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A B S T R A C T

Nowadays, the polyurethane and its derivatives are highly applied as a surface modification material onto the
textile substrates in different forms to enhance the functional properties of the textile materials. The primary
purpose of this study is to develop prediction models to model the absorption property of the textile substrate
using the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) methods. In this
study, polyurethane (PU) along with acrylic binder was applied on the dyed polyester knitted fabric to develop
and validate the prediction models. Through the morphological study, it was evident that the solution prepared
with the polyurethane and the acrylic binder was effectively coated onto the fabric surface. The ANFIS model was
constructed by considering binder (ml) and PU (%) as input parameters, whereas absorbency (%) was the only
output parameter. On the other hand, the system was trained with 70% data for constructing the ANN model
whereas testing and validation were done with 15% data, respectively. To train the network, feed-forward
backpropagation with Levenberg–Marquardt learning algorithm was used. The coefficient of determination
(R2) was found to be 0.98 and 0.93 for ANFIS and ANN model, respectively. Both prediction models exhibited an
excellent mean absolute error percentage (0.76% for the ANFIS model and 1.18% for the ANN model).
Furthermore, an outstanding root-mean-square error (RMSE) of 0.61% and 1.28% for ANFIS and ANN models was
observed. These results suggested an excellent performance of the developed models to predict the absorption
property of the polyurethane and acrylic binder treated fabric. Besides, these models can be taken as a basis to
develop prediction models for specific types of functional applications of the textile materials to eliminate heaps
of trial and error efforts of the textile industries, which eventually be helpful in the scalable production of
functional textiles.
1. Introduction

To enhance the functional properties of the textile fabrics, a number
of approaches such as coating is used enormously [1, 2, 3]. Textile fabrics
manufactured with both the natural and synthetic fibres, having different
forms, size, and shape have been treated with various kinds of materials
to impart the functional properties for diversified applications [4, 5].
Polyurethane and its derivatives are also being used extensively to
enhance several properties of the textiles, especially the water repellency
property [6, 7]. Generally, the water repellency indicates that the ma-
terial is either hydrophobic or repels water upon contact with the textile
surface [8]. Water repellency has a close but inverse effect on the water
absorption. The textile substrate which absorbs more water is less water
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repellent, as a rule of thumb. As the water repellency is commonly
measured visually by comparing with the references, the objective
measurement of water absorption can significantly shed light numeri-
cally on the water repellency property of the substrate [9].

Polyester is generally a hydrophobic material that doesn't necessarily
confirm that it is water repellent [10]. However, to use in products where
water repellency is a must, the polyester also needed to be treated with
functional materials [11, 12]. Moreover, as polyester is cheap, it can be
used to satisfy water repellency and/or waterproofing applications such
as raincoats or umbrellas. From the literature, it has been found that the
mechanical properties of PU-coated knitted fabrics have been studied
and the results were compared with the regression models [13]. The
authors concluded that both the fabric thickness and coating thickness
ember 2021
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Figure 1. The general architecture of a neural network.
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possessed a major impact on the PU-coated knitted fabrics [13]. In other
studies, the finishing of textile materials in the forms of membrane, web,
and fabrics with PU have also been studied. The researchers were tried to
improve the breathability of the treated textiles and the improvement of
their hydrophobicity. From these studies, it was prominent that the PU
can incorporate the water repellent property of the treated materials and
can assist in improving the breathability [14, 15]. Furthermore, the
application of PU as flame retardant finish, anti-ultraviolet ray finish,
chemical protection finish has also been studied. It has been found that
PU with suitable substrate material and in proper form can improve these
properties in a notable manner [16, 17, 18]. However, as per our best
knowledge, no study has been reported to improve the water repellent
property of the polyester knit fabrics by treating with PU and acrylic
binder. The use of PU and binder with polyester fabrics can open a new
horizon of developing a cheap, functional finishing process of the textile
fabrics that can assist in the large-scale production of the functional
textiles and can be used in diversified application areas. As the final
property plays a significant role for any functional finished textiles, the
property prediction of the mentioned type of fabrics can also support the
scalable production of cheaper functional fabrics, especially in the
developing countries like Bangladesh, where inexpensive but functional
fabrics can be a prevalent choice. Therefore, we have treated the poly-
ester knit fabric with polyurethane (PU) and acrylic binder in this study.
Furthermore, various models' property prediction of the PU-treated ma-
terials can be an excellent opportunity to understand the effect of fin-
ishing and quality of the final product.

