AlexaFluor488 or AlexaFluor546 (Thermo Fisher Scientific,
#A11035 or #A11034), 1:500 goat anti-mouse-AlexaFluor488,
AlexaFluor546 or AlexaFluor633 (Thermo Fisher Scientific,
#A11029, #A11030, or #A21052).

Microglia Cell Culture From Adult
Symptomatic SOD1G93A Rats
Microglia cells were isolated from adult symptomatic SOD1G93A

rats as previously described with slight modifications (Trias
et al., 2013). Rats were terminally anesthetized and the spinal
cords were dissected with the meninges carefully removed. The
cords were mechanically chopped then enzymatically dissociated
in 0.25% trypsin for 10 min at 37◦C. Fetal Bovine Serum
(FBS) 10% (vol/vol) in Dulbecco’s Modified Eagle Medium
(DMEM) was then added to halt trypsin digestion. Repetitive
pipetting thoroughly disaggregated the tissue, which was then
strained through an 80-µm mesh and spun down. The pellet
was re-suspended in culture medium [DMEM + FBS 10%
(vol/vol), HEPES buffer (3.6 g/mL), penicillin (100 IU/mL),
and streptomycin (100 µg/mL)] and plated in glass-bottom
p35 culture dishes for confocal microscopy or 25-cm2 tissue
culture flasks for flow cytometry analysis. Culture medium was
replaced every 48 h.

Analysis of Aberrant Glial Cells After
Phenotypic Transformation
As previously characterized (Trias et al., 2013), primary adult
microglia isolated from symptomatic SOD1G93A rats transitioned
into aberrant glial cells after 12–15 days in culture. These aberrant
glial cells can be maintained in culture for several passages (Diaz-
Amarilla et al., 2011). In the present study, passages 2–4 of
aberrant glial cells maintained in vitro (DMEM-10% FBS) in
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glass-bottom p35 culture dishes for several days were analyzed
for different senescent markers.

Senescence-Associated-
β-Galactosidase (SA-β-Gal) Activity in
Cell Cultures
Protocol for β-galactosidase staining was followed as described
by manufacturer cell staining kit (Cell Signaling, #9860). Briefly,
growth media was removed from the cells and washed with
PBS. The 1X fixative solution was added for 15 min at room
temperature. After two PBS washes, 1 mL of β-galactosidase
staining solution was added overnight at 37◦C in a dry incubator.
After blue color was developed, β-galactosidase staining solution
was removed and plates were mounted using 70% glycerol for
long-term storage at 4◦C. Both microglia and aberrant glial cells
were analyzed at different time points during 12 days. 10×,
20×, and 100× images were acquired using an Olympus CX41
microscope connected to a EvolutionTMLC Color camera and
using ImagePro Express software for acquisition. At least 10
fields per plate were acquired for quantitative analysis using
ImageJ software.

Immunocytochemical Staining of
Cultured Cells
Cultured cells were fixed with 4% PFA for 20 min at 4◦C and then
were washed three times with 10 mM PBS (pH 7.4). Cells were
permeabilized using 0.3% Triton-X100 for 20 min. Nonspecific
binding was blocked by incubating fixed cells with 5% BSA in PBS
for 1 h at room temperature. Corresponding primary antibodies
were diluted in blocking solution and incubated 3 h at room
temperature. After washing, cells were incubated with secondary
antibodies in blocking solution for 1 h at room temperature.
For p16INK4a and p53 staining, cells were permeabilized using
2M HCl solution during 15 min at room temperature before
incubation with blocking solution. DAPI was used for nuclei
staining. At least 10 fields per plate were acquired in a confocal
microscope for quantitative analysis using ImageJ software.

Flow Cytometry of Senescence-
Associated-β-Galactosidase (SA-β-gal)
Activity
After 12 days in vitro, microglia were quantitatively analyzed for
SA-β-Gal activity. Briefly, cells were treated with Bafilomycin A1
to inhibit lysosomal acidification, followed by incubation with
C12FDG (Molecular Probes/Life Technologies), a fluorogenic
substrate for β-galactosidase for 2 h at 37◦C with 5% CO2.
Microglia were then rinsed with PBS, harvested by trypsinization,
centrifuged, and re-suspended in ice-cold PBS. Cells were
immediately run on a Beckman-Coulter FC500 flow cytometer.
Data were analyzed using Winlist (Verity Software).

