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Abstract 

Background:  We developed transformer-based deep learning models based on natural language processing for 
early risk assessment of Alzheimer’s disease from the picture description test.

Methods:  The lack of large datasets poses the most important limitation for using complex models that do not 
require feature engineering. Transformer-based pre-trained deep language models have recently made a large leap in 
NLP research and application. These models are pre-trained on available large datasets to understand natural lan-
guage texts appropriately, and are shown to subsequently perform well on classification tasks with small training sets. 
The overall classification model is a simple classifier on top of the pre-trained deep language model.

Results:  The models are evaluated on picture description test transcripts of the Pitt corpus, which contains data of 
170 AD patients with 257 interviews and 99 healthy controls with 243 interviews. The large bidirectional encoder 
representations from transformers (BERTLarge) embedding with logistic regression classifier achieves classification 
accuracy of 88.08%, which improves the state-of-the-art by 2.48%.

Conclusions:  Using pre-trained language models can improve AD prediction. This not only solves the problem of 
lack of sufficiently large datasets, but also reduces the need for expert-defined features.

Keywords:  Alzheimer’s disease, Early risk assessment, Picture description test, Deep learning, Transformer, Natural 
language processing, Language model, Transfer learning
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Background
Alzheimer’s disease (AD) is the most common type of 
dementia which currently cannot be cured or reversed 
[1]. According to the World Alzheimer Report 2019, 
there were over 50 million people living with demen-
tia in the world as estimated by Alzheimer’s Disease 
International (ADI), while the projected estimates for 
2050 reach above 150 millions [2]. The common symp-
toms of AD include decreased awareness, disinterest in 
unfamiliar subjects, increased distraction, and speech 

problems [3]. However, if the disease is diagnosed in its 
early stage, a series of pharmacological and behavioral 
therapy approaches can be prescribed to reduce the pace 
or progression of the disease symptoms [4]. Clinical lev-
els of cognitive impairment are categorized into 7 stages 
of: normal, normal ageing forgetfulness, mild cognitive 
impairment (MCI), mild AD, moderate AD, moderately 
severe AD, and severe AD [5]. In terms of observable 
linguistic symptoms, in the first three stages, the partici-
pants need more time to respond and find words, or have 
trouble to maintain focus on a conversation. In mild and 
moderate AD stages, patients have difficulty in under-
standing and explaining abstract concepts, completing 
sentences, and following long conversations. In the two 
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most severe stages, patients cannot create grammatically 
correct sentences, almost lose the ability to understand 
words, and finally, become completely mute [5–7].

The healthcare industry has quickly realized the impor-
tance of data and as a result has started collecting them 
through a variety of methods such as electronic health 
records (EHR), sensors, and other sources. But analyzing 
these data and making decisions based on them is very 
time consuming and complicated. A large portion of this 
data is textual which makes the analysis more challeng-
ing. On the other hand, there is a large amount of infor-
mation and hidden relationships in these textual data, 
and extracting this information is difficult for humans. 
In this regard, the use of machine learning and natu-
ral language processing (NLP) to analyze these data and 
inference based on the performed analysis has received 
increased attention. Moreover, according to the recent 
increasing power of deep learning techniques and their 
ability to extract complex relationships, employing these 
methods in medical text mining problems has been met 
with increased interest in recent years. Given the impor-
tance of the impact of AD on speech abilities of the 
patients, this study aims to develop a technique for AD 
risk assessment from transcripts of targeted speech elic-
ited from the participants.

The task for acquiring speech data from the patients is 
the Cookie-Theft picture description test [8]. Initially, the 
test was used as a part of the Boston Diagnostic Apha-
sia Examination [8] assessment tool which was designed 
for diagnosing aphasia. Currently, the test is commonly 
used by speech-language pathologists to assess abnor-
mal language production in patients with disorders such 
as aphasia, AD, right hemisphere lesions, schizophrenia, 
and etc [9]. In this test, an image is shown to the par-
ticipant and they are asked to describe what they see in 
it. Generally, the Cookie-Theft image includes a mother 
washing the dishes in a sink while children try to steal 
cookies from a cookie jar.

Unlike most earlier studies, the features are extracted 
in our approach by the model itself in an unsupervised 
manner. As a result, more complex features are discov-
ered and used for prediction. More precisely, the models 
are pre-trained on a large dataset to learn a good high 
dimensional (such as 1024 dimensions) vector repre-
sentation for the input sentence or text, which will be 
used as input to AD versus healthy control (HC) clas-
sifiers. Another approach taken in this study to address 
the problem of insufficiently-sized datasets is text aug-
mentation. Similar to most related works, the methods 
are evaluated on the Cookie-Theft picture description 
test transcripts of the Pitt corpus [10] from the Dementi-
aBank [10] dataset. As mentioned earlier, the overall clas-
sification framework takes raw interview text as input. 

Our evaluation shows that pre-trained deep transformer-
based language models with a simple logistic regression 
classifier work well in AD risk assessment and the results 
generally outperform those of the existing methods while 
the proposed method does not require any hand-crafted 
features for training the classifier.