Among most of the common and available models such as mathe-
matical, statistical, and soft computing-based models for predicting the
properties of the textile substrate, the soft computing-based methods are
found to be more accurate and suitable comparatively because of their
exhibition of capability to address the nonlinear relationship of the
process parameters and output parameters of the textiles [19, 20, 21, 22,
23]. Whereas, the models like mathematical and statistical produce noisy
data with a lower degree of accuracy [24, 25, 26]. As soft
computing-based methods like ANFIS or ANN can substantially address
the issue with reasonable accuracy, soft computing approaches can be
used in this regard [27]. Moreover, these methods have been extensively
used in other prominent fields like engineering, agriculture, and medical
to significantly model and predict the data [28, 29, 30]. An extensive
literature review revealed that soft computing-based approaches have
widely been used in the textile industry to model and predict the prop-
erties of different materials with admirable accuracy. Among different
soft computing-based approaches, the fuzzy inference-based prediction
system has been successfully developed and utilized in the prediction of
different fabric properties [25, 31, 32, 33, 34]. Besides, the color prop-
erty [35, 36], tearing strength, and seam strength of the garments [37,
38] have also been predicted using the fuzzy inference-based prediction
system. Although the fuzzy logic-based models exhibited excellent per-
formance in most cases, it primarily relies on expert suggested rule base
system, which can be subjective depending upon the expert. On the other
hand, the ANFIS and ANN based models can operate on the principle of
the artificial network that can eliminate the subjective error of the rule
base of the fuzzy inference system. In textiles, ANFIS and ANN are also
extensively used in property prediction [20, 39, 40, 41, 42, 43]. How-
ever, as per the authors' best knowledge, no significant work has been
reported to predict the water absorption of a treated textile substrate by
ANFIS and/or ANN models.

Commonly, the ANN and ANFIS model shows better performance
with a larger amount of data that is labor-intensive to obtain and may not
always be possible in an industrial situation [44, 45]. But it is not un-
common to use a limited amount of data to successfully design models
and predict different properties with satisfactory accuracy [24, 39, 46].
Hence it is clear that laboratory-scale experimental data can also be used
to train the ANN and ANFIS models to predict data with distinctive ac-
curacy. Therefore, in this study, both the ANFIS and ANN methods have
been developed to predict the water absorbency of the PU-treated 100%
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polyester knitted fabric. The developed models have also been validated
using the trial data. These models can act as principles to the develop-
ment of other models for artificial intelligence-based prediction systems
for the treated textile materials provided that the models perform
satisfactorily.

2. Materials and methods

2.1. Development of ANN and ANFIS prediction model

2.1.1. The basic structure of artificial neural network (ANN)
The long trail of adaption and development has provided many

attractive features to the human brain like extensive parallelism,
distributed representation and computation, learning ability, capacity for
generalization, adaptability, processing of inherent contextual informa-
tion, fault tolerance, and low energy consumption. Artificial neural net-
works (ANNs) are highly parallel computing systems inspired by
biological neural networks [47]. ANNs were first established in the 1950s
to emulate the architecture of the biological brain of humankind [48].
The ANN can develop an internal representation of a signal pattern
introduced to the network as an input. This automated processing or
"learning" is achieved by dynamically changing the strengths of network
interconnection (adaptive weights) associated with each neuron [49]. A
neural network contains a vast number of interacting neurons, like that of
the human brain. However, an artificial neural layout is more straight-
forward than a biological one [50].

An artificial neural network (or merely a neural network) consists of
input neuron layers (or nodes, units), one or more hidden neuron layers,
and a final layer which consists of the output neurons. In Figure 1, the
general architecture of an ANN has been illustrated. A numeric value
called weight is aligned with each connection. The output, hi from the
final layer of neuron i in the hidden layer can be expressed as Eq. (1)
[51].

hi ¼ σ

 XN
j¼1

Vijxj þThid
i

!
(1)

Where, σ ¼ Activation function, N¼ Number of input neurons, Vij ¼
Weights, xj ¼ Inputs of the input neurons, and Thid

i ¼ Threshold terms of
the hidden neurons.