Flow Cytometry of Cell Cycle
Progression
Cells were trypsinized, washed, and centrifuged. The cell pellet
was then resuspended in ice-cold 70% ethanol and incubated

at −20◦C for 30 min for fixation. Subsequently, cells were
washed, centrifuged and re-suspended in 0.1% Triton X-100
in Dulbecco’s Phosphate-Buffered Saline (DPBS). RNase A
(10 µg/mL) and propidium iodide (20 µg/mL) were added and
cells were incubated for 60 min at room temperature. They
were then filtered through a 37-µm mesh and run on Beckman-
Coulter FC500 flow cytometer and analyzed using Multi-Cycle
(Phoenix Software).

Fluorescence Imaging
Fluorescence imaging was performed with a laser scanning Zeiss
LSM 800 confocal microscope with either a 25× (1.2 numerical
aperture) objective or 63× (1.3 numerical aperture) oil-
immersion objective using Zeiss Zen Black software. Maximum
intensity projections of optical sections were created with
Zeiss Zen software.

Statistical Analysis
Quantitative data were expressed as mean ± SEM. Two-tailed
Mann–Whitney test or Kruskal–Wallis followed by Dunn’s
multiple comparison tests were used for statistical analysis, with
p < 0.05 considered significant. GraphPad Prism 7.03 software
was used for statistical analyses.

RESULTS

Expression of Senescence Markers
p16INK4a and Lamin B1 in the Spinal Cord
of SOD1G93A Rats During Paralysis
Progression
Based on a previous report showing an increase of p16INK4a

RNA levels in symptomatic SOD1G93A rats (Das and Svendsen,
2015), we examined the number of p16INK4a-positive nuclei and
Lamin B1 expression in the ventral horn of the lumbar cord
during paralysis progression. Immunohistochemistry analysis
revealed a continuous increase in p16INK4a nuclear expression
in rats expressing mutant SOD1 as compared with non-
transgenic rats (Figure 1A). The number of p16INK4a-positive
nuclei was significantly increased by 2.3-fold and 3.5-fold at
paralysis onset and 15d of paralysis progression, respectively
(graph in Figure 1A).

On the other hand, nuclear levels of Lamin B1 significantly
declined during paralysis progression in SOD1 rats, 1 out of
4 nuclei exhibiting loss of Lamin B1 at 15d post-paralysis
(arrows in Figure 1D), which is significantly different from non-
transgenic and asymptomatic SOD1G93A rats (Figures 1B,D).
Moreover, the decline in Lamin B1 expression and nuclear Lamin
B1 invaginations (asterisk in Figure 1D) were associated with
aberrant nuclear shapes (arrowheads in Figure 1D).

Because cellular senescence is characterized by cell cycle arrest
through p16INK4a- and p53-mediated pathways (Prieur et al.,
2011), we also assessed p53 expression in the lumbar ventral horn.
As shown in Supplementary Figure S1, p53 immunoreactivity
significantly increased in mutant SOD1 rats at paralysis onset
and advanced paralysis with frequent colocalization of p16INK4a
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FIGURE 1 | Progressive change in senescence markers p16INK4a and Lamin B1 during paralysis progression in SOD1G93A rats ventral spinal cord. Representative
confocal images showing the expression of p16INK4a (green) and Lamin B1 (red) by immunohistochemistry in the degenerating spinal cord of SOD1G93A animals and
non-transgenic controls. (A) Progressive increase of the senescence marker p16INK4a staining (green) in nuclei from the ventral horn of the spinal cord in
symptomatic rat during paralysis progression (white dotted lines indicate the separation of white and gray matter). The graph to the right shows the quantitative
analysis of the p16INK4a-positive nuclei in the ventral spinal cord. Data are expressed as mean ± SEM; data were analyzed by Kruskal–Wallis followed by Dunn’s
multiple comparison tests, p < 0.05 was considered statistically significant. Scale bar: 50 µm. (B) Confocal microphotographs showing the staining for nuclear
Lamin B1 (red) as a marker of non-senescent cells among analyzed groups. The graph to the right shows the quantitative analysis of Lamin B1-positive nuclei in the
ventral horn of the spinal cord. Note the progressive loss of nuclear Lamin B1 expression with disease progression. Data are expressed as mean ± SEM; data were
analyzed by Kruskal–Wallis followed by Dunn’s multiple comparison tests, p < 0.05 was considered statistically significant. Scale bar: 50 µm. (C) The confocal
images show co-expression of p16INK4a (green) p53 (red) nuclear staining (white arrows) in the ventral horn of degenerating spinal cord at 15d post-paralysis. The
inset shows the nuclear localization of p53 in a subset of cells. Scale bars: 10 µm. (D) High magnification confocal image showing the loss of nuclear Lamin B1 (red)
expression (white arrows) and Lamin B1 invaginations (asterisks) associated to nuclear misshape. Scale bar: 10 µm.

