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Abstract

In personalized medicine, it is often desired to determine if all patients or only a subset of them 

benefit from a treatment. We consider estimation in two-stage adaptive designs that in stage 1 

recruit patients from the full population. In stage 2, patient recruitment is restricted to the part of 

the population, which, based on stage 1 data, benefits from the experimental treatment. Existing 

estimators, which adjust for using stage 1 data for selecting the part of the population from which 

stage 2 patients are recruited, as well as for the confirmatory analysis after stage 2, do not consider 

time to event patient outcomes. In this work, for time to event data, we have derived a new 

asymptotically unbiased estimator for the log hazard ratio and a new interval estimator with good 

coverage probabilities and probabilities that the upper bounds are below the true values. The 

estimators are appropriate for several selection rules that are based on a single or multiple 

biomarkers, which can be categorical or continuous.
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1 ∣ INTRODUCTION

Clinical trials in personalized medicine involve assessing whether a patient’s 

characteristic(s), known as biomarkers, can be used to determine their best care. A 

biomarker may influence the progression of disease without treatment (prognostic 
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biomarker) or the size of the effect of a treatment (predictive biomarker).1 We focus on 

predictive biomarkers, where the effects of a new treatment in different subpopulations 

defined by biomarker values are assessed. Several efficient two-stage adaptive designs with 

an interim analysis to determine the part of the population (subpopulation) to benefit most 

from a new treatment have been proposed.2–6 The general framework of such designs is that 

patients are recruited from the full population in stage 1, with an interim analysis performed 

to determine the subpopulation where the new treatment is apparently beneficial. In stage 2, 

patients are recruited from this group. Confirmatory analysis then includes data from both 

stages. Appropriate analysis of two-stage adaptive trials needs to adjust for the bias arising 

from using stage 1 data for both subpopulation selection and the final analysis.

Time to event patient outcomes are considered in several clinical trials assessing predictive 

biomarkers.7–10 For two-stage adaptive trials, methods for controlling type I error rate and/or 

increasing power have been developed.2,3,7 However, existing point estimators and 

confidence intervals that adjust for subpopulation selection do not consider time to event 

data.4–6,11 Li et al12 quantify the bias of the naive estimator for time to event data but do not 

derive unbiased estimators. Thus, there is a need to develop point and interval estimators for 

time to event data in two-stage adaptive trials with subpopulation selection. This is the aim 

of this article. Using the asymptotic distribution of the log hazard ratio, we extend existing 

methods for normally distributed data to time to event patient outcomes. We also address the 

additional complexity associated with following in stage 2 the stage 1 patients without the 

event of interest at the interim analysis.

For normally distributed outcomes, estimators that adjust for subpopulation selection may be 

obtained in three ways. The first involves estimating and subtracting the bias of the naive 

estimator.6,13–15 The second utilizes the empirical Bayes technique to obtain shrinkage 

estimators.6,15–17 The third is based on the Rao-Blackwell theorem that the expected value 

of the unbiased stage 2 estimator conditional on the selected subpopulation and a sufficient 

statistic is the uniformly minimum variance conditional unbiased estimator (UMVCUE).
4,6,18–22 Kimani et al6 compared the estimation approaches in the context of subpopulation 

selection, concluding that the UMVCUE was superior. As we expect the same conclusion if 

the three estimators are extended to time to event data, in this article, we have only extended 

the UMVCUE. To address the complexity associated with time to event data, we assume 

hypothesis testing similar to that proposed by Jenkins et al3 and use the duality with 

hypothesis testing to construct confidence intervals with desired properties as proposed for 

non-time to event data by Magirr et al.23

Previous research has considered biomarkers of various forms (a binary biomarker, a 

continuous biomarker, or multiple biomarkers) and different subpopulation selection rules. 

Our point and interval estimators are appropriate for different selection rules and biomarkers 

of many forms.
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2 ∣ SETTING AND NOTATION

2.1 ∣ Partitioning the population and general concepts in selecting partitions

This section describes the partitioning of the full population (F) and general approaches for 

specifying selection rules. Specific selection rules will be described in Section 2.3. Figure 1 

summarizes the partitioning of F. We first describe concepts common to all settings that we 

consider, indicated as general concepts in the figure. Assume that F consists of K (K ≥ 2) 

distinct partitions. For partition j (j = 1, … , K), we denote the true prevalence of patients by 

pj and hazard functions for the control and experimental groups by ℎCj(t) and ℎEj(t), 

respectively. Assuming proportional hazards within a partition, we denote the log hazard 

ratio (HR) for partition j (j = 1, … , K) by θj, with θj < 0 indicating that the experimental 

treatment delays occurrence of the event in partition j and hence is superior to the control.

Let S ⊆ 1, …, K  be the subset of indices corresponding to the partitions selected to 

continue to stage 2. The partitions are selected based on the stage 1 estimate for θ1, …, θK ′. 
At the end of the trial, for each j ∈ S, the aim is to estimate θj. We will obtain log HR 

estimates in selected partitions separately, corresponding to a stratified model. Consequently, 

although the selection rules we consider in this paper are aimed at identifying predictive 

biomarkers, as shown in Figure 1, control group hazard functions in different partitions may 

be different so that the biomarker may also be prognostic. A disadvantage of this approach is 

that in some cases, such as when the biomarker is neither predictive nor prognostic, it would 

be better to obtain a single estimate using the data from all the partitions while assuming 

proportional hazards overall in F rather than separate estimates of effects assuming 

proportional hazards only within a partition. A model with partition membership as a 

categorical covariate and an interaction term for partition and treatment would enable an 

estimator of a combined effect. However, this model is not as general as the stratified model, 

imposing more restrictions on the hazard functions.

The expected relationship between biomarker and treatment effect informs the partitioning 

of F and the selection rule. Figure 1 gives an example of the two-stage adaptive threshold 

enrichment design.6,24 Here, it is assumed that a single continuous biomarker and the 

treatment effect are monotonically related with higher biomarker values associated with 

bigger treatment effects. Consequently K candidate threshold values c1 > c2 > … > cK are 

specified to subdivide F into K distinct partitions. Setting c0 = ∞, partition j(j = 1, … , K) 

consists of patients with biomarker values in [cj, cj–1]. As it is expected that θ1 ≤ θ2 ≤ ⋅ ⋅ ⋅ ≤ 

θK, a selection rule is prespecified to test partitions in stage 2 with biomarker values above 

cs (s ∈ {1, … , K}).

Partitioning of F and selection rules can be similarly given for biomarkers of other forms. 

Common cases are a single binary biomarker and multiple biomarkers. A single binary 

biomarker where the effect in one partition is expected to be bigger than in the 

complementary partition is a special case of the continuous biomarker with K = 2. For 

multiple biomarkers, we consider two scenarios. In the first, we assume biomarkers’ values 

can be combined into an aggregate score with a monotonic relationship with the treatment 

effect, with this score used to define partitions and a selection rule as for a single continuous 
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biomarker. In the second scenario, the partitions consist of different combinations of 

biomarker level categories. A monotonic relationship between the biomarker values and 

treatment effects is not assumed and so a selection rule where partition j(j = 1, … ,K) is 

considered for continuing to stage 2 based on the stage 1 estimate for θj only is specified. A 

single binary biomarker, where there is no knowledge of the partition that is more likely to 

benefit, can be considered a special case of the second scenario with K = 2.

2.2 ∣ Analysis times and notation of estimates for different subsets of trial data

Figure 2 shows the available data at different times in the trial. Each horizontal line that ends 

with a circle corresponds to a patient, with the line’s length being the patient’s survival time 

in the trial. The left hand end of each line corresponds to the calendar time a patient was 

recruited. Filled and non-filled circles correspond to an event having occurred and not, 

respectively.

The trial starts recruiting at some time t0 and an interim analysis is performed at time t1. In 

Sections 4 and 5, we will take t1 to correspond to when a prespecified number of events is 

observed. Alternatives include t1 being a prespecified date.3,25 Stage 1 consists of the data 

that are used in the interim analysis, with the survival times being the lengths of continuous 

lines in Figure 2. As described below, we obtain estimates from these data based on the 

distribution of the score statistic. Estimates based on the distribution of the score statistic are 

similar to those from the Cox’s proportional hazards model.26 The choice of the model used 

to obtain estimates is discussed in Section 6. Let S1,j and V1,j (j = 1, … ,K) be the score 

statistic and Fisher information, respectively, obtained from analyzing partition j stage 1 data 

at t1. Based on the score statistic theory, asymptotically S1, j N θjV 1, j, V 1, j . Note that the 

estimator θ1, j defined by S1, j/V 1, j is N θj, σ1, j
2 , where σ1, j

2 = 1/V 1, j (for example, see 

chapter 3 ofWhitehead27 and chapter 13.4 of Jennnison and Turnbull28).