To integrate the nonlinearity into the neural network, the objective of
the activation mechanism is to connect the value of the neuron so that the
divergent neurons do not paralyze the neural network.

ANN uses a learning method to predict the output of a given input.
Learning of ANNs can be classified into two major categories: supervised
learning and unsupervised learning. In supervised learning, training is
needed to assist the system in predicting the output. Weights are adjusted
to desired values in the training to minimize the errors. In those training,
examples of previous data are provided in which inputs and



Figure 2. General architecture of ANFIS structure.
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corresponding outputs are given to the ANN system. Some further special
considerations are needed to minimize the error of the result. On the
contrary, the unsupervised training does not provide any previous
example in its database, and ANN tries to figure out the output through
the patterns and trends [52].

Artificial Neural Networks (ANN) possess several merits, such as ANN
emulating the human brain so that it can do operations while learning. In
addition, ANN can perform its organization while carrying out tasks,
which is not possible for regular computer programs. Besides, ANN can
work parallelly, which is not possible for ordinary computer programs.
Moreover, ANN is reasonably fast while human brain processing is much
slower than ANN [53]. Although ANN has a tremendous amount of ad-
vantages, it contains some limitations too. For example, there is no
established method of operation for ANN. Very often, the quality of the
final output can be unpredictable and erroneous. Furthermore, most ANN
programs do not provide a solution and insight into fixing problems
discovered from the final output [54]. Another major issue with ANN is
overfitting: in the output, ANN provides a larger value of error than the
smaller error that is provided in its training set [55]. Despite these dis-
advantages, ANN is frequently used to solve many scientific problems in
present days for its advantageous counterparts.

2.1.2. Development of ANN model
In this research, we have used NN toolbox of MATLAB (Version 9.6).

In the feed-forward neural network, input variables were PU (5–20 %),
and binder (2–10 ml). The absorbency (%) was chosen as the output
variable in the output layer. The model was constructed by using a 2-4-1
structure, which means the network was developed by using 2 neurons
for the input layer, 4 neurons for the hidden layer, and 1 neuron for the
output layer. No transfer function was used in the input layer, whereas
the log-sig transfer function in the hidden layer and purelin transfer
function in the output layer has been used. A feed-forward back-
propagation with Levenberg–Marquardt learning algorithm was
employed to train the network. A total of 20 datasets were used for
constructing the ANN prediction model. Among the datasets, 70% (14
datasets) were used to train the system whereas the rest 30% datasets
were equally distributed for testing and validation purpose. It is not
uncommon for smaller datasets to use one test-set for both validation and
testing [24]. Therefore, in this study, all 30% (6 datasets) were used as
the test-set to compare the results with the experimental and ANFIS
model predicted results. Moreover, the datasets for testing the model
were selected randomly to test the ANN prediction model.

2.1.3. The basic structure of adaptive neuro-fuzzy inference system (ANFIS)
It is unlikely that a model based on arbitrarily established and un-

predictable processes will work out with traditional mathematical tools
(e.g., differential equations). On the other hand, a fuzzy inference
method that uses fuzzy if-then rules has a good probability to model the
qualitative dimensions of human understanding and reasoning even
without accurate quantitative analysis [56, 57]. One of the most effective
artificial intelligence approaches is fuzzy logic, developed by Zadeh [58].
We must face different circumstances in everyday life involving uncer-
tainty. The fuzzy inference method enables the use of the
decision-making process to express ambiguous circumstances in the form
of rules. It has therefore been used to resolve numerous problems [59,
60]. Being the association of ANN and fuzzy networks, neuro-fuzzy sys-
tems typically have the benefit of making things more straightforward
than before when conventional neural networks were being used [61].

There are five layers in the architecture of ANFIS, namely fuzzy layer,
product layer, normalized layer, de-fuzzy layer, and total output layer.
All those 5 layers are shown in Figure 2.