Related work
Feature‑based approaches
For the first time, a computational approach to diag-
nosing Alzheimer’s disease using speech in English was 
introduced by Bucks et al. [11]. In that study, 8 AD and 
16 HC participants were asked to speak about themselves 
and their experiences in 20–45 min sessions, and finally, 
some specific questions were also asked. Then, a num-
ber of linguistic features such as the noun rate, adjective 
rate, pronoun rate, and verb rate were extracted from the 
recorded speech and their distribution for the AD and 
control samples were used to train a classifier. Since then, 
many other studies have been conducted on this topic 
to improve the accuracy of AD prediction and study the 
various dimensions of AD (and other types of dementia) 
effects on speech. In general, most of these methods pro-
pose improvements based on increasing the number of 
expert-defined features [12, 13], increasing the number 
of participants [14], using acoustic features in addition 
to linguistic ones [15, 16], involving AD severity [14] and 
other types of dementia scores in classification [17], con-
sidering the impact of AD on other types of diseases [18], 
changing the interview’s structure [16], using linguistic 
impairment for predicting AD onset [19], and relating 
linguistic features to neuropsychological tests [19].

One of the most comprehensive studies on this topic 
was conducted by Fraser et  al. [20]. In that study, an 
extensive categorization of linguistic features was pre-
sented, in which linguistic features were categorized into 
POS (part-of-speech) tags, syntactic complexity, gram-
matical constituents, psycho-linguistics, vocabulary rich-
ness, information content, repetitiveness, and acoustics. 
Also, the study categorized all different kinds of language 
disorders into the four groups of semantic impairment, 
acoustic abnormality, syntactic impairment, and infor-
mation impairment. The paper collected 370 linguistic 
features from the data and reported the topmost 35 of 
these features for AD prediction.

In all earlier works, in order to automatically diag-
nose the disease using speech, information content 
units were introduced by human experts, and a classi-
fier used them in order to predict the participant’s cat-
egory. However, Yancheva et al. [21] and Sirts et al. [22] 
tried to enrich and enhance information content units 
of targeted speech by clustering pre-trained global vec-
tor (GloVe) [23] embedding of words used by AD and 
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HC participants. Using the mentioned clusters, they 
introduced some cluster-based measures which were 
used along with a number of standard lexicosyntactic 
and acoustic features for AD prediction.

In languages other than English, Khodabakhsh et  al. 
[24] and Weiner et  al. [25] respectively examined the 
subject in Turkish and German. Also, Li et  al. [26] 
and Fraser et  al. [27] both focused on a  multilingual 
approach for diagnosing AD using targeted speech. 
They respectively tried to improve the AD prediction 
in Chinese and French languages (in which the existing 
datasets were insufficient) using an English classifier 
trained on a larger English dataset.

Deep learning‑based approaches
For the first time, Orimaye et al. [28] used a deep neu-
ral network to predict MCI using speech. Unlike most 
previous works, that study did not use any hand-crafted 
features and the raw transcripts were fed to the model. 
The dataset used in the study was part of the Pitt cor-
pus of the DementiaBank dataset, comprising 19 MCI 
and 19 control transcripts of the Cookie-Theft picture 
description test. They trained a separate deep neural 
network language model for each category, and then 
calculated the likelihood of the text in both language 
models. Finally, the class of the model with higher 
probability was selected.

Karlekar et  al. [29] also used a deep neural network 
model to diagnose AD using four types of interviews: 
the Cookie-Theft picture description, sentence con-
struction, story recall, and vocabulary fluency which 
included an unbalanced 243 HC and 1017 AD tran-
scripts. Three classifiers: a convolutional neural net-
work (CNN), a long-short term memory recurrent 
neural network (LSTM-RNN), and a CNN-LSTM were 
trained, taking sentences as sequences of pre-trained 
word embedding. In addition to AD diagnosis, the 
authors interpret the models using activation clustering 
and first derivative saliency heat map techniques which 
cluster the most significant utterances. The research 
used a highly unbalanced dataset, rendering the results 
somewhat questionable as discussed in Sect. “Why not 
use the entire Pitt corpus?”.

Fritsch et  al. [30] used two different auto-regressive 
LSTM-based neural network language models to clas-
sify AD and HC transcripts of the Pitt corpus from 
the DementiaBank dataset. After that, Pan et  al. [31] 
worked on predicting AD using a stacked bidirectional 
LSTM and gated recurrent unit (GRU) layers equipped 
with a hierarchical attention mechanism. The overall 
model takes the GloVe word embedding sequence as 
input.

Methods
In this study, the most challenging problem in develop-
ing data-driven (i.e., machine learning-based) methods 
for recognizing Alzheimer’s patients from speech tran-
scripts is the lack of a large dataset. Currently, the largest 
available dataset is the Pitt corpus from the Dementi-
aBank dataset, which contains 500 picture description 
interviews from the AD and control groups. For the 
mentioned reason, most of the earlier work was based 
on features designed by experts, as it was not possible to 
use models capable of learning informative features by 
themselves. In this study, we employ the idea of utilizing 
a highly pre-trained language model to address this issue. 
Moreover, data augmentation techniques are also utilized 
to alleviate the small dataset problem. Our implementa-
tion of these ideas is described next.

Overall classification framework
The overall process of classification is summarized in 
Fig.  1. The process consists of five layers. Each layer 
uses the output of the previous layer as input. The aug-
menter layer enriches the dataset with methods that will 
be introduced in Sect. “Dataset augmentation”. Note that 
this layer will be disabled in the test phase. The splitter 
layer is optional and chooses whether we want to process 
the whole text at once or break it down into sentences 
(and specify the final result by aggregating the results 
on sentences). It could be disabled by being set to the 
identity function when we intend to work on the whole 
transcript. The embedder layer embeds each input ele-
ment (i.e. the entire transcript or a sentence) to a high-
dimensional representation vector, and the classifier 
layer predicts the label of each embedded input. In fact, 
the classifier layer learns which of (and to what extent) 
the features that BERT (or other embedders) offers are 
suitable for predicting Alzheimer’s disease. Finally, if the 
classifier layer outputs multiple labels (that may happen 
when working on sentences), the voter makes the final 
decision using a majority voting mechanism. A layered 
architecture makes it much easier to combine different 
settings and understand the final model.