Based on the stage 1 observed value for the vector θ1, 1, …, θ1, K ′, the trial stops for futility 

or continues to stage 2 with F or some part of F. Various selection rules are described in 

Section 2.3. Stage 2 patients are recruited only from the selected partitions. Recruitment and 

follow-up of stage 2 patients stops at calendar time t2. In Sections 4 and 5, we take t2 to 

correspond to when a prespecified number of events from stage 2 patients is observed but 

alternatives such as t2 being a prespecified date can be used. In Figure 2, the survival times 

of stage 2 patients correspond to the lengths of the dotted lines.

At the interim analysis, some stage 1 patients will not have had the event of interest. As 

following these patients further gives estimators with smaller standard errors, we assume 

that they are followed up to time t1. The choice of t1 is described below. We refer to the data 

collected from stage 1 patients after the interim analysis as the incremental data.

For j ∈ S, let SNj and V Nj denote the score statistic and Fisher information obtained from 

all patients recruited in partition j with the survival times and status for stages 1 and 2 

patients determined at times t1 and t2, respectively. Similar to above, θNj defined by 

SNj/V Nj. is asymptotically N θj, σNj
2 , where σNj

2 = 1/V Nj. In the next paragraph, we will 
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describe a strategy for achieving approximate independence between data collected before 

and after the interim analysis. When independence can be assumed, score statistic theory has 

been extended to a setting with repeated analyses of data, such as analyzing all patients’ data 

at tl and t2.26,29 This gives SNj − S1, j independent of S1, j and asymptotically 

N θj V Nj − V 1, j , V Nj − V 1, j .26,29,30 It follows that θ2, j defined as 

SNj − S1, j / V Nj − V 1, j  is N θj, σ2, j
2 , where σ2j

2 = 1/ V Nj − V 1, j . Note that

θNj =
σ2, j

2 θ1, j + σ1, j
2 θ2, j

σ1, j
2 + σ2, j

2 . (1)

Estimators developed in Section 3 require SNj − S1, j to be independent of S1,j (the 

independent increment structure), where test statistics based on the data from before and 

after the interim analysis are independent.3,31,32 However, adaptation such as subpopulation 

selection may induce correlation.33 If, as we propose above, ti (i = 1, 2) depends on stage i 
patients only, conditional on the selection made, stage 2 patients’ data are independent of 

S1,j and so any correlation between SNj − S1, j and S1, jis assumed to be induced by the stage 

1 patients’ incremental data. Some authors ignore this correlation noting that the 

independent increment structure assumption holds approximately. We follow Jenkins et al3 

who, in addition to setting t1 and t2 independent of each other, for example, as described 

above, suggest improving the independent increment structure assumption by fixing in 

advance the rule for how long the stage 1 patients without events of interest at t1 are 

followed post stage 1. This ensures independence of Fisher information for stage 1, stage 2, 

and the incremental data. We suggest two rules for fixing the length of post stage 1 follow-

up, and hence t1. These rules are valid when t1 and t2 are determined as above, that is 

independently, and they (t1 and t2) are either prespecified dates, correspond to observation of 

prespecified numbers of events or are based on any other method for prespecifying duration 

of trials with time-to-event data.3,25 In the first, a fixed time between t1 and t1 is 

prespecified. This rule achieves approximate independence for whether or not stage 1 

patients from the dropped partitions without events at t1 are followed until t1, though this 

should be specified before the trial and also, they should only be followed as part of the trial 

if they continue with the allocated treatments and adhere to the trial protocol. In the second 

rule, t1 is the time when a prespecified number of events from stage 1 patients without 

events at t1 is obtained. For the approximate independence to work well, this rule requires 

that the patients from dropped partitions are followed until t1. Therefore, we only 

recommend this rule if it is plausible for the stage 1 patients from the dropped partitions to 

continue with the allocated treatments and adhere to the trial protocol. In Sections 4 and 5, 

we used the first rule. To assess the approximate independence assumption with this 

approach, we computed correlations between θ1, j and θ2, j for some scenarios in Section 5 

(not presented) and obtained similarly small values as Tsiatis et al.29 Note that if t1 and t2 

correspond to prefixed dates, it is valid to set t1 = t2.
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In some cases, such as when t2 corresponds to the time when a prespecified number of 

events from stage 2 patients is obtained and t1 is a prefixed date, it is possible to have t1 > t2. 

In practice, this is undesirable since stage 2 patients’ follow-up information beyond t2 is not 

included in data analysis. Therefore, in practice, t1should be fixed in such a way that t1 > t2
is very unlikely.

In this section, we have made the assumption that, for j(j = 1, …, K), θ1, j N θj, σ1, j
2 , and for 

each j ∈ S, θNj N θj, σNj
2  and θ2, j N θj, σ2, j

2 .We emphasize that these distributional 

assumptions are conditional on the selection made.

For example, while deriving unbiased estimators in Section 3.1, we will adjust for 

subpopulation selection by taking the expectation over the region of the decision made based 

on the interim analysis results. Also, since there is no overlap of patients among the 

partitions, estimates from different partitions are independent. For example, for j ≠ j′, θ1, j is 

independent of each of θ1, j′, θNf, and θ2, j′

2.3 ∣ Selection rules

Estimators proposed in this article can be used to adjust for any subpopulation selection rule 

based only on the stage 1 observed value for the vector θ1, 1, …, θ1, K ′. In this section, we 

review selection rules suggested by various authors. The first is appropriate for the two-stage 

adaptive threshold enrichment design described in paragraph three of Section 2.1.6,7 Let τs 

denote the subpopulation consisting of partitions 1 to s and let pj′ = ∑i = 1
j pi(j = 1, …, K). To 

maximize the number of partitions tested in stage 2,we continue with the largest 

subpopulation τs (s = 1,…, K) such that ∑j = 1
s pjθ1, j/ps′ ≤ b, where b is a prespecified value. 

Note that although ∑j = 1
s pjθ1, j/ps′ is not interpretable, it can give an indication of the 

treatment effects in the s partitions included. Figure 3A shows the decision regions for this 

rule when K = 2 and p1 = p2. The filled square is an example of a case where both partitions 

would continue to stage 2, while the filled circle is an example of a case where only partition 

1 would continue.

The selection rule just described is appropriate when a monotonic relationship between the 

biomarker and the treatment effect is expected. However, as described in Section 2.1, 

sometimes it is not expected that the relationship is monotonic. In such a case, for a binary 

biomarker, a selection rule should enable the trial to continue to stage 2 with partition 1 

(biomarker +ve), partition 2 (biomarker -ve) or both (F). As described in Section 2.1, this 

can be extended to K > 2. A common selection rule in this setting is to decide whether 

partition j (j = 1, … , K) continues to stage 2 based on θ1, j only.12 Thus, with a futility 

boundary, partitions with stage 1 estimates below b continue to stage 2. The decision regions 

for this rule when K = 2 are shown in Figure 3B.

We will demonstrate the estimators developed in Section 3 with the above two selection 

rules. Other selection rules4,5,12,34 are reviewed in the supplementary material. For all 

selection rules, for some values of (θ1, … ,θK ), even when F is selected, the naive estimates 
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are biased because of subpopulation selection. The new estimators in Section 3 correct for 

this bias since they condition on the selection rule, the selected partitions, and the observed 

data. The estimators also correct for bias appropriately when the selection rule does not 

reflect the true underlying relationship between biomarker and treatment effect.

2.4 ∣ Naive estimation

We will consider θNj, given by expression (1), as the naive point estimator. Note that θNj is 

not simply the estimate based on all data available at the end of the trial because, as 

described in Section 2.2, it is based on the data where the independent increment is assumed. 

For the special case of t1 = t1, the bias of θNj corresponds to the subpopulation selection 

bias. The difference in biases for θNj computed at t1 = t1 and θNj computed at t1 = t1 gives 

an indication of the bias attributable to the incremental data.

For the naive confidence interval, we assume that for each j ∈ S, the naive estimator 

θNj N θj, σNj
2 . Consequently, for each j ∈ S, the two sided naive confidence interval for θj 

that splits α equally among the |S| selected partitions is

θNj ± zα/(2 S )σNj, (2)

where zα/(2 |S | ) = Φ−1 1 − α/(2 |S | ) . This naive confidence interval addresses the issue of 

the independent increments as described in Section 2.2 and adjusts for multiple hypotheses 

but not the subpopulation selection.