For convenience, the fuzzy inference method can be considered
consisting of two inputs v and d, and one output f . A succinct overview of
the five layers of the ANFIS algorithm is given below [61].

Layer 1 is a fuzzy layer in which each node is an adaptive one. In this
layer, v and d are the input of the system and O1 is the output of layer 1's
3

ith node. All the adaptive nodes are square nodes with square functions,
which can be represented as Eqs. (2) and (3).

O1;i ¼ μv;iðVÞfor i ¼ 1; 2 (2)

O1; j ¼ μd; jðVÞfor j ¼ 1; 2 (3)

In this equation, output functions are shown by O1;i and O1;j and
membership functions are shown by μv;i and μv;j. If we choose a trian-
gular function,

μviðVÞ¼max
�
min

�
v� ai
bi � ai

;
ci � v
ci � bi

�
; 0
�

(4)

fai; bi; cig are parameters of triangular membership functions. Again, if
we want μviðVÞ to be bell-shaped,

μviðVÞ¼
1

1þ
��

v�ci
ai

�2�
bi

(5)

Layer 2 gets the input value vi from the first layer and it explores the
weights of each membership function. Nodes of this layer are fixed and
labeled with M and the product of all arriving signals is used to calculate
the output. The output of this layer can be represented in Eq. (6).

O2; i ¼wi ¼ μv; iðVÞ:μDjðdÞ; i ¼ 1; 2 (6)

Nodes in layer 3 are labeled with N, which suggests normalization to
the firing strength from the previous layer. This layer conducts Pre-
condition matching of fuzzy rules. The output of this layer is repre-
sented as wi which is

O3; i ¼wi ¼ wi

w1 þ w2
(7)

Output values provided by layer 4 result from the inference of rules.
The output is a first-order polynomial and product of normalized firing
rule strength. Weighted output represented by node function:

O4;i ¼wifi ¼wiðpivþ qidþ riÞ; i¼1; 2 (8)

pi:qi; and rj are called linear or consequent parameters and O4;i is the
output.



Table 1. Treatment condition of the samples used for the prediction models.

Sample PU (%) Binder (ml)

A 15 02

B 10 04

C 20 06

D 15 08

E 20 08

F 05 10
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Layer 5 is the output layer which sums up all the incoming values
from layer 4 and transmutes all fuzzy classification results into solid
values. The summation of all the input signals is conducted by Eq. (9).

O5;i ¼
X
i

wifi ¼
P

iwifi
w1 þ w2

; i¼ 1; 2 (9)

During learning the information of a dataset, ANFIS computes the
membership function parameters, which change throughout the learning
process to track the input/output data. ANFIS tunes all the parameters that
can be manipulated for handling real-world situations. For improving the
convergence, the hybrid network can be trained by a hybrid algorithm
[61, 62]. A hybrid learning algorithm consists of a forward pass and a
backward pass. In the forward pass, node outputs keepmoving forward up
to layer 4, and the least square method assists the system in identifying the
consequent. While in the backward pass, error signals are transmitted
backward, and gradient descent updates the premise parameters [63].

The main advantage of the neuro-fuzzy system is, it combines neural
network properties with fuzzy logic and hence eliminates the limitation of
both. While fuzzy logic deals with the explicit knowledge that can be
obtained and understood, neural network deals with implicit knowledge
obtained by learning [64]. ANFIS puts fuzzy logic's qualitative approach
and neural network's adaptive capabilities into one system [65]. Apart
from its advantages, it has some limitations too. In a fuzzy system, mem-
bership parameters and rules are established by a trial-and-error process.
An intricate system requires a sizeable time to perceive the appropriate
membership function and rules to get a well-grounded solution. Also, the
generalization potentiality of the fuzzy system is very poor [64].