(Figure 1C). p53 expression levels increased by 1.5- and
2-fold at onset and advanced paralysis, respectively, with
respect to age-matched non-transgenic littermates (Graph in
Supplementary Figure S1).

Nuclear p16INK4a and Lamin B1
Expression in Spinal Cord Microglia
During Paralysis Progression
Next, we analyzed whether p16INK4a and Lamin B1 were
expressed in Iba1-positive microglia, that typically proliferate and
become hypertrophic near spinal motor neurons in symptomatic
SOD1G93A rats (Trias et al., 2013). As shown in Figure 2A,
Iba1-positive microglia express high levels of nuclear p16INK4a

(white arrows) in rats developing paralysis. Compared with non-
transgenic controls, p16INK4a expression at onset and 15d of
paralysis progression significantly increased by 2.6- and 4.8-fold,

respectively (graph in Figure 2A). Remarkably, a high density
of p16INK4a nuclei was identified in multinucleated microglia
clusters (Figure 2B) that are frequently found in the ventral horn
of symptomatic SOD1G93A rats (Fendrick et al., 2007), further
indicating the correlation of senescence with microglia bearing
aberrant phenotypes.

In addition, nuclear expression of Lamin B1 progressively
declined in Iba1-positive cells during advance paralysis.
Figure 2C shows subpopulation of Iba1-positive microglia that
devoid of nuclear Lamin B1 (arrows) coexisting with microglia
displaying normal pattern of Lamin B1 staining (arrowheads).
Furthermore, nuclear Lamin B1 decline was observed in
senescent multinucleated microglia clusters in the lumbar spinal
cord (Figure 2D).

Next, we analyzed whether misfolded SOD1 was associated
with senescent microglia in SOD1 rats. Misfolded SOD1 is a
recognized hallmark of neuronal pathology in ALS linked to
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FIGURE 2 | Nuclear p16INK4a and Lamin B1 expression in microglia during paralysis progression. (A) Confocal representative images showing the expression of the
microglia marker Iba1 (red) and the senescence marker p16INK4a (green) in the non-transgenic, asymptomatic, onset and 15d paralysis SOD1G93A ventral spinal
cord. The upper panels (low magnification) show the significant parallel increase of nuclear p16INK4a in Iba1-positive cells during the symptomatic stage of the
disease as compared with non-transgenic animals or SOD1G93A asymptomatic stage. Lower panels show at high magnification images of p16INK4a-positive swollen
microglia (white arrows) surrounding motor neurons (MTN). The graph below shows the quantitative analysis of the expression of p16INK4a− in Iba1-positive cells.
Note the sharp increase of p16INK4a–positive microglia at 15d post-paralysis. Data are expressed as mean ± SEM; data were analyzed by Kruskal–Wallis followed by
Dunn’s multiple comparison tests, p < 0.05 was considered statistically significant. Scale bars: 50 µm in low magnification panels and 10 µm in high magnification
panels. (B) The confocal microphotograph shows a multinucleated microglia cluster expressing Iba1 (red) in a 15d paralysis rat. These Iba1-positive clusters express
nuclear p16INK4a. Scale bar: 20 µm. (C) Representative confocal microphotograph of the ventral spinal cord showing nuclear Lamin B1 expression in Iba1-positive
cells (arrowheads). Note the loss of Lamin B1 expression in a subpopulation of cells (arrows) at 15d post-paralysis. Scale bar: 20 µm. (D) The confocal
microphotograph shows a cluster of multinucleated microglia where Lamin B1 expression is absent in several nuclei (DAPI) at 15d post-paralysis. Scale bar: 20 µm.
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SOD1 mutations (REF). As shown in Supplementary Figure S2,
misfolded SOD1 was mainly detected in degenerating neuronal
somas and dendrites in symptomatic SOD1G93A rats and was
not observed in non-transgenic or asymptomatic transgenic rats.
However, the presence of misfolded SOD1 in microglia appeared
to correspond to neuronal debris being engulfed by phagocytic
microglia (arrows in Supplementary Figure S2).