3 ∣ BIAS ADJUSTED ESTIMATORS

3.1 ∣ New approximately conditionally unbiased point estimator

To adjust for the subpopulation selection, for each j ∈ S, we derive a UMVCUE for θj. The 

UMVCUE is based on the Rao-Blackwell theorem, which was initially proposed in adaptive 

designs by Cohen and Sackrowitz18 and subsequently extended to several treatment and 

subpopulation selection rules.4,6,19–22,35,36

Conditional on the selection made, for each j ∈ S, the estimator θ2, j provides an unbiased 

estimator for θj. By the Rao-Blackwell theorem, the UMVCUE is the expected value of this 

estimator given the sufficient and complete statistic. Here, the UMVCUE is conditional on 

the subpopulation selection rule used, the partitions selected to continue to stage 2 and the 

observed data. This is reflected in the UMVCUE for θj by its expression having terms for 

the lower and upper bounds for θ1, j that are determined based on the selection rule, the 

selected partitions, and the observed stage 1 data. Since the lower and upper bounds depend 

on the stage 1 data, they are random variables which we denote by Lj and Wj, with observed 

values lj and wj, respectively. Let pj′ = ∑i = 1
j pi(j = 1, …, K). For the adaptive threshold 

enrichment design selection rule in Section 2.3, when a subpopulation consisting of s (s = 
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1,...,K) partitions is selected, for each j ∈ {1, ..., s} = S, wj = ps′b − ∑i = 1
i ≠ j

s
piθ1, i /pj (the term 

∑i = 1
i ≠ j

s
piθ1, i is set to zero when s = 1) and

lj = max

ps + 1′ b − ∑i = 1
i ≠ j

s + 1
piθ1, i

pj

ps + 2′ b − ∑i = 1
i ≠ j

s + 2
piθ1, i

pj
, …,

pK′ b − ∑i = 1
i ≠ j

K
piθ1, i

pj
,

with lj set to be −∞ if all partitions are selected. For the selection rule of continuing to stage 

2 with any partition whose treatment effect is ≤ b (second rule in Section 2.3), for all 

j ∈ S, lj = − ∞ and wj = b. For K = 2, the points corresponding to the expressions for lj and 

wj are illustrated in Figure 3. For estimating θ1, l1 and w1 are the lower and upper edges of 

the vertical dashed and dotted lines that go through the stage 1 estimates, respectively. For 

estimating θ2, l2 and w2 are the right and left hand edges of the horizontal lines that go 

through the stage 1 estimates, respectively. The details of how the bounds for the adaptive 

threshold enrichment design selection rule and some other selection rules suggested in 

literature are derived are given in the supplementary material.

Let Qs denote the event of the observed data and S. Suppose that |S | = s and that the s 

selected partitions are indexed 1,...,s. Define θN1* = σ2, 1/σ1, 1 θ1, 1 + σ1, 1/σ2, 1 θ2, 1, the 

vector θN1*, θ1, 2, …, θ1, K, θ2, 2, …, θ2, s ′ is sufficient and complete for estimating θ1. 

Therefore, the UMVCUE for θ1 is the expression for 

E θ2, 1 ∣ θN1*, θ1, 2, …, θ1, K, θ2, 2, …, θ2, s, QS . The expression is obtained by deriving the 

conditional density fQS θ2, 1 ∣ θN1*, θ1, 2, …, θ1, K, θ2, 2, …, θ2, s  with 

E θ2, 1 ∣ θN1*, θ1, 2, …, θ1, K, θ2, 2, …, θ2, s, QS  obtained by deriving the expression for 

∫ θ2, 1fQS θ2, 1 ∣ θN1*, θ1, 2, …, θ1, K, θ2, 2, …, θ2, s dθ2, 1. The UMVCUEs for the effects in the 

other selected partitions are obtained similarly. We show in the supplementary material that 

for each j ∈ S, the UMVCUE for θj is given by

θUj = θNj −
σ2, j

2

σ1, j
2 + σ2, j

2
ϕ g Lj − ϕ g W j

Φ g Lj − Φ g W j
, (3)

where g(x) =
σ1, j

2 + σ2j
2

σ1j
2 θNj − x , and ϕ and Φ denote the density and distribution functions 

of a standard normal, respectively.

For the special case of t1 = t1, θUj is an asymptotic UMVCUE for θj. However, when 

patients without events at t1 are followed in stage 2, that is, t1 > t1, θUjis an approximate 
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asymptotic UMVCUE for θj meaning in some scenarios it may have small biases because as 

described in Section 2.2, the independent structure which is assumed in the derivation of θUj
is an approximate assumption. Like any estimator based on the asymptotic score statistic 

distribution(s), θUjmay be biased because score statistic distributions, such as those 

summarized in the last paragraph of Section 2, are asymptotic distributions that assume the 

value of θj is close to zero, that is, a small effect size. These aspects will be explored further 

in a simulation study in Section 5.

3.2 ∣ A new method for constructing confidence intervals

In this section, we construct new simultaneous confidence intervals that are based on the 

duality between hypothesis testing and confidence intervals. To account for the stage 1 

patients that are followed further in stage 2 because they did not have an event at the interim 

analysis, we propose hypothesis testing using the strategy suggested by Jenkins et al.3 They 

combine evidence from stages 1 and 2 using a P-value combination function and adjust for 

multiple hypotheses by the closure principle (CP).37 Let Hj (j = 1, … ,K) denote the 

elementary null hypothesis θj = 0 and HI(I ⊆ 1, …, K ) the intersection null hypothesis 

∩i ∈ I Hi, where for simplicity, for example, we write H12 for H{1,2}. We derive the 

expressions for the lower and upper bounds separately based on one-sided tests. For the 

lower bounds, the alternative hypothesis for HI(I ⊆ 1, …, K ) is that for at least one j ∈ I, θj 

> 0 and we denote the corresponding one-sided P-value for HI obtained using data from 

patients recruited in stage k (k = 1, 2) only by pk, I
+ . Note that θj > 0 indicates that the 

experimental treatment is inferior in partition j and that a lower bound below 0 is not 

sufficient to conclude that the experimental treatment is significantly beneficial. The P-value 

pk, I
+ (k = 1, 2) is obtained using stage k patients only since the P-value combination functions 

assume that p1, I
+  and p2, I

+  are independent. Therefore, p2, I
+ is computed by separately 

analysing the patients whose survival times correspond to the wholly dotted lines in Figure 

2. For the selected partitions, while computing p1, I
+  using the stage 1 patients, so as to 

include the incremental data in hypothesis testing, following Jenkins et al, the survival time 

and status are determined at time t1. Consequently, the survival times for patients with 

events at the interim analysis correspond to the continuous lines in Figure 2, while the 

survival times for patients without events at the interim analysis correspond to the lines 

consisting of continuous and dashed segments. While computing p1, I
+ , if the patients in the 

dropped partitions are followed after the interim analysis, as for the selected partitions, their 

survival times and status are determined at t1. However, if the patients in the dropped 

partitions are not followed after the interim analysis, their survival times and status are 

determined at t1 in the computation of p1, I
+  so that their survival times correspond to the 

continuous line segments in Figure 2. We described in Section 2.2 how to decide whether to 

follow up to t1 stage 1 patients from dropped partitions. For stage k (k = 1, 2) patients, since 

there is no overlap in the data used to obtain pk, I
+  and the data used to compute pk, i′

+ i ≠ i′ , 

we recommend the Šidak adjusted P-value given by pk, I
+ = 1 − 1 − mini ∈ I pk, i

+ |I|
 because 
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its type I error rate is exact. Using the weighted inverse normal method38 to combine the 

evidence from the two stages, the combined P-value 

C p1, I
+ , p2, I

+ = 1 − Φ ω1 Φ−1 1 − p1, I
+ + ω2 Φ−1 1 − p2, I

+ , where ω1 and ω2 are 

prespecified weights such that ω1
2 + ω2

2 = 1. We take ωk (k = 1, 2) to be the square root of the 

proportion of the prespecified total number of events from stage k patients. To control the 

type I error rate by the CP, it is concluded that θj > 0 (j = 1, … , K) if all hypotheses 

HI(I ⊆ 1, …, K ), with j ∈ I are rejected or equivalently if the adjusted P-value 

maxI C p1, I
+ , p2, I

+ ≤ α/2, with j ∈ I. To allow for the dropped partitions, the stage 2 P-value 

p2, I
+  is obtained using the test for HI ∩ S, with p2, I

+  set to be 1 if I ∩ S = ∅.

Stage 1 pairwise P-values p1, j
+ (j = 1, …, K) that are required in the expression for the Šidak 

adjusted P-value, p1, I
+ , can be obtained using statistics similar to those in Section 2.2. Let 

S1, j and V 1, j(j = 1, …, K) denote the score statistic and Fisher information for partition j 

stage 1 patients with survival time and status evaluated at t1 if partition j patients without 

events at t1 are followed in stage 2 until t1 and at t1 if partition j patients without events at t1 

are not followed in stage 2. Defining θ1, j = S1, j/V 1, j and 

σ1, j
2 = 1/V 1, j, p1, j

+ = 1 − Φ θ1, j/σ1, j . Similarly, for each j ∈ S, stage 2 pairwise P-value p2, j
+

that is required in the expression for the Šidak adjusted P-value, p2, I
+ , is computed using the 

score statistic and Fisher information obtained by separately analyzing the patients 

corresponding to the dotted lines in Figure 2.