2.1.4. Development of ANFIS model
For the ANFIS modeling, the fuzzy toolbox of MATLAB (version 9.6)

was used for modeling the data. Binder (ml) and PU (%)were taken as the
input parameters whereas the absorption (%) was the only output
parameter. 100 training epochs were selected to train the ANFIS model.
The trimf type membership function (MF) was chosen for the input side,
whereas, for output, the linear type of membership function (MF) was
selected. Three linguistic variables for the input parameters as Low (L),
Medium (M), and High (H) were used. Among 20 datasets, 70 % (14
datasets) were used for training the model, whereas the remaining 30%
(6 datasets) were used to test the model. The datasets to test the model
were selected randomly from the overall datasets.
2.2. Experimental procedure and data acquisition

2.2.1. Materials
100% dyed polyester single jersey fabric of 160 g per square meter

(GSM) was used. The fabric was Optical Brightening Agent (OBA) treated
and white dyed. The fabric was provided by a textile manufacturing fac-
tory located at Gazipur, Dhaka, Bangladesh. Polyurethane and acrylic
binder were purchased from the City Scientific Store, Khulna, Bangladesh.

2.2.2. Materials preparation
The collected fabric was treated with polyurethane along with an

acrylic binder. The polyester fabric was soaked into the solution made by
using a specific amount of distilled water, PU, and acrylic binder. The
Polyurethane solutions were prepared in a concentration of 5%, 10%,15%,
and 20%. The concentration of the acrylic binder was chosen as 2ml, 4 ml,
6 ml, 8 ml, and 10 ml. For 5% PU, 5 ml PU was added to 95 ml water.
Similar approaches were followed for each percentage of the PU. With the
total 100ml PU andwater solution, a specific amount of acrylic binder was
used. The final solutions were prepared with the help of a magnetic stirrer
(MTOPS, Korea). The stirring speed was maintained at 1000 rpm. The
samples were then impregnated into their respective solution for 15 min
for complete impregnation of the solution to the polyester fabric followed
by the squeezing in a laboratory padding mangle (GESTER, China) for the
removal of residual polyurethane solution from the fabric. The diameter of
4

the roller of the padder was 125 mm, and the roller hardness was the 70-
degree shore. The pressure used in the padding was 0.4 kg/cm2, and the
cloth speed was kept at 3 m/min to obtain a take-up percentage of 70 %.
The treated samples were then dried in the oven (GESTER, China) at 100
�C for 10 min. The treatment condition which was used for testing the
developed models is presented in Table 1.

2.2.3. Evaluation of water absorption
The treated samples were conditioned on a flat surface for 24 h before

testing under standard atmospheric conditions at relative humidity (RH)
of 65% and temperature of 20 �C [66]. Then the samples were tested for
water absorption by following the static immersion method to evaluate
water absorption amount according to BS 3449 [67]. The water ab-
sorption was calculated by following Eq. (10). An average of five samples
was taken as the final reading.

Water absorption¼Absorbed water mass ðgmÞ
Dry mass ðgmÞ (10)

2.2.4. Scanning electron microscopy (SEM)
The Phenom Pro Desktop SEM was used to examine the surface

morphology of the treated samples. The accelerating voltage was kept at
5 kV.

2.2.5. Statistical analysis
By following the global prediction errors, the performance of the

developed ANFIS and ANN models was determined and compared. The
prediction errors considered in the study are root-mean-square error
(RMSE), mean absolute error percentage (MAEP), and coefficient of
determination (R2). The formulations of the prediction errors are as
following:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼N

i¼1

	
Ea � Ep


2
N

s
(11)

MAEP¼ 1
N

Xi¼N

i¼1

���Ea � Ep

��
Ea

� 100
�

(12)

R2 ¼1�
 Pi¼N

i¼1

	
Ea � Ep


2PI¼N
I¼1 ðEa � EmÞ2

!
(13)

Here, Ea ¼ Actual value; Ep ¼ Model predicted value; Em ¼
Mean value; and N ¼ Number of the pattern.

GraphPad Prism (version 8) was used to analyze the correlation be-
tween predicted and experimental results. The same software has been
used for the comparative analysis among the experimental and model-
predicted values as well.

3. Results and discussion

3.1. Experimental results

It was found from the experiment that the application of PU decreased
the absorbency of the fabric. The amount of PU and binder both hinder



Figure 3. SEM images of the sample. a) Untreated sample, b) 5% PU and 2 ml binder, and c) 20% PU and 4 ml binder.