Nuclear p16INK4a Staining in a Subset of
Spinal Motor Neurons and Astrocytes
During Advanced Paralysis
Previous reports have shown astrocytes bearing senescent
markers in the spinal cord of symptomatic SOD1G93A rats
(Das and Svendsen, 2015) as well as in post-mitotic neurons
submitted to stress or aging (Jurk et al., 2012). Thus, we
looked for p16INK4a-expressing astrocytes and motor neurons
in the lumbar spinal cord of SOD1G93A rats during onset
and 15d of paralysis progression. As shown in Figure 3A, a
subset of ChAT-positive motor neurons expressed significant
levels of nuclear p16NK4a during the period of rapid motor
neuron loss in advanced paralysis. In comparison, motor neurons
bearing healthy morphology in asymptomatic SOD1G93A rats
were negative to p16NK4a, suggesting senescence develops only
in damaged motor neurons. Nuclear p16INK4a was also observed
in numerous GFAP-positive astrocytes that typically surround
motor neurons in the ventral horn of symptomatic SOD1G93A

rats (Figure 3B).

Senescence-Associated β-Galactosidase
Activity (SA-β-gal) in Primary Cultures of
Microglia From Symptomatic SOD1G93A

Rats
We have previously shown that primary spinal cord cultures
from symptomatic SOD1G93A rats yield >98% of microglia
(Trias et al., 2013). Figure 4A summarizes the behavior of
these microglia cultures and its ability to actively proliferate
and transform into flat enlarged cells after serial passages.
In this context, we explored whether cultured microglia from
symptomatic SOD1G93A rats could develop senescence markers
as observed in the degenerating spinal cord. Primary cultures of
SOD1G93A microglia maintained for 12 days in vitro progressively
developed positive chromogenic SA-β-gal staining, with ∼8-fold
increase between 1 DIV and 12 DIV (Figure 4B). Senescent
microglia in cell cultures demonstrated an enlarged, flattened
morphology (arrows in Figure 4B), morphological features
previously described in other senescent cells (Carnero, 2013).

Flow cytometer analysis of microglia maintained in culture for
12 DIV showed 50% of the cells exhibiting SA-β-gal fluorescent
staining (Supplementary Figure S3), with two distinct cell
subpopulations, based on size as seen in the scatter diagram of the
cells (Supplementary Figure S3). The subpopulation of smaller
cells displays only 8% of SA-β-Gal activity and normal cell cycle
behavior, corresponding to non-senescence cells (Figures 4C,D).
In contrast, 92% of large size cells exhibited SA-β-gal activity
and also significant S-phase arrest (Figures 4E,F), the latter being

usually associated with inhibition of cell growth, proliferation and
senescence in cell cultures (Blagosklonny, 2011).

Expression of Senescence Markers in
Cell Cultures of SOD1G93A Microglia
Next, we analyzed the phenotypic features of Iba1- and CD68-
positive SOD1 microglia at 2- and 12-DIV to identify senescence
cellular markers. As shown in Figures 5A,B, approximately
50% of microglia expressed p16INK4a or p53 nuclear staining
at 12DIV, as compared with approximately 15% at 2DIV
(graphs in Figures 5A,B, and Supplementary Figures S4A,B).
12DIV microglial cells also displayed high levels of MMP-
1 and NO2Tyr in comparison with 2DIV isolated cells
(Supplementary Figure 4C). In addition, p16INK4a, p53, MMP-
1, and NO2Tyr were also found in multinucleated cell aggregates
that are frequently found in culture conditions (Figure 5C),
reproducing the aberrant features found in the degenerating
spinal cord in vivo.