Magirr et al23 developed simultaneous confidence intervals following two-stage adaptive 

clinical trials with treatment selection that are based on the duality between confidence 

intervals and hypothesis testing. They assume a hypothesis testing approach that is similar to 

that we have proposed above. Following their work, we give simultaneous confidence 

intervals following two-stage adaptive clinical trials with subpopulation selection that are 

compatible with the above testing procedure. Magirr et al describe the theory of how to 

obtain a confidence region with the correct coverage and subsequently how to extract 

simultaneous confidence intervals. We do not repeat the theory and only focus on giving the 

expressions for the confidence intervals in our setting. We give the expressions assuming 

that the Šidak adjustment is used for the intersection hypotheses. The expressions are 

functions of the P-values for the generalized null hypotheses. Let Hj θj*  denote the 

generalized null hypothesis θj = θj* and for I ⊆ 1, …, K , we write HI(θ∗) for the 

generalized intersection hypothesis ∩i ∈ I Hi θi* . For an observed stage k (k = 1, 2) dataset 

xk, the generalized P-value for HI is pk, I
+ θ*, xk  and is computed as Prob Xk ≥ xk; θ* , where 

θ* = θ1*, …, θK* ′. The combined P-value for HI(θ∗) is 

C p1, I
+ θ*, x1 , p2, I

+ θ*, x2 = 1 − Φ ω1 Φ−1 1 − p1, I
+ θ*, x1 + ω2 Φ−1 1 − p2, I

+ θ*, x2 . The 

Šidak adjusted generalized P-value, pk, I
+ θ*, xk (k = 1, 2), is given by 
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1 − 1 − mini ∈ I pk, i
+ θi*, xk

|I|
, where pk, i

+ θi*, xk  is the generalized pairwise P-value. As an 

example, p1, j
+ θj*, x1 (j = 1, …, K)is given by 1 1 − Φ θ1, j − θj* /σ1, j .

Let pM
+  be the maximum stage 1 P-value for all the intersection hypotheses 

HI(I ⊆ 1, …, K \S). For example if K = 4 and S = 1, 2 , pM
+ = max p1, 3

+ , p1, 4
+ , p1, 34

+ . If all 

partitions are selected to continue to stage 2 so that 1, …, K \S = ∅ , pM
+  is set equal to 0. If 

at the end of stage 2 it is concluded that θj > 0 for all j ∈ S, then for each j ∈ S, the lower 

bound for the effect in partition j is given by

θj, L = max 0, sup v:C max pM
+ , 1 − 1 − p1, j

+ v, x1
K , 1 − 1 − p2, j

+ v, x2
S

≤ α/2 ,
(4)

Note that pk, j
+ v, xk (k = 1, 2) is a generalized pairwise P-value for Hj and so it is 

computationally quick to find the root.

If at the end of the trial, for some j ∈ S, it is not concluded that θj > 0, the expression for the 

lower bound of the effect in a partition depends on the outcome of the hypothesis testing. 

For j ∈ S where it is concluded that θj > 0, the lower Bound for θj is

θj, L = 0. (5)

For HI(I ⊆ 1, …, K ), based on stage k (k = 1, 2) patients’ data, we define 

pk, I
+ (j, v) = Prob Xk ≥ xk; θj, v , where θj,v is a K × 1 vector whose jth entry is ν and the other 

entries are zero. For I ⊆ 1, …, K  with j ∈ I, we define θj, L
I = ∞ if C p1, I

+ , p2, I
+ < α/2 and 

θj, L
I = sup v:C p1, I

+ (j, v), p2, I
+ (j, v) ≤ α/2  otherwise. For j ∈ S where it is not concluded that 

θj > 0, the lower bound for θj is

θj, L = min
I ⊆ {1, …, K

θj, L
I . (6)

Note that in this case where at the end of the trial, for some j ∈ S, it is not concluded that θj 

> 0, the confidence intervals for the effects in the partitions where it is concluded that the log 

HRs are greater than 0 are not informative. This is because from expression (5), the lower 

bounds for those partitions are fixed to be 0 regardless of the values of the point estimates 

and the adjusted P-values. This is a drawback of the method.23 We emphasize that the lower 

bounds obtained using expression (6) are informative and those obtained using expression 

(4) would be expected to be informative most of the time. So non-informative lower bounds 

are mostly obtained when more than one partition is selected to continue to stage 2 and it is 

concluded that the log HR in at least one partition is not greater than 0 (the lower bounds in 

such partitions are informative) and it is concluded that the log HR in at least one partition is 
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greater than 0 (the lower bounds for such partitions are set to be 0 and hence non-

informative).

To derive the upper bounds, the alternative hypothesis for HI(I ⊆ 1, …, K ) is that for at 

least one j ∈ I, θj < 0. Note that, when the upper bound is less than 0, then the experimental 

treatment is significantly superior. Let δj* = − θj* and δk, j = − θk, j, the stage 1 

“conventional” and generalized P-values in this case are 

p1, j− = Φ θ1, j/σ1, j = 1 − Φ δ1, j/σ1, j , and 

p1, j− θj*, x1 = Φ θ1, j − θj* /σ1, j = 1 − Φ δ1, j − δj* /σ1, j  respectively. Note that p1, j−  is the 

P-value for the hypothesis test θj = 0 against θj < 0 as well as for the hypothesis test δj = 0 

against δj < 0 as well as for the hypothesis test δj = 0 against δj > 0, where δj = −θj. 

Therefore, as we do in Sections 4 and 5, the upper bound for the effect in partition j, θj,U, 

can be obtained as follows. Change the signs of the point estimates, for example, changing 

θ1, j to −θ1, j, and then obtain the lower bound, δj,L, for δj = −θj as described for θj above. 

The upper bound for the effect in partition j is θj,U = −δj,L. As with the lower bounds, the 

upper bounds can be non-informative.

4 ∣ EXAMPLE

To illustrate how to compute the various estimates, we construct a two-stage enrichment trial 

using data from a single-stage trial that compared intravenous methotrexate (C-MTX) and 

high-dose methotrexate (HDMTX) in the treatment of T-cell acute lymphoblastic leukemia 

(T-ALL) in children.10 The numbers of patients allocated to C-MTX and HDMTX were 519 

and 512, respectively. Based on the clinical features, the patients were categorized as low 

risk (LRi), intermediate risk (IRi), and high risk (HRi). The analysis included assessing 

separate effects in 109 LRi, 707 IRi, and 215 HRi patients and so we take the risk level as 

the biomarker. So as not to have too few events in each stage of the constructed example, we 

use disease free survival (DFS). The conclusion from the trial was that C-MTX is superior to 

HDMTX. The observed advantage of C-MTX over HDMTX increased with risk level and 

was statistically significant for intermediate and high risk levels. Although the aim of the 

trial was to assess which of C-MTX and HDMTX is superior, for the constructed example, 

we take HDMTX and C-MTX to be the control and experimental treatment, respectively. 

Also, because of the few LRi patients and events from them, for the constructed example, we 

combine LRi and IRi patients into one category. Therefore, we have two partitions, one 

consisting of the HRi patients and the other consisting of the LRi and IRi (LRi/IRi) patients.

We take the futility boundary b = 0. Based on the observed monotonic relationship between 

treatment effect and risk level on the initial categorization (LRi, IRi, and HRi), the adaptive 

threshold enrichment design could be used. For this design, based on Figure 1, partitions 1 

and 2 correspond to HRi and LRi/IRi patients, respectively. If for this design we use the first 

selection rule in Section 2.3, we need to specify the prevalences of the partitions, which we 

have assumed to be known. In this illustrative example, we use the observed prevalences in 

the entire trial (p1 = 0.2 and p2 = 0.8). Since we do not pool estimates from multiple 

partitions, the estimates remain valid for any set of prevalences. However, if better guesses 

of the prevalences are available, for example, from historical data, they could be used as they 
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influence the probability of selecting the desired partitions. The selection rule of continuing 

with any partition whose stage 1 estimate is ≤ b can also be used with this example. We will 

demonstrate how to compute estimates based on both selection rules.