In our implementation, the augmenter and embedder 
layers are trained outside the classification framework 
and are only used there. Therefore, if there is a pre-
trained embedding layer, training and inference will be 
done very quickly. Details on how to train these layers are 
explained in the following sections.

In this study, depending on the use of the splitter layer, 
two different approaches for classifying a transcript are 
implemented. In the first approach, the entire transcript 
is passed to an embedder and then the embedded tran-
script is directly classified. In this approach (from now 
on we will call it the text-level approach), the splitter 
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and voter layers are disabled. In the second approach, 
the transcript is first split into sentences, and then these 
sentences are embedded and are subsequently classified. 
Finally, the label of the entire transcript is decided by 
majority voting on the labels of all sentences in the tran-
script. The second approach (from now on we will call it 
the sentence-level approach) is more compliant with pre-
trained embedders since they are mostly pre-trained on 
single- or two-sentence inputs.

Pre‑trained deep language model
A model that defines a probability distribution over a 
sequence of words is called a language model. If a compu-
tational model wants to implement a language model, it 
is necessary to have a good understanding of the syntac-
tic and semantic structures of that language. Therefore, 
using a model that has already learned a probabilistic dis-
tribution that correlates with these structures for classifi-
cation reduces the need for large target-specific datasets. 
The transfer of knowledge from one model to another 

with a similar purpose is called transfer learning. We use 
transformer-based language models that have offered a 
breakthrough in many language understanding tasks in 
recent years [32]. The general flow of using a pre-trained 
language model for classification consists of three steps: 

1	 Unsupervised training of the general language model 
on a large dataset (such as Wikitext).

2	 Unsupervised fine-tuning of the pre-trained language 
model on the target dataset (such as the Cookie-
Theft picture description transcripts).

3	 Using (with or without supervised fine-tuning) the 
target-specific pre-trained language model for the 
classification task.

To address the problems facing recurrent models such 
as the issue of short-term memory and the challenges 
facing the parallelization of training, Vaswani et  al. [33] 
introduced transformers which consist of an extreme use 
of the attention mechanism that underpins many NLP 

Fig. 1  Overall classification procedure. The classification procedure consists of the steps of augmentation, splitting, embedding, classification, and 
voting, where augmentation is only used in the training phase. Also, when passing the entire transcript to the embedding layer, the splitting and 
voting layers are disabled. The underlined models are trainable here, and the others are fixed
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models. The paper argues that the attention mechanism 
allows the model to focus on certain parts of the text for 
decision making. This functionality makes the attention 
mechanism useful for modeling biomarkers related to 
AD.

Al-Rfou et al. [34] used transformers for the first time 
as essential elements of a character-level language model. 
After that, Dai et al. [35] extended the model using rela-
tive positional encoding and segment-level recurrence. 
As a turning point in the transformer-based language 
models, we can refer to the bidirectional encoder repre-
sentations from transformers (BERT) model proposed 
by Devlin et al. [36] at Google. In the training phase, the 
input sentence is masked, which means 15% of tokens 
are replaced with the [MASK] token, and the model tries 
to learn such representation or embedding for the con-
text that considers both syntax and semantics to pre-
dict the masked token using the context. On the other 
hand, in the test phase the model takes in a raw sentence 
from one or multiple languages and returns a 768- or 
1024-dimensional vector representation of the input text 
to be used as input to other classifiers such as LR, MLP, 
etc. An enhanced version of BERT for multilingual lan-
guage understanding tasks was introduced by Conneau 
et  al. [37], called cross-lingual language model (XLM), 
which benefits from using the translated language model 
(TLM) as well as the masked language model (MLM). 
Unlike BERT, XLM takes two related masked sentences 
from two different languages and tries to predict masked 
tokens using the same and the other language input sen-
tences. This allows XLM to understand multilingual texts 
better. Also, BERT suffers from the train and test phase 
discrepancy and independent prediction of masked 
tokens. To correct this, Yang et  al. [38] introduced an 
extended large network (XLNet) model based on a lan-
guage model called Permutation Language Model.

The use of multilingual models offers a practical solu-
tion to the problem of lacking of a large dataset in many 
languages. As there is a limited collection of text data 
from Alzheimer’s patients in many languages, training a 
multilingual model in a source language (in which such 
large datasets are available) and applying it to making 
inference in the target language can offer a valuable solu-
tion. On the other hand, a number of language features 
that experts introduce are either specific to a particular 
language or their implementation may be different in 
different languages. Using multilingual models can also 
mitigate the need for such transfer of expert features 
between various languages.

In the current study, we use pre-trained BERT, XLNet, 
and XLM as deep networks for text embedding which 
convert raw participant transcripts/sentences to 768- or 
1024-dimensional vectors. More precisely, to use these 

language models for the embedding layer described in 
Sect. “Overall classiffication framework”, the entire tran-
script (in the text-level approach) or sentence (in the sen-
tence-level approach) are passed to the model, and then, 
the last layer embedding of the [CLS] token is considered 
as the embedding of the entire input. The embedding 
models (which are used in this study as an embedder 
layer) are only passed through Phases 1 and 3 of the flow 
described earlier in this section. The reason for this is 
that the employed dataset is insufficient for unsupervised 
fine-tuning (of language models on the target dataset) 
even when using vast augmentation methods. In practice, 
using unsupervised fine-tuning is likely to have minimal 
impact on the overall performance of the model used 
in the current research (the effect of this feature on the 
results of the implemented model with the best perfor-
mance is presented in Sect. “Evaluation results”). For 
the first phase, all embedding models are pre-trained 
with the corpus mentioned in the main article, and their 
implementation is taken from the HuggingFace trans-
formers library [39].