The emergence of senescent cells was also observed in serially
passaged SOD1G93A microglia cultures, which have undergone
a phenotypic transformation (Trias et al., 2013). As shown in
Supplementary Figure 5A, the number of SA-β-Gal-positive
cells rapidly increased in the following 5 days after plating,∼50%
of these cells also displaying increased p16INK4a and p53 nuclear
staining (Supplementary Figures 5B,C).

DISCUSSION

Amyotrophic lateral sclerosis has been modeled as a multi-step
process associating senescence-driven tissue dysfunction with
underlying genetic defects and risk factors (Al-Chalabi et al.,
2014). In this context, here we report that paralysis progression in
a rat model of ALS is characterized by the emergence of numerous
microglia, astrocytes and motor neurons displaying phenotypic
markers of senescence. Senescent cells seem to be acutely induced
after paralysis onset, suggesting a deleterious effect mediated
by the ALS neurodegenerative cellular microenvironment and
coincident to motor neuron loss. Senescence markers were also
observed in cultures of microglia isolated from symptomatic
SOD1G93A rats, further indicating the inherent ability of these
cells to develop a senescence program with secretory features. In
agreement with previous reports showing senescence microglia
in aged rodents (Rawji et al., 2016; Theriault and Rivest, 2016),
the present data show evidence of a yet unknown mechanism
associating microglia activation and cell senescence, with the
emergence of secretory phenotypes in a rat model of ALS.

Activation of the p16INK4a-pathway is essential for the
induction of senescence in a variety of cell types (Prieur et al.,
2011). The tumor suppressor p53 also contribute to the induction
of cellular senescence in glial cells (Turnquist et al., 2016). We
found that the basal levels in p16INK4a and p53 expression were
significantly increased in SOD1G93A rats at asymptomatic and
paralysis onset stages, respect to age-matched non-transgenic
controls. Strikingly, p16INK4a and p53 levels sharply increased
after paralysis onset, coincident with extensive spinal cord
microgliosis and motor neuron loss occurring in SOD1G93A rats
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FIGURE 3 | Nuclear p16INK4a expression in a subpopulation of spinal motor neurons and astrocytes. (A) Representative confocal microphotograph of the ventral
spinal cord of SOD1G93A rats showing ChAT-positive (red) motor neurons at low (upper row) and high (lower row) magnifications. During the symptomatic phase of
the disease, a subpopulation of neurons expresses nuclear p16INK4a (white arrows). Dotted white line separate white from gray matter. Scale bars: 50 µm for low
magnification panels and 10 µm for high magnification panel. (B) Photomicrographs showing p16INK4a/GFAP stained lumbar spinal cord sections among groups.
Low magnification panels (upper panels) show the notorious increase in the number of p16INK4a-/GFAP-positive cells in the symptomatic rats, as compared to low
markers co-expression in asymptomatic or non-transgenic rats. Note the expression of p16INK4a marker in a subpopulation of astrocytes that surround motor
neurons. Scale bars: 50 µm for low magnification panels and 10 µm for high magnification panel.

(Howland et al., 2002). Increased levels of p16INK4a and p53 were
shown to induce nuclear loss of Lamin B1 (REF). Such a decline
in Lamin B1 level constitutes a recognized biomarker of cellular
senescence (REF). This is the first report showing a significant
increase in nuclear Lamin B1 loss in the degenerating spinal cord
of SOD1G93A rats, which was associated with other pathological
features of Lamin B1 and nuclear misshape. Senescent microglia
showed Lamin B1 loss as well as abnormalities in nuclear
Lamin B1 localization pattern. These findings agree with previous
reports showing disruption of nuclear Lamin B1 in neural cells
associated with Parkinson’s disease and Tau pathologies (Frost
et al., 2016; Chinta et al., 2018).