Patients were recruited in 2720 days, the last follow-up was 3644 days after recruitment 

started, and there were 122 events. We assume that the interim analysis was conducted after 

60 events (21 in partition 1 and 39 in partition 2), which corresponds to 2176 days after 

recruitment started and when 80% of the patients (stage 1 patients) had been recruited. The 

number of events from the 20% of the patients who were recruited after the interim analysis 

(stage 2 patients) is 31 (13 in partition 1 and 18 in partition 2). The number of events from 

stage 1 patients who did not have events at the interim analysis was 31 (11 in partition 1 and 

20 in partition 2). The last follow-up of stage 2 patients was 3644 days from when the trial 

first recruited. We assume that it was prespecified that the follow-up of stage 2 patients will 

stop after 31 events were observed from them and that this happened 3644 days from when 

recruitment started. This assumption enables us to describe how t1 that is different from t2 

can be prespecified, and the consequences of this. We assume that it was prespecified that 

stage 1 patients without events at the interim analysis will be followed for 3.5 years after the 

interim analysis, which corresponds to 3455 days from when recruitment started. This 

resulted in not including in the final analysis one DFS event from stage 1 patients who did 

not have events at t1. Note that t1, t1, and t2 correspond to calendar dates 2176, 3455, and 

3644 days from the date of first enrolment, respectively.

Details of formatting the data and the R39 code used to analyze them are provided in the 

supplementary material. The estimates are summarized in Table 1. The stage 1 estimates in 

partitions 1 and 2 are θ1, 1 = − 0.902 and θ1, 2 = − 0.419, respectively. For the adaptive 

threshold enrichment design selection rule, since p1θ1, 1 + p2θ1, 2 = − 0.516 < b( = 0), both 

partitions (F) are selected to continue to stage 2. The naive estimates for partitions 1 and 2 

are θN1 = − 0.746 and θN2 = − 0.362, respectively. Since F is selected, from Section 3.1, 

l1 = l2 = − ∞, w1 = p2′ b − ∑i = 1
2 piθ1, i /p1 = b − p2θ1, 2 /p1 = (0 − [0.8 × − 0.419])/0.2 = 1.676

.Similarly, w2 = b − p1θ1, 1 /p2 = 0.226. For example, for partition 1, substituting 

θNj, σ1, j
2 , σ2, j

2 , Lj and Wj in Equation (3) with 

θN1 = − 0.746, σ1, 1
2 = 0.191, σ2, 1

2 = 0.167, l1 = − ∞, and w1 = 1.676, respectively, the 

UMVCUE for the effect in partition 1 is θU1 = − 0.737. Similarly, the UMVCUE for the 

effect in partition 2 is θU2 = − 0.359. The UMVCUEs are closer to zero than the 

corresponding naive estimates. With the selection rule of continuing with any partition 

whose stage 1 estimate ≤ b(= 0), F is selected since θ1, 1 = − 0.902 < 0 and 

θ1, 2 = − 0.419 < 0. From Section 3.1, l1 = l2 = −∞ and w1 = w2 = b = 0. All the other 

quantities to substitute in Equation (3) are the same as for the adaptive threshold rule. The 

UMVCUEs for the rule of continuing with any partition whose the observed stage 1 effect is 

≤ 0 (independently selecting partitions) are closer to zero (θU1 = − 0.631 and θU2 = − 0.335) 

than the corresponding naive estimates and the UMVCUEs for the adaptive threshold 
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design. This indicates that the naive estimates may have bigger biases when a partition is 

selected independent of the observed effects in the other partitions compared to when 

partitions are selected using the adaptive threshold design selection rule.

The naive and duality confidence intervals are conditional on the number of partitions 

selected and not the selection rule used to select the partitions. Hence, since F was selected 

with the above two selection rules, the naive and duality confidence intervals are the same 

for the two selection rules. For the naive confidence interval, for α = 0.05, zα/(2 |S | ) in 

expression (2) is zα/(2 × 2) = 2.241. The values for θNj. and σNj(j = 1, 2) are given in Table 1. 

Consequently, the naive confidence intervals for the effects in partitions 1 and 2 are (−1.415, 

−0.077) and (−0.876, 0.153), respectively. For the duality confidence intervals, we take the 

weights ω1 = 0.75 and ω2 = 0.25. These are approximately proportional to the number of 

events from stages 1 and 2 patients, which is optimal in combining stages 1 and 2 evidence.
38 This assumes that, in advance, we could tell how many events will be observed from 

patients recruited in each stage. In practice, it may not be possible to specify optimal 

weights. Since there are two partitions, the null hypotheses tested are H1 (θ1 = 0), H2(θ2 = 

0), and H{1,2}(θ1 = θ2 = 0). For the lower bound, the alternative hypothesis for Hj (j = 1, 2) 

is θj > 0, while the alternative hypothesis for H{1,2} is θ1 > 0 or θ2 > 0. The stagewise and 

the combined P-values are given in the supplementary material (Figure S2). The adjusted P-

values for partitions 1 and 2 are both equal to 0.998 so that we do not conclude the effects 

are greater than 0. Therefore, to get the lower bounds of the effects in both partitions, we use 

expression (6) giving the lower bounds for the effects in partitions 1 and 2 as −1.499 and 

−0.911, respectively. For the upper bound, the alternative hypothesis for Hj (j = 1, 2) is θj < 
0, while the alternative hypothesis for H{1,2} is θ1 < 0 or θ2 < 0. The stagewise and the 

combined P-values are given in the supplementary material (Figure S3). The adjusted P-

values for partitions 1 and 2 are 0.0179 and 0.0601, respectively, so that the conclusion is 

that the log HR in partition 1 is less than 0, while we do not conclude that the log HR in 

partition 2 is less than 0. Hence, the confidence interval for the effect in partition 1 is not 

informative with upper bound fixed to be 0 by expression (5). When the duality confidence 

interval upper bound is not informative, in Section 6, we propose using the naive upper 

bound to make a decision on the treatment effect. For the upper bound for the effect in 

partition 2, we use expression (6) and the last paragraph in Section 3.2 to obtain 0.093.

To assess the impact of a bigger trial and to demonstrate how to use expression (4) to 

compute duality confidence intervals’ limits, we combined the above data with a bootstrap 

sample with the same number of patients. The proportion of events at the interim analysis is 

the same. The results are in the supplementary material (Table S2 and Section 5.3). The bias 

corrections for some of the naive estimates are smaller. This may be attributed to more 

precise stage 1 estimates, which may indicate the treatment effects are less than 0 and hence 

less correction for the futility rule. Also, the log HRs in both partitions are concluded to be 

less than 0 and so the duality confidence intervals for the effects in the two partitions are 

informative.
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5 ∣ SIMULATION STUDY

5.1 ∣ The simulation study setting

For data generation, we assumed the Weibull distribution with the hazard function for death 

for treatment i (i = C, E) in partition j (j = 1, … ,K) parameterized as

ℎij(t) = λijγijtγij − 1,

where t is time (in days for the simulation study), and λij and γi are the scale and shape 

parameters, respectively. In all simulation scenarios, we considered the case of γij = γ. For 

two scenarios where the HRs in partitions are the same, but in one scenario the biomarker is 

prognostic while in the other the biomarker is not prognostic, the properties of the new 

estimators are expected to be the same. Therefore, in all simulation scenarios, we only 

considered the case of a biomarker that is predictive but not prognostic taking the scale 

parameter for the control group in all partitions to be λCj = λC. In most simulations, we will 

take γ= 0.5 but in order to assess the effect of the shape parameter, we will compare some 

results for γ = 0.5 with the cases of γ = 1 (exponential distribution) and γ = 1.5.

The log HR in partition j (j = 1, … , K) is given by θj = ln λEj/λC . In most simulations, we 

considered four partitions of equal prevalences (quartiles) and three configurations for (θ1, 
θ2, θ3, θ4)′, which are (0.0198, 0.0198, 0.0198, 0.0198)′, (−0.2231, −0.0953, 0.3364, 

0.4055)′, and (−0.4055, −0.2231, −0.0953, 0)′. Log HRs equal to −0.4055, −0.2231, 

−0.0953, 0, 0.0198, 0.3364, and 0.4055 correspond to HRs equal to 0.6667, 0.80, 0.9091, 1, 

1.02, 1.4, and 1.5, respectively. In all simulations, we set the futility boundary b = 0.

Sample sizes in the simulations are selected such that a power of approximately 80% would 

be obtained in a single-stage one-year trial with a HR of 0.8. This corresponds to a setting 

typical of many oncology trials. The hazard function parameters and the required number of 

deaths and patients are given in Table 2. For the control arm, we set the scale parameters so 

that the median survival time is 400 days, with the scale parameters for the experimental arm 

chosen so that λE∕λC = 0.8. For 80% power, the required number of deaths is 630 in all 

scenarios, while the required numbers of patients are 2060, 2600, and 3300 for γ= 0.5, γ = 

1.0, and γ = 1.5, respectively.40 Informed by these sample sizes for one-year single-stage 

trials, we considered two-stage trials with an interim analysis after 300 deaths and with stage 

2 patients followed until 300 deaths are observed from them. For γ = 0.5, γ = 1, and γ = 1.5, 

we assumed, respectively, 2200, 2800, and 3400 patients can be recruited uniformly over 

two years.