Dataset augmentation
Another approach to overcome the lack of access to 
large training input is dataset augmentation which 
means increasing the number of labeled samples of the 
dataset using some probabilistic or even heuristic algo-
rithms. For example, the word “beautiful” in a sentence 
such as “What a beautiful car!” can be replaced with the 
word “nice” without changing the meaning of the sen-
tence a lot. Augmentation in NLP can be done at differ-
ent levels of linguistic units, and in this study, the word 
and sentence level augmentations are used for enriching 
the dataset. The most crucial challenge of augmenta-
tion in the text classification task is preserving the text 
class during augmentation. For example, a probabilistic 
model can replace “beautiful” with “dirty” in the men-
tioned sentence, which is grammatically and semantically 
correct but changes the sentence category. Two general 
approaches to augmentation have been used in this study, 
which are described below.

Similar word substitution augmentation
In this approach, a similarity measure must first be 
defined. The most obvious definition of similarity for 
words is the synonym relation which was first used in 
the field of deep learning by Zhang et al. [40] using the 
WordNet database [41]. Another common similarity 
measure is the inverse of the Euclidean distance or the 
Cosine similarity between word embeddings which was 
first used by Wang et al. [42]. In the mentioned methods, 
there is no guarantee of the correct grammar in the out-
put sentence. It is also possible that the output sentence 
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category changes by augmentation. For example, one 
of the markers of Alzheimer’s disease is the reduction 
in the vocabulary used in the conversation, so replac-
ing a simple word like “Delicious” with its sophisticated 
synonym like “Scrumptious” can change the sentence 
category from patient to healthy and mislead the classi-
fier. Another method that considers grammatical correct-
ness along with the sentence context was introduced by 
Kobayashi [43] and is called contextual augmentation. In 
the contextual augmentation method, there is a language 
model which takes both the word’s context (i.e. the sen-
tence that contains the word) and the whole sentence’s 
category and returns a probability distribution over all 
vocabulary. Augmentation is done by sampling from 
the returned probability distribution. Kobayashi [43] 
trained a Bi-Directional LSTM language model with this 
approach, and Wu et al. [44] enhanced the approach by 
using BERT as an underlying model.

All the mentioned methods were evaluated in this 
study, and the implementation was done using the 
NLPAug library [45] except for contextual augmentation 
for which the released code by the authors of [43] was 
used.

Sentence removal augmentation
Another ad-hoc approach which does not change the 
sentence category and also retains grammatical correct-
ness is sentence removal. In this approach, one sentence 
is removed from the transcript, and it is expected that 
the output is still a valid transcript in the same category. 
Although it can be argued that the label may be changed 
by reducing the length of the text, considering the results 
of using or not using this idea, it is appropriate to use it in 
models that process the entire text at once (not sentence 
by sentence).

Baseline models
In this study, in addition to the transformer-based 
models, bidirectional-LSTM and convolutional neu-
ral networks over the GloVe word embedding were also 
evaluated as baseline models to illustrate the advan-
tages of pre-trained transformer-based deep language 
models over conventional deep models. In these mod-
els, the entire transcript is used as input. The reason for 
this decision is that unlike pre-trained models, there is 
no pre-training on single-sentence (or maximum two-
sentence) texts and hence their training has to be done 
from the beginning. Therefore, splitting the transcript 
into sentences will not improve the performance of these 
models. In the CNN model, each transcript (truncated or 
padded to T number of words) is converted to a sequence 
of embedded words. Then the sequence is passed to 
a number of stacked convolutional and max-pooling 

layers followed by fully-connected layers and finally a 
sigmoid output layer that yields P(AD|transcript). Also, 
in the bidirectional-LSTM model, the embedded word 
sequence is passed to a number of stacked forward and 
backward LSTM cells followed by fully-connected lay-
ers and a sigmoid output layer in a similar fashion. 
Structurally, if we move forward in the CNN layers, the 
model tries to conclude more semantic features using 
spatially close features in the previous layer. But in the 
LSTM model that considers long range dependencies, an 
attempt is made to learn new compound features from 
features of all previous steps (or from features of the 
whole sequence in the bidirectional LSTM). The main 
weakness of this model is the forgetting of distant fea-
tures (spatially) to produce new compound features. In 
both of these models, there is no attention mechanism.

Experimental setup
In this section, we describe our implemented methods 
and their corresponding settings in the training and eval-
uation phases.

Implemented methods
For each layer of the overall framework, there were sev-
eral options from which the following were implemented. 
For the augmenter layer, synonym-substitution and con-
textual augmentation were implemented along with ad-
hoc sentence removal augmentation. As implemented by 
Kobayashi et al. [43], the corresponding language model 
used in contextual augmentation was a single layer bidi-
rectional LSTM. For the splitter layer, in addition to 
the identity function, the sentence splitter was imple-
mented for the sentence-level approach. For the pre-
trained embedder layer, BERT (base and large), XLNet 
(base and large), XLM, and the GloVe word embedding 
sequence (50-dimensional version) were investigated. For 
the classifier layer, logistic regression, single hidden layer 
neural network, single-layer bidirectional LSTM, and 
three-layer CNN were examined. Finally, for the voter 
layer, in addition to the identity function, majority voting, 
and a single-layer bidirectional LSTM were implemented 
for the sentence-level approach. Although different com-
binations of layers were implemented, only significant 
cases of each group have been reported in Sect. “Evalu-
ation results” .