p16INK4a expression and nuclear Lamin B1 decline in
microglia were typically observed in cells surrounding the
damaged motor neurons. These cells also displayed large size,
multinucleated formations as well as MMP-1 and nitrotyrosine
staining in culture, suggesting phenotypic aberrations and
secretory features. Thus, senescent microglia emerging in the
degenerating spinal cord may explain the origin of aberrant glial
phenotypes previously described during paralysis progression in
SOD1G93A (Diaz-Amarilla et al., 2011; Trias et al., 2013). Taking
together, these observations suggest that senescence microglia
may result as a consequence of microglia activation, which
involves the production of inflammatory mediators and oxidative
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FIGURE 4 | Senescence-associated β-Galactosidase activity in primary cultures of microglia from symptomatic SOD1G93A rats. (A) The scheme shows the
procedure for adult microglia cell cultures from symptomatic SOD1G93A rats. The spinal cord was plated on p35 culture dishes and SA-b-Gal was measured at
different time points. Senescent markers increase their expression after several days in culture. After 2 weeks in vitro, microglia transitioned to aberrant glial cells.
These transformed cells were also analyzed for SA-β-Gal and senescence markers at different time points in culture. (B) The phase contrast microphotographs show
SA-β-Gal staining after 2 days in vitro (DIV) and 12 DIV. The graph to the right shows the quantitative analysis of SA-β-Gal activity in cultured adult microglia at
different time points. Data are expressed as mean ± SEM; data were analyzed by Kruskal–Wallis followed by Dunn’s multiple comparison tests, p < 0.05 was
considered statistically significant. (C) SA-β-Gal activity analyzed by flow cytometry analysis. In the scatter diagram for the smaller population (inside white outline),
R1 indicates the percentage of total population encompassed by this subset (45%). The gate for the smaller cell population indicates almost 8% of these cells are
senescent. (D) The diagram shows the cell cycle analysis for the smaller cell population. (E) Scatter diagram for larger cell population (inside the white outline, R2). In
the larger cell population, over 90% of the cells demonstrate SA-β-Gal activity. (F) The scatter diagram to the right shows the cell cycle analysis for the larger cell
population.
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FIGURE 5 | Cultured adult microglia from SOD1G93A symptomatic rats express senescence markers. Immunocytochemistry analysis of senescence markers on
microglia isolated from SOD1G93A symptomatic rats at 2 and 12DIV. (A) Isolated Iba1-positive microglia express nuclear p16INK4a, which expression increase after
several days in culture as shown in the graph to the right. Data are expressed as mean ± SEM: data were analyzed by Mann–Whitney test, 2-tailed, p < 0.05 was
considered statistically significant. Scale bar: 50 µm. (B) CD68-positive microglia express increasing levels of nuclear p53 in culture. The graph to the right shows
the comparative quantitative analysis of p53 expression. Data are expressed as mean ± SEM: data were analyzed by Mann-Whitney test, 2-tailed, p < 0.05 was
considered statistically significant. Scale bar: 50 µm. (C) After 12 DIV, SOD1G93A isolated microglia form Iba1-/CD68-positive multinucleated giant cells, which
express several senescence markers such as p16INK4a, p53, and MMP1. Also, these multinucleated cells express high levels of NO2Tyr. Scale bars: 20 µm.

stress with potential genotoxic activity (Spittau, 2017). Thus,
p53 induction in activated microglia from paralytic SOD1G93A

rats might not be only related to the senescence program but
may also contribute to modulate the inflammatory phenotype as
previously described (Aloi et al., 2015).

The finding that microglia isolated from symptomatic
SOD1G93A rats develop senescence features in culture conditions
further support the inherent ability of these cells to undergo a
senescence program. As cultures aged during several days, an
increasing number of cells displayed senescence markers such
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FIGURE 6 | Potential mechanisms underlying the emergence of senescent phenotypes in ALS and pathophysiological consequences. Risk factors such as aging,
mitochondrial damage, nitro-oxidative stress, and inflammation may induce the appearance of senescent glial cells in the surroundings of motor neurons bearing
SASP. In turn, these cells may exacerbate inflammation and induce motor neuron toxicity through the secretion of soluble toxic factors. This scenario might lead to a
pathogenic autotoxic loop promoting the spread of motor neuron pathology and disease progression.