We will assess the properties of the various estimators for the case where stage 1 patients 

without events at t1 are not followed in stage 2, that is, t1 = t1, and for the case where they 

are followed in stage 2 up to time t1 > t1, which corresponds a prespecified number of days 

after t1. Since it is expected that stage 2 is about 1 year, we set t1 to correspond to 250 days 

after t1 for γ = 0.5. We choose fewer than 365 days so that it is unlikely that t1 > t2 In a real 
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trial, for γ = 1.0 and γ= 1.5, we would also choose t1 to correspond to 250 days after t1. 

However, so that we have approximately the same total number of events in the simulated 

trials for γ = 0.5, γ = 1.0, and γ = 1.5, we set t1 to correspond to 110 days and 77 days after 

t1 for γ = 1.0 and γ = 1.5, respectively. With these specifications for t1, in the selected 

partitions, the average number of events at t1 for stage 1 patients without events at t1 is 

approximately 40.

The scenarios we have described in this section cover a subset of the simulations undertaken. 

Other scenarios are considered in the last paragraph of Section 5.2 and in Section 5.3. For 

each scenario, we simulated 100 000 trials. For each simulated trial, for each selected 

partition, we computed two naive estimates corresponding to t1 = t1 and t1 > t1 and similarly 

two UMVCUE estimates. We also computed the naive confidence interval and the duality 

confidence interval.

5.2 ∣ Simulation results for the adaptive threshold enrichment design

We first consider the case of selecting partitions to continue to stage 2 using the adaptive 

threshold enrichment design selection rule described in Section 2.3. Table 3 shows the 

simulated probabilities of selecting different partitions under different settings. The 

probabilities for γ = 0.5, γ = 1.0, and γ = 1.5 are similar. For the first two configurations, 

the probabilities of making the ideal decisions (shown in bold in Table 3) are relatively small 

(32% and 34%, respectively). The naive estimators have more bias when the ideal decision 

is not made6 and so the naive estimators would be expected to have large biases when the 

probability of making the ideal decision is small.

Table 4 shows the simulated biases and root mean square errors (RMSEs) of the point 

estimators for γ = 0.5. Columns labeled t1 = t1 correspond to when stage 1 patients without 

events at the interim analysis are not followed after t1, while columns labeled t1 > t1
correspond to when stage 1 patients without events at the interim analysis are followed until 

t1. A positive bias indicates that the estimator is overestimating the true effect size while a 

negative bias indicates that the estimator is underestimating the true effect size. We first 

describe the biases and RMSEs for the naive estimator θNj  For both t1 > t1 and t1 = t1, θNj
can be positively or negatively biased. The biases for θNj are smaller when t1 > t1 than when 

t1 > t1. Hence, the incremental data induce negative bias when subpopulation selection bias 

is positive and the incremental data induce positive bias when subpopulation selection bias is 

negative. In all cases, the RMSEs for θNj when t1 > t1 are smaller than when t1 = t1. Thus, 

the naive estimator has better properties when patients without events of interest at the 

interim analysis are followed further in stage 2. Next, for t1 > t1, we compare the naive 

estimator θNj  to the UMVCUE θUj . Estimator θUj evaluated when t1 > t1 is slightly 

biased in some cases but its biases are smaller than those for θNj evaluated when t1 > t1, and 

the differences are big in some cases. Still focusing on when t1 > t1, the RMSEs for θUj and 

θNj are close, sometimes with negligible difference so that when t1 > t1, we consider θUj to 
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be a better estimator than θNj since the two estimators have close RMSEs but the former has 

smaller biases. The summary so far is that we consider the UMVCUE (i)Uj) when i1 > t1 to 

be better than the naive estimator (0Nj) both when i1 > t1 and i1 = t1. Finally, we compare 

θUj when t1 > t1 and when t1 = t1. For t1 = t1, θUj is mean unbiased. This is expected since 

by derivation, when t1 = t1, θUj is an asymptotic UMVCUE. Although θUj when t1 = t1 is 

mean unbiased, it has bigger RMSEs than θUj when t1 > t1. We consider θUj when t1 > t1 to 

be better than when t1 = t1, since in the former, θUjis only slightly biased but has smaller 

RMSEs. The results for the first row in Table 4 for Scenario 1 (θ1 = θ2 = θ3 = θ4 = 0.0198), 

the first two rows for Scenario 2 (θ1 = −0.2231, θ2 = −0.0953, θ3 = 0.3365, θ4 = 0.4055), 

and the first row for Scenario 3 (θ1 = −0.4055, θ2 = −0.2231, θ3 = −0.0953, θ4 = 0) are 

complemented by Figure 4A–D, respectively. We note that, even in the cases in Table 4 

where θUj for t1 > t1 seems to have noticeably more bias than when t1 = t1, the median 50% 

estimates and the maximum values for θUj when t1 > t1 are closer to the true value. Hence, 

the conclusion from Figure 4A–D is the same as that made from Table 4. Thus the summary 

from Table 4 and Figure 4 is that, for an adaptive trial with subpopulation selection, it is 

better to follow stage 1 patients without events of interest at the interim analysis up to a 

prespecified time t1 > t1 in stage 2 and estimate the effects in partitions using the 

approximate asymptotic UMVCUE. Additionally, we note that for both θNj and θUj, the 

estimators have smaller RMSEs when t1 > t1 than when t1 = t1. This feature would be 

expected in all scenarios since for t1 > t1, θNj and θUj contain additional information 

collected from stage 1 patients without events of interest at the interim analysis, which 

asymptotically are approximately an independent increment.

Table 5 summarizes the simultaneous properties for the confidence intervals of the effects in 

the selected partitions for α = 0.05. In most scenarios, the naive confidence regions have at 

least the desired 95% coverage probability. However, there are also several scenarios where 

they do not. Moreover, the “type I error” rate (non-coverage at upper end, which is defined 

as the probability that at least one upper bound is less than the true value) seems to be more 

severe than the violations of general coverage. Consequently, in general, the naive 

confidence intervals do not have the desired properties. For the duality confidence regions, 

in all scenarios, as desired, the coverage probabilities for the confidence regions are at least 

95%. The confidence regions are not symmetric but the probabilities that at least one upper 

bound is less than the true value are below the desired 2.5%. However, these probabilities 

tend to be very small compared to the target 2.5%. This is partly due to the non-informative 

upper bounds. Hence, although the simultaneous duality confidence intervals have the 

desired coverage probabilities and type I error rates, they may be non-informative.

Results for other scenarios (γ = 1, γ = 1.5, slower recruitment rate, more events from stage 1 

patients without events at t1, fewer events in a trial and conducting subpopulation earlier in 

the trial) are given in the supplementary material (Section 7, Tables S4 to S17, and Figures 

S5 to S11). In all scenarios, we recommend having t1 > t1 and obtaining point estimates 

using θUj. Furthermore, we consider the duality confidence regions to have at least the 
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nominal coverage probabilities and the probabilities that at least one upper bound is less than 

the true value to be less than the target 2.5% but usually very small, which is partly 

explained by non-informative confidence intervals.

5.3 ∣ Simulation results for a different selection rule

To assess the characteristics of the various estimators when a different selection rule is used, 

we performed simulations for the case of continuing with any partition whose stage 1 log 

hazard ratio estimate is ≤ 0. This corresponds to the second selection rule in Section 2.3, 

with b = 0. The other aspects of the simulations are the same as those used to obtain the 

results in Table 4. The results for the point estimators for the three configurations of (θ1, θ2, 

θ3, θ4)′, which are (0.0198, 0.0198, 0.0198, 0.0198)′, (−0.2231, −0.0953, 0.3364, 0.4055)′ 
and (−0.4055, −0.2231, −0.0953, 0)′ are given in the supplementary material in Tables S18 

to S20, respectively. The biases of the naive point estimator θNj are positive in all cases. 

This is because a partition is selected if it has a positive effect. In several scenarios, biases 

are larger than in the case of the adaptive threshold enrichment design (Results in Section 

5.2). When t1 > t1, the UMVCUE θUj is slightly biased in some cases but has smaller 

RMSE than when t1 = t1. Hence we recommend having t1 > t1 and using θUj to obtain 

estimates.

We expect the magnitudes of the biases for the point estimators for most selection rules that 

have a futility element to fall between the biases for the selection rule used in this section 

and the adaptive threshold selection rule considered in Section 5.2. This is because the 

selection rule in this section selects a partition based on the stage 1 observed effect in that 

partition only, while the adaptive threshold design considers stage 1 observed effects in all 

partitions and also assumes a relationship between the treatment effect and the biomarker 

value. Consequently, for most selection rules, we expect having t1 > t1 and using estimator 

θUj as the best way of obtaining point estimates.