Training settings
For the contextual augmentation, as implemented by 
Kobayashi et al. [43], the cross-entropy loss function and 
the Adam optimizer was used. The number of augmen-
tations per transcript is a hyper-parameter for the aug-
mentation layer. For the pre-trained embedding layer, 
only the HuggingFace transformers library [39] was used 
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and no additional training was done on the implemented 
models. For the classification layer, binary cross-entropy 
was employed for the loss function and the Adam opti-
mizer was used to minimize it. For the voter layer, only 
bidirectional LSTM was trainable for which, again the 
binary cross-entropy loss function and the Adam opti-
mizer were utilized. All models were evaluated using 
10-fold cross-validation without stratified sampling.

Results
Dataset
The models are evaluated on the transcripts of the 
Cookie-Theft picture description test of the Pitt corpus 
from the DementiaBank dataset, which contains 170 pos-
sible or probable AD patients with 257 interviews and 99 
healthy control (HC) participants with 243 interviews.

Most of the data were gathered as a part of the Alzhei-
mer’s and related dementias study at the University of 
Pittsburgh School of Medicine between 1983 and 1988. 
The interviewer shows the participant the Cookie-Theft 
picture and asks him/her to state everything he/she sees 
in it. The audio records of all interviews were manually 
transcribed and annotated with POS-tags in the CHAT 
[46] format. Detailed demographics of the data is speci-
fied in Table 1.

Why not use the entire Pitt corpus?
Some earlier studies based on the Pitt corpus (such 
as Kerlekar et  al. [29]) used all the tests of the corpus 
including the Cookie-Theft picture description, story 
recall, sentence construction, and categorical/verbal flu-
ency for classification purposes. The first problem with 
using the entire corpus is that the corpus is highly unbal-
anced (note that Table 1 only provides demographics of 
the Cookie-Theft picture description test from the Pitt 
corpus, which is perfectly balanced, although the whole 
dataset is unbalanced and the number of AD/HC sam-
ples are 846/244 in the overall corpus), and as a result, a 
naïve classifier that always outputs AD labels can achieve 
a classification accuracy of 78% on such a dataset.

The second problem is that except for the Cookie-Theft 
picture description test, the Pitt corpus was only admin-
istered to AD subjects for all the other tests, which means 
that the classifier might learn invalid features for AD pre-
diction. For example, a classifier may just output an AD 
label by checking if the input is not from the Cookie-
Theft picture description test, and otherwise, work as 
normal. Using this approach, a normal classifier with 80% 
accuracy can achieve approximately 92% accuracy on the 
whole Pitt corpus. Figure  2 provides an example of this 
problem. The figure shows visualized two-dimensional 
tSNE [47] diagram for the BERTBase embedding of the 
entire transcripts of all tests in the Pitt corpus. According 

to the figure, the tests are completely differentiable, and 
as a result, the mentioned problem is quite probable to 
arise. Thus, in Sect. “Results”, studies based on the entire 
corpus were not included.

Evaluation measures
The most well-known measure to evaluate classifica-
tion is the accuracy score which is the fraction of pre-
dictions the model performed correctly. Most related 
studies have reported accuracy as the quality of their 
classification models and tried to improve this measure 
as an important goal. As discussed in the previous sec-
tion, the accuracy measure alone does not provide a 
complete interpretation of the model performance (for 
example, high accuracy can be achieved using the entire 
Pitt corpus, while the model performance is not sufficient 
for practical use). Two other practical measures are pre-
cision and recall (also called sensitivity). In this study, 
precision is the number of correct AD predicted samples 
over the total number of AD predicted samples and recall 
is the number of correct AD predicted samples over the 
total number of AD samples. These two measures should 
be examined together and for this reason, the F1 score is 
defined. The F1 score is the harmonic mean of the preci-
sion and recall measures. A combined high precision and 
recall results in a high F1 score. In other words, highly 
imbalanced precision and recall indicates that the model 
has not an approximately equal performance for detect-
ing all labels. All the aforementioned measures are in the 
range of zero to one, and can be reported as a percentage. 
Compared to the accuracy score, fewer previous studies 
have reported recall, precision, and F1 measures. In this 

Fig. 2  Visualized tSNE dimensionality reduction for the BERTBase 
embedding of the entire Pitt corpus
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study, all the introduced measures are reported to make 
it possible to compare our work more comprehensively 
with previous works.

Compared methods
We compared the results of our models with all related 
studies that evaluated their models on the Cookie-Theft 
picture description test of the Pitt corpus. Therefore, the 
best models (according to the introduced performance 
measures) are selected for comparison. The first one 
is the method introduced in [20] which maintained the 
status of having the state-of-the-art accuracy score for 
several years. The second compared method was intro-
duced by Yancheva et  al. [21]. They tried to enrich and 
enhance human-supplied information content units by 
clustering GloVe embedding of frequent words of each 
category. After that, Sirts et  al. [22] extended the idea 
of Yancheva et al. [21] by introducing propositional idea 
density features that work better on free-topic conver-
sational speech. Hernández et  al. [48] introduced 105 
hand-crafted features and used them to train a support 
vector machine (SVM) classifier. They reported all the 
well-known and informative measures for the classifica-
tion tasks and also achieved good results. Fritsch et  al. 
[30] trained two different auto-regressive LSTM-based 
language models for each group and classified each tran-
script by calculating its perplexity on the models and 
selecting the model corresponding to the lowest perplex-
ity. Currently, that study has the best recall and accuracy 
scores for AD versus HC classification on the target data-
set. Pan et al. [31] utilized a stacked bidirectional LSTM 
and GRU recurrent units equipped with a hierarchical 
attention mechanism. Up to now, this study has the best 
precision and F1 scores for AD versus HC classification 
on the target dataset. The last two studies by Li et al. [26] 
and Fraser et  al. [27] were focused on multilingual AD 
prediction and hence their main goal was not to improve 
the unilingual classification. Li et  al. [26] used 185 lexi-
cosyntactic features for a logistic regression classifier and 
Fraser et al. [27] utilized class-based language modeling 
and information-theoretic features for an SVM classifier.