as SA-β-Gal activity, p16INK4a, and MMP-1. SA-β-Gal activity,
commonly used to distinguish senescent cells (Dimri et al.,
1995), is perceptible due to the increased lysosomal content
present in senescent cells (Kurz et al., 2000). Interestingly,
senescent microglia in vitro expressed MMP-1, a marker of
SASP (Strzyz, 2016), suggesting this phenotype could define a
specific type of microglia polarization in ALS. Levels of matrix
metalloproteinases increase with age in many tissues and organs
and are associated with the SASP (Freund et al., 2010). MMP-1
levels in glial cells have been shown to be increased in Alzheimer’s
disease pathology (Bhat et al., 2012). Recent studies also suggest
that metalloproteinases become increasingly dysregulated during
disease progression in ALS (Soon et al., 2010), although this
has not yet been considered in connection to cell senescence.
In addition, senescent microglia isolated from symptomatic
SOD1G93A rats showed a tendency to develop cell fusion
and multinucleation. This cellular atypia has been previously
described in the degenerating spinal cord of SOD1G93A rats
(Fendrick et al., 2007). Our finding of microglia bearing SASP
is in accordance with our previous reports in microglia in
SOD1G93A rats displaying increased transcriptional expression of
senescence-associated cytokines and inflammatory factors (Trias
et al., 2016), as well as ultrastructural alterations in organelles
occurring in cell senescence (Jimenez-Riani et al., 2017).

Cultures containing senescent microglia from symptomatic
SOD1G93A rats were characterized by the fact that the emergence
of senescent cells was coincident with a robust proliferation
capacity of neighboring cells, which could be passaged many
serial passages, as previously described (Diaz-Amarilla et al.,
2011). Here, we have identified by flow cytometry that
senescent microglia exhibited large size and cell cycle arrest,
clearly differentiating from a subpopulation of smaller, SA-
β-Gal-negative cells, with high proliferative capacity. Thus,
SASP microglia in SOD1G93A rats could strongly promote
the proliferation of neighboring non-senescent microglia by
secretion of soluble factors. In accordance, we have shown that

transplantation of SOD1G93A microglia into discrete sites of the
lumbar spinal cord on non-transgenic rats, induced a massive
microgliosis along the entire spinal cord (Ibarburu et al., 2017).

Because cultured SOD1G93A microglia from the rat paralytic
spinal cord shows a high degree of activation, oxidative/nitrative
stress and expression of inflammatory genes (Boillee and
Cleveland, 2008; Thonhoff et al., 2012), we speculate that
the triggering of the senescence program is a consequence
of exacerbated cell damage or genotoxic stress, rather than
aging per se. In accordance, we found that senescent microglia
accumulate nitrotyrosine in proteins, indicating oxidative
stress producing tyrosyl-radical formation and nitric oxide
production (Zhao et al., 2004; Thonhoff et al., 2012). Increased
levels of nitrotyrosine residues have been associated with
endogenous production of peroxynitrite, a potent cellular
oxidant and nitrating agent (Ischiropoulos et al., 1992; Pacher
et al., 2007), which has not been previously associated with
cellular senescence. In accordance, inflammatory stimulation of
macrophages involving increase production of nitric oxide and
superoxide also results in p16INK4a expression and SA-β-Gal
activity (Hall et al., 2017).

Finally, we found evidence that motor neurons and astrocytes
also express nuclear p16INK4a during the symptomatic stage,
which might be related to the intriguing accumulation of
misfolded SOD1 in motor neuron during advanced paralysis
in SOD1G93A rats. This agrees with previous reports showing
senescent neurons in aged mice and animal models of Alzheimer’s
disease (Jurk et al., 2012; Musi et al., 2018). Because neurons can
develop a SASP, they can contribute to induce in inflammation
in neighboring cells through the secretion of soluble factors
(Appel et al., 2011; Komine and Yamanaka, 2015). Similarly,
the finding of senescent astrocytes expressing nuclear p16INK4a

in symptomatic SOD1G93A rat spinal cord suggest a role of
defective astrocytes in ALS pathology. Astrocytes might exert
their neurotoxic effect on motor neurons via the SASP, releasing
several proinflammatory cytokines and trophic factors, such as
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IL-6 (Haidet-Phillips et al., 2011; Das and Svendsen, 2015) and
NGF species (Pehar et al., 2004). Astrocytes in ALS rodent
models express different senescence markers which potentially
turn them into a neurotoxic phenotype for motor neurons
both in vitro and in vivo (Das and Svendsen, 2015; Turnquist
et al., 2016). Thus, senescence-associated phenotypes in glial
cells and neurons might be relevant pathogenic mechanisms
in ALS. It remains unknown, however, whether prevention or
eradication of senescence cells in ALS could result in delayed
disease progression as has been reported in other neurological
diseases (Bussian et al., 2018).