The simultaneous properties of the naive and the duality confidence intervals are 

summarized in the supplementary material (Table S21). For the two scenarios where the 

values for (θ1, θ2, θ3, θ4)′ are (0.0198, 0.0198, 0.0198, 0.0198)′ and (−0.4055, −0.2231, 

−0.0953, 0)′, unlike the naive confidence regions, the duality confidence regions have at 

least 95% coverage and the probabilities that at least one upper bound is less than the true 

value are less than 2.5%. For the other scenario of (θ1, θ2, θ3, θ4)′ equal to (−0.2231, 

−0.0953, 0.3364, 0.4055)′, the simulated probabilities (not reported in the table) for S equal 

to ∅, {1, 2}, {1} and {2} are 5.9%, 48.1%, 25.5%, and 10.9%, respectively. In these cases 

that constitute more than 90%, the duality confidence regions have at least 95% coverage 

probability and the probabilities that at least one upper bound is less than the true value are 

less than 2.5%. For the remaining cases, the naive confidence intervals have undesirable 

properties because the coverage probabilities are as small as 88% and the probabilities that 

at least one upper bound is less than the true value are as high as 12%. The coverage 

probabilities for the simultaneous duality confidence intervals are generally at least the 

target 95% but the probabilities that at least one upper bound is less than the true value are 

mostly above 2.5%, although much smaller than those of the naive confidence intervals. We 
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note that this is driven by the upper bounds for the treatment effects in partitions 3 and 4. 

This may be considered to be of less practical impact since the log hazard ratios in these 

partitions are above 0 and the upper bounds are also mostly above 0 so that the new 

treatment would not be recommended in partitions 3 and 4. The reason that the duality upper 

bounds for the effects in partitions 3 and 4 do not show the desired properties is because the 

hypothesis testing described in Section 3.2 does not control the type I error rate conditional 

on the selection made but controls the probability of selecting any partition where the 

treatment is not effective and concluding it is effective. When the treatment is effective in 

some partitions and not in others, conditional on the selection, the type I error rate is above 

the target 2.5%. Hence, since we assessed the properties of the simultaneous confidence 

intervals conditional on the selection made, tail probabilities for such scenarios can be above 

2.5%.

Based on the selection rule used in this section, we also performed simulations to assess the 

properties of the estimators for the case of bigger treatment effects. The simulated 

probabilities for S = 1, 2, 3, 4  and S = 1, 2, 3  are 49.8% and 50.1%, respectively. The 

point estimation results are presented in the supplementary material (Table S22 and Figure 

S12). Even in scenarios where the selection bias is negligible, the point estimators are 

slightly negatively biased when the true hazard ratio is < 0.4. We describe the consequence 

of this finding in Section 6. We attribute the bias to the fact that the asymptotic distributions 

in Section 2.2 are based on the approximation of Taylor’s expansion of the likelihood 

function, and the accuracy improves as the effect size gets closer to zero.27 We have also 

assessed the properties of the confidence intervals for a scenario with big treatment effects 

and where the probability of having noninformative bounds with the duality confidence 

intervals is small (results in supplementary material Table S23). For both the naive 

confidence intervals and the duality confidence intervals, the probabilities that at least one 

upper bound is below the true value are smaller than 2.5%. As with point estimates, we 

attribute this to the underestimation of the treatment effects so that consequently the upper 

bounds are underestimated.

6 ∣ DISCUSSION

We have used the Rao-Blackwell theorem to derive a point estimator that adjusts for any 

subpopulation selection rule that is based on stage 1 estimates only in two-stage adaptive 

trials with time to event data. It is an asymptotic UMVCUE if the patients without events at 

stage 1 are not followed further in stage 2, while it is an approximate asymptotic UMVCUE 

if they are followed further in stage 2. When the stage 2 follow up length for stage 1 patients 

without events is specified before the trial, based on our simulation, the approximate 

asymptotic UMVCUE performed best. Unlike the case of normally distributed outcomes,4,6 

compared with the naive estimator, this estimator did not have markedly higher RMSE and 

in some simulation scenarios, it outperformed the naive estimator in terms of RMSE. With 

time to event data, it is difficult to explore all factors that influence the properties of the 

various estimators. However, in our simulations, we considered several factors that may be 

encountered in real clinical trials and hence we expect the recommendation that the 

approximate UMVCUE is the best estimator to hold in most settings.
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We have also described a new method for constructing simultaneous confidence intervals 

based on the duality between hypothesis testing and confidence intervals. In simulations, 

unlike the naive confidence intervals, the confidence regions corresponding to the new 

confidence intervals had at least the nominal coverage probability and also the probabilities 

that at least one lower bound was below the true value were acceptable. However, for 

example, as in the results in Table 1, the new confidence intervals can be non-informative. 

Focusing on the upper bounds, the non-informative confidence intervals are obtained in 

partitions where the treatment is concluded effective whenever in at least one selected 

partition, the treatment is not concluded effective. The probability of this happening depends 

on aspects such as the true treatment effects in partitions, the interim analysis sample size 

(events), the overall sample size (events), the selection rule, and the number of partitions. In 

the simulations, there was a high probability of this happening since most scenarios 

consisted of partitions where the new treatment is not effective and the futility rule only 

required stage 1 estimates to indicate the new treatment is as good as the control. More 

research to develop methods that do not give non-informative confidence intervals, such as 

extending existing work,41 is required.

We have assumed that there is no endpoint change between stages 1 and 2, such as using an 

early endpoint to make subpopulation selection in stage 1. This is appropriate in disease 

conditions such as pancreatic cancer where survival times are short and hence there is no 

practical advantage of considering an early endpoint in stage 1 and conditions such as uveal 

melanoma where an early endpoint does not exist.42 Increasingly, however, whenever 

practically feasible, adaptive clinical trials with time to event endpoints as the primary 

outcome(s) use time to some earlier event or different endpoints that are observed earlier 

than the primary outcome(s) to make adaptations in stage 1.12 The UMVCUE developed in 

this article can be extended by combining the techniques presented here and the techniques 

that consider using an early endpoint to make an adaptation.43,44 For the confidence 

intervals, the expressions for the new confidence intervals when there is change of endpoint 

are exactly the same as those in this article since they apply to any selection rule and hence 

no additional methodology is required. The coverage probabilities are, however, likely to be 

larger than those in this article since following Kimani et al,45 we expect the coverage 

probability to be closest to the nominal coverage if the same endpoint is used for 

subpopulation selection and estimation.

We have based the methodology on the score statistic. This has the advantage of producing 

estimates that align with the commonly used log rank test. However, since the asymptotic 

distribution of the score statistic holds best when the log hazard ratio is close to zero, we 

observed from the simulation study that for the cases where the true hazard ratio is < 0.4, the 

proposed approximate UMVCUE underestimates the treatment effect slightly. In real trials, 

this will have little impact since it is unlikely that the true hazard ratio is as small as 0.4. For 

example, for the stem cell therapies where relatively big treatment effects are observed, a 

simple online search of “stem cell therapies hazard ratios” did not identify a publication 

where the hazard ratio was less than 0.5. Furthermore, if the observed hazard ratio is smaller 

than 0.4, although possibly biased, the clinical decision that one treatment is superior would 

be unchanged if the expression for the proposed approximate UMVCUE is used to compute 

an estimate. An alternative to using the score statistic is to determine the asymptotic 
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distribution of the log hazard ratio from the Cox’s proportional hazards model using 

techniques described by several authors.26,46,47 This would be expected to give similar 

results to those based on score statistics in most realistic trials where the treatment effects 

are not expected to be very big. However, in the instance with a very big treatment effect, the 

hazard ratio estimate based on the Cox’s model may be smaller than the one that is based on 

the score statistic. Also, the Cox model has the advantage of being able to incorporate 

covariates.26 Similarly, the upper bounds based on the score statistic distribution were 

observed to be conservative, which as with approximate UMVCUE will have little impact on 

trials. Using the Cox model to obtain the duality confidence intervals is straightforward 

because the stagewise P-values are obtained from stages 1 and 2 patients separately.

Since from our simulation study and previous work,4–6,48 the naive point estimator can have 

substantial bias, we rec-ommend using the approximate UMVCUE. The expression for the 

UMVCUE given by (3) is straightforward to implement. Also, the naive confidence intervals 

do not have the desired properties. Hence, we recommend the confidence intervals obtained 

by using the bounds of the simultaneous duality confidence intervals that we have developed 

when they are informative, and using the naive confidence intervals bounds when the bounds 

of the simultaneous duality confidence intervals are not informative. For example, using the 

results in Table 1, the confidence interval for the effect in partition 1 would be (−1.499, 

−0.077). It is straightforward to obtain the naive confidence intervals using expression (2). 