Evaluation results
Table 3 reports precision, recall, accuracy, and F1 scores 
of the compared methods as well as those of the proposed 
methods in the framework introduced in this paper. The 
reported scores are averaged on a 10-fold cross-valida-
tion (without stratified sampling) procedure. Note that 
for the Fritsch et al. [30] method there is no such entity 
as a classifier and classification was performed by evalu-
ating perplexity of input transcripts on the trained lan-
guage models of both classes. As mentioned earlier, two 
different approaches have been implemented to use the 

pre-trained embedders, the first one is passing the entire 
text to the embedder (specified by a T- prefix in the 
method’s name) and the second one is passing each sen-
tence of the text to the embedder separately (specified by 
an S- prefix in the method’s name). All the methods with 
the first approach have been enriched by the one-sen-
tence-removal augmentation method. Furthermore, the 
CNN method is used with the synonym substitution aug-
mentation (SSA) method and the BiLSTM is used with 
the SSA and contextual augmentation (CA) methods sep-
arately. The CA and SSA augmentations had almost no 
effect on the methods which used pre-trained language 
models, so they are not reported in Table 3. Also, for the 
model with the best accuracy score (S-BERTLarge-LR), 
two additional versions with bidirectional LSTM classi-
fier (S-BERTLarge-BiLSTM) and bidirectional LSTM voter 
(S-BERTLarge-LR-BiLSTM) are included.

As mentioned before, it seems that using unsupervised 
fine-tuning (using the MLM objective and next sentence 
prediction) on the Cookie-Theft picture description tran-
scripts of the Pitt corpus does not have much effect on 
the results due to the lack of sufficient data for the tar-
get task. According to the experiments performed, using 
unsupervised fine-tuning for the model with the best 
accuracy score (S-BERTLarge-LR in equivalent settings on 
average results in the accuracy and F1 scores of 87.89% 
and 86.11%, which are almost no different from the 
scores of a version without this feature (note that due to 
the fundamental differences of this approach with other 
models, we did not include it in Table 3).

Moreover, Fig.  3 illustrates the mean 10-fold cross-
validation classification accuracy, true positive rate (the 
number of correct predicted AD samples over total 
number of AD samples, also called the sensitivity), and 
true negative rate (the number of correct predicted HC 
samples per total number of HC samples, also called 
the specificity) plotted versus the mini-mental state 
exam (MMSE) [49] scores of the participants. The fig-
ure helps us to see how the model works for detecting 
label of participants with different AD severity levels. 
The true positive rate for each MMSE score represents 
the model performance in detecting AD from actual 
AD patients in that score. Similarly, the true negative 
rate represents the model performance in detecting HC 
label from actual HC participants in that score. Totally, 
the accuracy score represents the model performance 
in detecting the correct label from both participant 
groups in the corresponding MMSE score. Numbers in 
the pink bars are true positive rates and in the blue bars 
are true negative rates. Also, the numbers on top of the 
bars are the total mean accuracy for that MMSE score. 
Note that all of the rates are scaled between 0 and 1. 
The MMSE scores were not reported in the dataset for 



Page 9 of 14Roshanzamir et al. BMC Med Inform Decis Mak           (2021) 21:92 	

some participants while their AD/HC labels were pre-
sent. The results for these participants are grouped in 
the “Unspecified” bar in this figure.

In addition to classification, models such as logis-
tic regression and neural networks with a sigmoidal 
final activation function can also output the AD prob-
ability (or 1—health probability) of the current input. 
Referring to the continuity of linguistic impairments 
from perfect health to severe AD, this probability can 
be interpreted as a correlated variable to the sever-
ity of the AD condition of the participant. Therefore, 
another approach for interpreting the models and 
evaluating them is calculating the similarity between 
their predicted health probability and the MMSE score, 
scaled between 0 and 1. The results using two common 

similarity measures, the Pearson correlation and Spear-
man’s rank correlation (which is the Pearson correlation 
on the samples’ ranking), are reported in Table 2. Both 
mentioned correlation measures are reported between 
− 1 and 1.

Discussion
Interpretation of results
According to Table  3, among the models that use only 
hand-crafted features, Fraser et  al. [20] reports the best 
accuracy score, although it has not reported other evalua-
tion measures. Among the baseline models introduced in 
our study (CNN + SSA, BiLSTM + SSA, and BiLSTM + 
CA), which are conventional deep neural network mod-
els, the contextual augmented version of bidirectional-
LSTM achieved the highest accuracy score of 77.36%. 
However, even with the extreme use of augmentation 
methods these baseline models did not yield acceptable 

Fig. 3  Mean 10-fold cross-validation classification accuracy, true positive rate, and true negative rate

Table 1  Demographics of Cookie-Theft picture description test 
of the Pitt corpus

AD HC

Participants 170 99

Samples 257 243

Age (years) 71.7± 8.5 64.2± 7.9

Gender (male/female) 87/170 88/155

Mini-mental state exam 18.6± 5.1 29.1± 1.1

 Number of words 100.9± 58.3 111.5± 57.2

Table 2  The similarity between predicted health scores of the 
S-BERTLarge-LR model and MMSE [49] scores

