
Systems biology

Microbench: automated metadata management for

systems biology benchmarking and reproducibility

in Python

Alexander L. R. Lubbock 1,2,† and Carlos F. Lopez 1,2,3,*,‡

1Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA, 2Vanderbilt-Ingram Cancer Center, Vanderbilt University,

Nashville, TN 37232, USA and 3Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA

*To whom correspondence should be addressed.
†Present address: The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot OX11 0FA, UK
‡Present address: Altos Labs, 2000 Island Dr., Redwood City, CA 64065, USA

Associate Editor: Janet Kelso

Received on September 14, 2021; revised on February 21, 2022; editorial decision on July 13, 2022; accepted on August 23, 2022

Abstract

Motivation: Computational systems biology analyses typically make use of multiple software and their dependencies,
which are often run across heterogeneous compute environments. This can introduce differences in performance and
reproducibility. Capturing metadata (e.g. package versions, GPU model) currently requires repetitious code and is diffi-
cult to store centrally for analysis. Even where virtual environments and containers are used, updates over time mean
that versioning metadata should still be captured within analysis pipelines to guarantee reproducibility.

Results: Microbench is a simple and extensible Python package to automate metadata capture to a file or Redis data-
base. Captured metadata can include execution time, software package versions, environment variables, hardware
information, Python version and more, with plugins. We present three case studies demonstrating Microbench
usage to benchmark code execution and examine environment metadata for reproducibility purposes.

Availability and implementation: Install from the Python Package Index using pip install microbench. Source
code is available from https://github.com/alubbock/microbench.

Contact: cflopezw@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Analysis pipelines in computational biology frequently make use of
multiple software dependencies and are often run across heteroge-
neous compute environments (e.g. laptop, compute cluster, cloud).
However, differences in software, hardware and configuration can
affect both reproducibility and performance. Standardized virtual
environments using virtualenv (virtualenv.pypa.io), pipenv (pipenv.
pypa.io) or Anaconda (anaconda.com) are an important first step to-
ward reproducibility. Containerization frameworks like Docker
(Boettiger, 2015) further help by standardizing system libraries and
adding portability, but require time to setup and compile, and so are
not always used during development. Even with virtual environ-
ments and containers, it remains important to track software ver-
sions over time. In addition, Python requirements.txt files often only
specify the direct dependencies of the code, and not downstream
dependencies which may change if an environment or container is
later re-built. Continuous integration (CI) (Meyer, 2014) can help to
identify these issues, but reproducibility issues can also occur due to

differences in hardware (e.g. GPU model) and environment (e.g. en-
vironment variables). In addition, comprehensive CI is not always
feasible with large -omics datasets. Capturing the full environment
at runtime would help to identify the cause of reproducibility issues,
should they be discovered later.

Here, we introduce Microbench, an open-source Python package
which automates metadata capture and execution timing of anno-
tated functions for performance benchmarking and to improve re-
producibility. For example, Microbench can capture Python
package versions, environment variables, host hardware specifica-
tions, Python version and function arguments. It can be applied to
both pure Python code and in scenarios where Python wraps exter-
nal scripts and non-Python libraries. Microbench can capture line-
by-line execution times and telemetry—CPU and RAM utilization
recorded periodically during function execution. Results are logged
to a file or a central Redis database (redis.io) and can be analyzed
using pandas DataFrames (pandas.pydata.org). Microbench can be
extended with plugins to capture additional metadata types.
Microbench lowers the administrative burden of capturing metadata

VC The Author(s) 2022. Published by Oxford University Press. 4823

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 38(20), 2022, 4823–4825

https://doi.org/10.1093/bioinformatics/btac580

Advance Access Publication Date: 24 August 2022

Applications Note

https://orcid.org/0000-0002-6950-8908
https://orcid.org/0000-0003-3668-7468
https://github.com/alubbock/microbench
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
http://virtualenv.pypa.io
http://pipenv.pypa.io
http://pipenv.pypa.io
http://anaconda.com
http://redis.io
http://pandas.pydata.org
https://academic.oup.com/


for benchmarking and reproducibility. We believe it will significant-
ly help computational biologists working in Python who faces these
challenges.

2 Results

Implementation
Microbench is written in pure Python for cross-platform compatibil-
ity (tested on Windows 10, Mac, Linux) and has no default runtime
dependencies outside of the Python standard library. The line_pro-
filer package (pypi.org/project/line-profiler) is required for line-by-
line benchmarking, and pandas is recommended to examine and
analyze results. Microbench can be easily extended with new meta-
data capture capabilities.

Installation and usage
Microbench is installed using pip install microbench
(Supplementary Text S1). Source code is available on GitHub
(https://github.com/alubbock/microbench) under the MIT license. A
minimal usage example is given in Supplementary Text S2; an
extended usage example is given in Supplementary Text S3. Briefly,
a benchmark suite is first specified, which determines what metadata
are captured. A Python decorator is then used to mark functions for
benchmarking/metadata capture. Results are saved to a JSON file or
Redis instance for later analysis (Fig. 1). The results format is
described in Supplementary Text S4.

Metadata capture
Microbench can capture a wide variety of metadata. By default, start
timestamp, end timestamp and function name are captured.
Additional metadata are determined by the user in the form of mix-
ins—small Python classes, which are included when the benchmark
suite is constructed. A list of available mixins is shown in
Supplementary Table S1. Microbench can be extended with custom
mixins to capture additional or bespoke metadata (Supplementary
Text S5).