While demonstrating how to compute the duality confidence intervals in Section 4, we have 

written R functions to solve expressions (4) and (6) that can be used with any number of 

partitions. The code that includes the R functions is available in the supplementary material 

and we have also provided the key estimates to input in the functions to enable reproducing 

the worked example results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Partitioning of the full population
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FIGURE 2. 
Various time points in the adaptive design with time to event data
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FIGURE 3. 
Decision regions for two selection rules when K = 2. The continuous lines are the decision 

boundaries. The filled circle and square are two possible stage 1 results that lead to selecting 

partition 1 and F, respectively. The edges of the vertical dashed and dotted lines give the 

bounds for estimating θ1 that are denoted by l1 (lower bound) and w1 (upper bound). The 

edges of the horizontal dashed lines give the bounds for estimating θ2 and are denoted by l2 

(lower bound) and w2 (upper bound). A, Adaptive threshold enrichment design. B, Selecting 

partitions independently
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FIGURE 4. 
Boxplots for estimates in partition 1 (panels A, B, and D) and partition 2 (panel C) when the 

full population is selected to continue to stage 2 for Weibull distribution (γ = 0.5). The 

horizontal dashed and dotted line corresponds to the true log hazard ratio
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TABLE 1

Summary of the estimates from the constructed example

Stage 1
a

All data
a

Increment
a UMVCUE θUi

a
Confidence intervals

θ1, j σ1, j
2 θNj σNj

2 θ2, j σ2j
2

AT
b

IND
c

Naive Duality

Partition 1 −0.902 (0.191) −0.746 (0.089) −0.609 (0.167) −0.737 (−0.631) (−1.415, −0.077) (−1.499, 0.000)

Partition 2 −0.419 (0.103) −0.362 (0.053) −0.301 (0.108) −0.359 (−0.335) (−0.876, 0.153) (−0.911, 0.093)

a
j = 1 for partition 1 and j = 2 for partition 2.

b
AT=Adaptive threshold design.

c
IND=Independently selecting partitions.
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TABLE 2

Sample sizes for 1-year single-stage trials

Shape parameter (γ)

Control Experimental
Required deaths Required patients

λC Median days λE Median days

0.5 ln(2)∕20 400 ln(2)∕25 625 630 2060

1.0 ln(2)∕202 400 ln(2)∕500 500 630 2600

1.5 ln(2)∕203 400 ln(2)∕104 465 630 3300
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TABLE 3

Selection probabilities

True log hazard ratios Ideal Partitions selected

(Configuration) selection Distribution 1, 2, 3, and 4 1, 2, and 3 1 and 2 1 Stop

θ1 = θ2= θ3 = θ4 =0.0198 Stop γ = 0.5 0.4329 0.0876 0.0764 0.0812 0.3219

(Configuration 1) γ = 1.0 0.4306 0.0866 0.0752 0.0841 0.3235

γ = 1.5 0.4308 0.0872 0.0766 0.0834 0.3220

θ1 = −0.2231; θ3 = 0.3364; 1 and 2 γ = 0.5 0.1838 0.3022 0.3387 0.0756 0.0997

θ2 = −0.0953; θ4 = 0.4055 γ = 1.0 0.1830 0.3026 0.3373 0.0758 0.1014

(Configuration 2) γ = 1.5 0.1850 0.3008 0.3374 0.0765 0.1003

θ1 = −0.4055; θ3 = −0.0953; All γ = 0.5 0.9395 0.0323 0.0146 0.0065 0.0070

θ2 = −0.2231; θ4 = 0.0000 γ = 1.0 0.9389 0.0332 0.0140 0.0068 0.0070

(Configuration 3) γ = 1.5 0.9386 0.0334 0.0144 0.0065 0.0071
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TABLE 4

Simulated biases and root mean squared errors of the estimators for the log hazard ratios (γ = 0.5)

Simulated bias Root mean squared error

Selected
θNj θUj θNj θUj

partitions (S) Partition t1 > t1t1 = t1 t1 > t1 t1 = t1 t1 > t1 t1 = t1 t1 > t1 t1 = t1 t1 > t1
True log hazard ratios: θ1 = θ2 = θ3 = θ4 = 0.0198

All 1 0.0423 0.0537 0.0142 0.0012 0.1469 0.1653 0.1514 0.1845

2 0.0406 0.0518 0.0126 −0.0006 0.1466 0.1655 0.1513 0.1856

3 0.0422 0.0531 0.0145 0.0012 0.1472 0.1654 0.1516 0.1846

4 0.0419 0.0529 0.0142 0.0010 0.1472 0.1655 0.1515 0.1846

1, 2, and 3 1 0.0235 0.0289 0.0101 0.0050 0.1322 0.1455 0.1501 0.1939

2 0.0192 0.0237 0.0039 −0.0048 0.1324 0.1450 0.1508 0.1947

3 0.0221 0.0277 0.0075 0.0013 0.1314 0.1442 0.1502 0.1945

1 and 2 1 0.0235 0.0274 0.0074 0.0015 0.1181 0.1268 0.1339 0.1595

2 0.0237 0.0278 0.0079 0.0022 0.1182 0.1266 0.1338 0.1584

1 1 0.0214 0.0241 0.0028 −0.0008 0.0927 0.0969 0.1043 0.1141

True log hazard ratios: θ1 = −0.2231, θ2 = −0.0953, θ3 = 0.3365, θ4 = 0.4055

All 1 0.0765 0.0964 0.0271 0.0010 0.1676 0.1915 0.1656 0.2084

2 0.0697 0.0889 0.0226 −0.0017 0.1602 0.1834 0.1600 0.2020

3 0.0613 0.0767 0.0213 0.0004 0.1475 0.1681 0.1479 0.1855

4 0.0597 0.0746 0.0209 0.0010 0.1462 0.1646 0.1460 0.1797

1, 2, and 3 1 0.0274 0.0334 0.0088 0.0002 0.1392 0.1532 0.1552 0.1948

2 0.0265 0.0332 0.0086 0.0014 0.1367 0.1500 0.1516 0.1891

3 0.0240 0.0295 0.0087 0.0026 0.1276 0.1389 0.1401 0.1712

1 and 2 1 −0.0098 −0.0114 −0.0017 0.0015 0.1207 0.1295 0.1353 0.1573

2 −0.0107 −0.0123 −0.0030 −0.0003 0.1190 0.1276 0.1332 0.1540

1 1 −0.0128 −0.0138 −0.0008 0.0019 0.0942 0.0983 0.1059 0.1149

True log hazard ratios: θ1 = −0.4055, θ2 = −0.2231, θ3 = −0.0953, θ4 = 0

All 1 0.0056 0.0063 0.0010 −0.0018 0.1504 0.1681 0.1534 0.1752

2 0.0062 0.0074 0.0020 0.0000 0.1460 0.1633 0.1485 0.1694

3 0.0068 0.0085 0.0027 0.0013 0.1426 0.1592 0.1451 0.1653

4 0.0057 0.0072 0.0017 0.0004 0.1401 0.1567 0.1426 0.1624

1, 2, and 3 1 −0.0671 −0.0805 −0.0245 −0.0014 0.1498 0.1658 0.1573 0.2004

2 −0.0624 −0.0769 −0.0221 −0.0038 0.1454 0.1619 0.1519 0.1928

3 −0.0574 −0.0678 −0.0189 0.0035 0.1396 0.1551 0.1468 0.1860

1 and 2 1 −0.0652 −0.0769 −0.0190 −0.0033 0.1348 0.1488 0.1363 0.1613

2 −0.0611 −0.0730 −0.0167 −0.0030 0.1291 0.1414 0.1306 0.1532

1 1 −0.0471 −0.0523 −0.0109 −0.0046 0.1001 0.1044 0.1007 0.1067
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TABLE 5

Coverage probability and type I error rate (Weibull distribution, γ = 0.5)

Selected Coverage (Type I error rate)
a

True log hazard ratios partitions (S) Naive Duality

All 94.8 (4.5) 98.3 (1.7)

θ1 = θ2 = θ3 = θ4 =0.0198 1, 2, and 3 96.1 (3.0) 99.1 (0.9)

1 and 2 96.0 (3.1) 99.2 (0.8)

1 96.3 (2.9) 99.6 (0.4)

All 93.0 (6.6) 98.4 (1.5)

θ1 = −0.2231, θ2 = −0.0953, 1, 2, and 3 96.0 (3.1) 99.1 (0.5)

θ3 = 0.3365, θ4 = 0.4055 1 and 2 96.3 (1.4) 99.2 (0.0)

1 96.1 (1.5) 99.4 (0.0)

All 95.4 (2.6) 98.7 (0.7)

θ1 = −0.4055, θ2 = −0.2231, 1, 2, and 3 93.3 (0.3) 97.6 (0.0)

θ3 = −0.0953, θ4 = 0 1 and 2 93.8 (0.7) 98.2 (0.0)

1 94.0 (0.9) 98.6 (0.0)

a
Type I error is the probability that at least one upper bound is less than the true value.
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