Measure

Phase Pearson correlation Spearman’s 
rank 
correlation

Train 0.78 0.81

Validation 0.70 0.74



Page 10 of 14Roshanzamir et al. BMC Med Inform Decis Mak           (2021) 21:92 

results compared to other methods. Overall, the sen-
tence-level BERTLarge embedding of sentences passed to 
logistic regression (S-BERTLarge-LR method) achieved 
the highest accuracy score (88.08%) among all the mod-
els introduced in this study as well as the models used 
in previous studies, and improved the accuracy score by 
2.48% (equivalently 17.22% error-rate reduction). At the 

same time, this model achieved the best precision and 
F1 scores with 6.55% and 2.80% improvements, respec-
tively. Still, Fritsch et al. [30] showed the best recall score 
with 1.66% difference although they did not report the F1 
measure. The first advantage of our proposed methods 
compared to Fritsch et  al. [30] is that we train a single 
language model for both the AD and HC groups which 

Table 3  AD versus HC classification scores

Other settings of the proposed framework with different classifiers or augmenters which did not have significant effects on the scores are not shown

Method Embedding Classifier Precision Recall Accuracy F1

Fraser et al. [20] 35 Hand-Crafted
Features

LR – – 81.92 –

Yancheva et al. [21] 12 Cluster-Based
Features + LS&A

Random forest 80.00 80.00 80.00 80.00

Sirts et al. [22] Cluster+PID+SID
Features

LR 74.4
±1.5

72.5
±1.2

- 72.7
±1.2

Hernández et al. [48] 105 Hand-Crafted
Features

SVM 81.00 81.00 79.00 81.00

Fritsch et al. [30] One-Hot Word
Embedding Sequence

– – 86 85.6 –

Pan et al.
[31]

GloVe Word
Embedding Sequence

Bi-LSTM GRU​
Hierarchical Attention

84.02 84.97 – 84.43

Li et al. [26] 185 Hand-Crafted
Features

LR – – 77 –

Fraser et al. [27] Info and
LM Features

SVM – – 75 77

CNN + SSA GloVe Word
Embedding Sequence

CNN 76.38
±8.49

77.47
±8.97

76.48
±5.88

76.36
±5.91

BiLSTM + SSA GloVe Word
Embedding Sequence

Bi-LSTM 74.71
±1.92

75.00
±14.82

75.51
±5.77

74.22
±8.71

BiLSTM + CA GloVe Word
Embedding Sequence

Bi-LSTM 78.40
±6.60

73.95
±12.96

77.36
±6.19

75.43
±7.83

T-BERTBase-LR BERTBase
(Text Level)

LR 85.09
±3.11

78.69
±8.35

82.76
±3.74

81.51
±4.73

T-BERTLarge-LR BERTLarge
(Text Level)

LR 88.21
±5.33

80.86
±7.58

85.10
±3.43

84.04
±3.93

T-XLNetBase-LR XLNetBase
(Text Level)

LR 84.74
±6.31

79.26
±7.72

81.92
±5.88

81.75
±6.19

T-XLNetLarge-LR XLNetLarge
(Text Level)

LR 82.30
±5.15

83.83
±4.34

82.87
±3.14

82.86
±2.60

T-XLM-LR XLM
(Text Level)

LR 80.31
±5.29

79.13
±8.43

80.21
±4.94

79.49
±5.76

S-BERTBase-LR BERTBase
(Sentence Level)

LR 90.31
±7.36

76.52
±8.06

84.46
±6.31

82.72
±7.21

S-BERTLarge-LR BERTLarge
(Sentence Level)

LR 90.57
±3.18

84.34
±7.58

88.08
±4.48

87.23
±5.20

S-BERTLarge-LR-BiLSTM BERTLarge
(Sentence Level)

LR 89.06
±5.19

77.71
±7.33

85.19
±4.92

83.61
±5.69

S-BERTLarge-BiLSTM BERTLarge
(Sentence Level)

BiLSTM 87.98
±5.31

75.03
±5.99

83.43
±5.51

81.49
±5.31

S-XLNetBase-LR XLNetBase
(Sentence Level)

LR 83.19
±6.39

74.34
±8.12

80.00
±5.48

78.32
±6.16

S-XLNetLarge-LR XLNetLarge
(Sentence Level)

LR 76.95
±6.62

71.30
±8.29

75.31
±5.56

73.75
±6.14

S-XLM-LR XLM (sentence level) LR 84.00
±4.74

73.47
±9.80

80.21
±5.47

78.14
±6.72
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helps the model to use samples from both classes for the 
desired task. The other advantage is that our models are 
highly pre-trained on large datasets which enables them 
to start training on new, smaller datasets with good ini-
tialization parameters and also avoid overfitting.

Among the methods evaluated in this study, on aver-
age, the models based on the BERT family of embedders 
worked better than the others. Although XLNet has his-
torically been designed to address BERT problems, BERT 
and its derivatives still perform better in many activi-
ties [32]. Moreover, employing word-level augmentation 
techniques along with pre-trained deep language models 
did not improve results (and hence the evaluation of their 
versions with augmentation was not reported in Table 3).