Redis support
Microbench typically appends metadata to a file, but includes
support for Redis—an unstructured, in-memory database. If Redis
is run on an internet-accessible server, metadata can be deposited
from any internet-connected device. Microbench Redis support
requires the redis-py package (pypi.org/project/redis) (Supplementary
Text S6).

NVIDIA GPU support
Attributes relevant to NVIDIA GPUs can be captured using a meta-
data collector for NVIDIA’s nvidia-smi utility (developer.nvidia.
com/nvidia-system-management-interface), including GPU model
number and GPU memory capacity (Supplementary Text S7).

Line profiler support
Microbench can capture line-by-line execution times using the
line_profiler package. This is particularly useful in algorithm devel-
opment and for bottleneck identification (Supplementary Text S8).

Telemetry support
Microbench can capture function telemetry—metrics such as CPU
and RAM utilization—at specified intervals using a background
thread. This can help identify resource intensive code blocks
(Supplementary Text S9).

Case study: biochemical model simulations
We include an application of Microbench to a biochemical model
simulation using PySB (Lopez et al., 2013) within a Jupyter
Notebook (Perkel, 2018), where we capture package versions from
an Anaconda environment to check for reproducibility
(Supplementary File S1, Example 1). This example also uses telem-
etry analysis to examine CPU and RAM utilization over time during
function execution. An example using Tellurium (Choi et al., 2016)
is also provided (Supplementary File S1, Example 4).

Case study: NumPy return value differs by version
Software library updates can result in differences or errors, which
may or may not be documented in those libraries’ documentation or
spotted by the end user. We present a simple example case study
where a computation gives a different result using NumPy 1.15 com-
pared to NumPy 1.20 (https://numpy.org/doc/stable/release/1.20.
0-notes.html#np-linspace-on-integers-now-uses-floor). Capturing ver-
sion metadata can help to identify such issues retrospectively
(Supplementary File S1, Example 2).

Case study: benchmarking with SLURM
SLURM (Yoo et al., 2003) is a cluster management system which
can be used to execute computational jobs in parallel. Large clusters
are often subject to rolling or phased hardware refreshes, leading to
a heterogeneous compute environment. Microbench can capture
hardware specifications, and subsequently, the runtime of an algo-
rithm can be compared by feature (e.g. max. CPU frequency, total
RAM) for benchmarking or specifying requirements (Supplementary
File S1, example 3).

3 Discussion

Microbench is designed to provide a simple and unobtrusive way to
benchmark Python functions and capture key metadata for reprodu-
cibility. It is particularly useful in heterogeneous compute environ-
ments and ephemeral cloud computing environments, where one
cannot easily go back and examine the exact instance after analysis
completion. Microbench has no runtime dependencies outside the
Python standard library, making it easy to deploy across

Fig. 1. Microbench usage. The user defines the set of metadata to capture, then decorates the target function and runs it, then analyzes the results. Captured metadata can be

used to check issues in case of a reproducibility anomaly, or for performance benchmarking

4824 A.L.R.Lubbock and C.F.Lopez

http://pypi.org/project/line-profiler
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://www.github.com/alubbock/microbench
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
http://pypi.org/project/redis
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
http://developer.nvidia.com/nvidia-system-management-interface
http://developer.nvidia.com/nvidia-system-management-interface
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://www.numpy.org/doc/stable/release/1.20.0-notes.html#np-linspace-on-integers-now-uses-floor
https://www.numpy.org/doc/stable/release/1.20.0-notes.html#np-linspace-on-integers-now-uses-floor
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac580#supplementary-data


heterogeneous compute environments. For containers (e.g. Docker),
we recommend deploying Microbench inside the container alongside
the target code. By making metadata capture simple to add to exist-

ing Python code, Microbench can be used routinely, allowing for
retrospective debugging and benchmarking should an issue arise

later. We believe the research community should build on existing
metadata standards (Leipzig et al., 2021) to establish minimum
requirements and best practices toward greater reproducibility.

Funding

This work was supported by the National Science Foundation [1942255 to

C.F.L.] and the National Cancer Institute [U01CA215845 and U54CA217450-

01A1 to C.F.L.].

Conflict of Interest: none declared.

References

Boettiger,C. (2015) An introduction to Docker for reproducible research.

SIGOPS Oper. Syst. Rev., 49, 71–79.

Choi,K. et al. (2016) Tellurium: a Python based modeling and reproducibility

platform for systems biology. BioRxiv 054601. https://doi.org/10.1101/

054601.

Leipzig,J. et al. (2021) The role of metadata in reproducible computational re-

search. Patterns, 2, 100322.

Lopez,C.F. et al. (2013) Programming biological models in Python using

PySB. Mol. Syst. Biol., 9, 646. https://doi.org/10.1038/msb.2013.1.

Meyer,M. (2014) Continuous integration and its tools. IEEE Softw., 31,

14–16.

Perkel,J.M. (2018) Why Jupyter is data scientists’ computational notebook of

choice. Nature, 563, 145–146.

Yoo,A.B. et al. (2003). SLURM: simple linux utility for resource management.

In: Feitelson, D. et al. (eds.) Job Scheduling Strategies for Parallel

Processing. Springer, Berlin, Heidelberg, pp. 44–60.

Microbench 4825

https://doi.org/10.1101/054601
https://doi.org/10.1101/054601
https://doi.org/10.1038/msb.2013.1