CONCLUSION

In conclusion, as summarized in Figure 6, here we show for
the first time that senescent and secretory microglia emerge
during paralysis progression in a rat model of inherited ALS. Risk
factors such as aging together with mitochondrial dysfunction
and nitro-oxidative damage linked to inflammation likely
promote the emergence of senescent glial cells. Subsequently,
senescent cells may promote profound changes in the cellular
microenvironment through SASPs, exacerbating progressive
neuroinflammation and motor neuron toxicity.
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FIGURE S1 | Progressive increase in spinal cord p53 expression during paralysis
progression Confocal microphotographs show the staining for p53 (red) among
analyzed groups. The graph to the right shows the quantitative analysis of p53
intensity. Note the increase in p53 expression with disease progression. Data are
expressed as mean ± SEM; data were analyzed by Kruskal–Wallis followed by
Dunn’s multiple comparison tests, p < 0.05 was considered statistically
significant. Scale bars: 50 µm.

FIGURE S2 | Interaction of microglia with degenerating motor
neurons expressing misfolded SOD1. Confocal microphotograph showing
Iba1-positive microglia clusters (red) surrounding damaged motor neurons
accumulating high levels of misfolded SOD1 (green). Arrowheads indicate the
microglia/motor neuron clustering. Note that misfolded SOD1 is mainly
expressed in neuronal structures during paralysis, while its expression
in microglia appears to be associated with the phagocytosis of
misfolded SOD1 contained in degenerating neuronal structures (arrows). Scale
bar: 20 µm.

FIGURE S3 | Senescence-associated β-Galactosidase activity in primary cultures
of microglia from symptomatic SOD1G93A rats. The scatter diagram, a population
density heat map, indicates the gate for the sample and includes the entire
population of cells. The diagram to the right shows that approximately 50% of the
cells demonstrate SA-β-activity.

FIGURE S4 | Expression of senescence markers p16INK4a and MMP1 in cultured
adult microglia from SOD1G93A symptomatic rats. Immunocytochemistry analysis
of senescence markers on microglia isolated from SOD1G93A symptomatic rats.
(A) Isolated Iba1-positive microglia after 2 days in culture express nuclear
p16INK4a (A) and p53 (B) in a small subpopulation of cells. Arrows indicate the
respective nuclear localization of both markers. Scale bar: 20 µm. (C) Progressive
increase of MMP1 and NO2Tyr in adult cultured microglia. Note the increased
expression of MMP1 and NO2Tyr between 2 DIV (upper panel) and 12 DIV (lower
panel). Scale bar: 20 µm.

FIGURE S5 | Serially passaged SOD1G93A microglia cultures express
senescence markers. Senescence marker analysis in phenotypic transitioned
SOD1G93A microglia in culture. (A) Transitioning microglia population display
increasing SA-β-Gal activity (red arrows) at different time points (Passage 4). The
graph to the right shows the quantitative analysis of SA-β-Gal activity in
transformed microglia. Data are expressed as mean ± SEM; data were
analyzed by Kruskal–Wallis followed by Dunn’s multiple comparison tests,
p < 0.05 was considered statistically significant. (B) After several days in culture,
transformed microglia express increasing levels of p16INK4a and p53. Also, note
the high expression of NO2Tyr in those cells that express nuclear p16INK4a.
Graphs to the right show the quantitative comparative analysis of p16INK4a and
p53 at different time points. Data are expressed as mean ± SEM; data
were analyzed by Kruskal–Wallis followed by Dunn’s multiple comparison
tests, p < 0.05 was considered statistically significant. Scale
bars: 20 µm.
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