Table 2 shows that the best model has a Pearson corre-
lation of 0.78 and 0.70 for the train and validation phases, 
and a Spearman’s rank correlation of 0.81 and 0.74 for 
these phases between the health score and the MMSE 
score, indicating that the model has learned useful pat-
terns for classification. Based on the reported similarity 
measures, it can be concluded that on average the MMSE 
score and our model’s health score are linearly corre-
lated. This is indeed an advantage for the proposed model 
in that while the MMSE score [49] is obtained through 
a detailed interactive exam that evaluates visuospatial, 
executive, naming, memory, attention, language, abstrac-
tion, delayed recall, and orientation cognitive skills, the 
data collection task involved in the Cookie-Theft pic-
ture description test used in our model is a simple and 
short pseudo-conversational procedure. Interestingly, the 
results obtained in this section are related to the reported 
results in the work of Eyigoz et al. [19]. The objective of 
that study was to use linguistic markers to predict the 
onset of Alzheimer’s disease in cognitively normal indi-
viduals. The study’s experiments showed that the stated 
goal is possible to achieve and, in fact, using models 
based on linguistic variables performed better than a 

predictive model based on non-linguistic variables (such 
as neuropsychological test results, age, gender, APOE 
ε4 alleles, etc.). The results of this section show that the 
severity of linguistic impairments is highly correlated 
with the estimates based on non-linguistic variables (cor-
roborating the results reported by Eyigoz et al. [19]).

In this study, neural network interpretation methods 
were not used but in Table 4, two false negative and false 
positive classification errors are reported. In comparison, 
it is almost clear that the first sample has less grammati-
cal fluency but both samples refer to similar information 
elements. In the S-BERTLarge-LR model, the predicted 
AD probability is the mean of logistic regression classifier 
outputs for each sentence of the transcript. The impor-
tant point is that in both samples, the predicted AD prob-
abilities are very close to 0.5 which can be interpreted as 
that the model has not learned a wrong feature, rather, it 
has not learned a proper feature to predict AD from the 
reported samples.

Advantages and limitations
As mentioned in Sect. “Pre-trained deep language 
model”, the proposed approach takes advantage of the 
powerful pre-trained language models that attempt to 
learn the structure and features of the language from a 
large dataset, and only uses the target dataset to learn 
how to use these features for AD prediction. This not 
only reduces the need for expert-defined language fea-
tures, but also makes it possible for more complex fea-
tures to be extracted from the data. The next advantage 
of sentence embedding models is that they consider 
the entire raw text and there is no out-of-context word 
embedding layer that would convert each word to a rep-
resentation vector without considering its context.

As mentioned earlier, even using augmentation meth-
ods, the largest currently available dataset for AD pre-
diction is still insufficient in size for unsupervised 

Table 4  Two invalid predicted transcripts by the model with the best accuracy score (S-BERTLarge-LR)

Predicted AD probability ranges between 0 and 1

Transcript Actual label Predicted label Predicted AD 
probability

And the boy in the cookie jar. And the girl reaching up to him. The 
stool slanting ready to topple. And the cookie jar is open. And the 
lid’s in there. And the door’s open. And mother’s drying the dishes 
and standing in a pool of water it looks water running down from 
the sink. ...

AD HC 0.483

Okay. It was summertime and mother and the children were work-
ing in the kitchen. And the window was open and there was a 
slight breeze blowing in. Mother was daydreaming and forgot 
and left the water in the sink running and it was overflowing. The 
children were hungry and ...

HC AD 0.532
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fine-tuning (Second phase specified in Sect. “Pre-trained 
deep language model”) large transformer-based language 
models (e.g., BERTLarge has 340 million parameters). But 
if there is a large enough dataset, using language model 
fine-tuning, our approach can extract more complex 
and context-related features while the models based on 
expert-defined features can only choose from a limited 
set of predefined features.

The most important limitation of the current study that 
needs to be addressed in the future is that it is difficult to 
use common neural network interpretation methods due 
to the large number of model parameters. Using inter-
pretation, we can understand why the model predicts a 
wrong label for a transcript. Also, in the case of a correct 
prediction, we can identify language features that the 
network has paid more attention to. This is particularly 
useful for studying Alzheimer’s disease as such inter-
pretation can reveal important attributes of the speech 
which can most effectively discriminate between the par-
ticipant groups.

Although using deep embedding models instead of 
expert (linguistic) features can improve the performance 
by extracting more complex relationships, it does not 
provide clear features tied to clinical practice that can 
be validated easily as opposed to expert features. In this 
regard, a suggested solution is to use interpretation tech-
niques. But the training phase must also be conducted in 
such a way that the extracted features are both interpret-
able and relatively sparse so that they could be validated 
clinically.

Future work
One of the most popular types of transformer-based lan-
guage models is the class of multilingual models. With a 
proper use of multilingual models, similar to approaches 
by Li et  al. [26] and Fraser et  al. [27], the problem of 
lacking access to a large dataset in one language can be 
addressed by transferring the knowledge of AD predic-
tion from another language in which a large dataset is 
available. Using such transfer, the need to define lin-
guistic features by experts in the target language is also 
addressed. In future work, we aim to improve multilin-
gual AD prediction using pre-trained multilingual trans-
former-based language models along with cross-lingual 
transfer learning.

Conclusions
According to the results of earlier studies, Alzheimer’s 
disease affects speech in the form of syntactic, semantic, 
information, and acoustic impairments. We employed 
a transfer-learning approach to improve automatic AD 
prediction using a relatively small targeted speech data-
set without using expert-defined linguistic features. We 

evaluated recently developed pre-trained transformer-
based language models that we enriched with augmen-
tation methods on the Cookie-Theft picture description 
test of the Pitt corpus. Using sentence level BERTLarge 
with a simple logistic regression classifier, the accuracy 
and F1 scores of 88.08% and 87.23% were achieved which 
improved the state-of-the-art results by 2.28% and 2.80%, 
respectively. Pre-trained language models are available 
in many languages. Hence, the approach in this paper 
can be examined in languages other than English as well. 
Also, with the multilingual versions of these models, 
the knowledge of AD prediction in one language can be 
transferred to another language in which a sufficiently 
large dataset does not exist.
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