J. Sarkar et al. Heliyon 7 (2021) e08000
the penetration of water molecules inside the fabric structure. As binders
help more PU to bind with the fabric surface, the absorbency decreases.
In Figure 3, the scanning electron microscopy shows the treated and
untreated fabrics' surface anatomy. From the figure, it can be seen that
the PU accumulates on the surface and affects the absorbency of the
treated fabric. It was observed that with the increment of PU%, the water
absorbency of the treated fabric decreases by nearly 23.4 %. On the other
hand, the same trend was exhibited by the amount of binder. The higher
amount of binder results in lower water absorbency. The highest value of
water absorbency (~78.6%) was experienced in the lowest concentration
of PU (5%) and binder (2 ml) whereas, the lowest (~60.2%) water ab-
sorbency was found for the highest concentration of PU (20%) and binder
(10 ml).
3.2. Data prediction by ANFIS model

The basic structure of the ANFIS model for this study is demonstrated
in Figure 4. For two input parameters consisting of 03 membership
functions (mfs), the system develops 9 'and' based rule bases. Then
through the same number of the output mfs, they are converted into a
crisp output. On the other hand, the data prediction capability of the
ANFIS model has been demonstrated by the rule viewer as presented in
Figure 5. For instance, for 10% PU and 4 ml binder, the absorption is
~74.2 %. The model can predict every output data for every input
Figure 4. ANFIS m
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parameter within the data range. At the same time, for a particular
required output, the inputs can be selected accordingly with the rule
viewer. As a result, the model can predict output data (absorption %) in
response to the input variables (PU % and binder (ml)) and vice versa.
The model can be adjusted for a slight change in either parameter to
predict the other parameter.
3.3. Data prediction by ANN model

The neural network regression shown in Figure 6 demonstrates the
interaction of the network with the raining, testing, and validation data.
The correlation coefficient was found 0.974, 1, and 1 for training, testing,
and validation data, respectively. Moreover, the straight line presents the
linear relationship between the model predicted (output) and experi-
mental (target) data. The results suggest that the actual data are well
aligned with the model-predicted data. Hence the model is suitable
enough to predict the data with excellent accuracy. The overall correla-
tion coefficient (0.97) confirms the outstanding prediction performance
of the developed ANN model.
3.4. Comparison between actual and model-predicted results

The comparison and statistical analysis of the actual (experimental)
values and the model predicted values of water absorption (%) of the PU-
odel structure.



Figure 5. Rule viewer of the ANFIS prediction model.
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treated polyester fabric are presented in Table 2. It was found that both
models have sufficient capability to predict the properties of the treated
fabrics. As specific, the mean root-mean-square error (RMSE), mean ab-
solute error percentage (MAEP), and the coefficient of determination
(R2) was found 0.61, 0.76, and 0.98 respectively for the ANFIS model
whereas RMSE, MAEP, and R2 values were found as 1.28, 1.18, and 0.93
for the ANN model. As the statistical data for both models fit within the
Figure 6. Neural network
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acceptable limit hence proves the suitability of the model to be used in
practice. Figure 7 shows the linear fit of the actual and predicted results
by a) ANFIS and b) ANN models. The linear fit also suggests the
outstanding performance of both models. Though both models are suit-
able for predicting the water absorption (%) of PU-treated polyester
fabric, the ANFIS model performed slightly better in terms of RMSE,
MAEP, and R2 values.
training regression.



Table 2. Comparison of actual and predicted values of ANFIS and ANN models.

Sample PU
(%)

Binder
(ml)

Actual absorption
(%)

ANFIS model predicted
absorption (%)

ANN model predicted
absorption (%)

Absolute error (%)
[ANFIS]

Absolute error (%)
[ANN]

A 15 02 70.70 70.70 69.98 0.00 1.01

B 10 04 74.70 74.20 75.47 0.67 1.03

C 20 06 67.30 66.30 64.36 1.49 4.37

D 15 08 67.90 67.50 68.04 0.59 0.21

E 20 08 62.90 63.70 62.71 1.27 0.30

F 05 10 70.20 69.80 70.32 0.57 0.16

Root-mean-square error (RMSE) 0.61 1.28

Mean absolute error percentage (MAEP) 0.76 1.18

Co-efficient of determination (R2) 0.98 0.93

Figure 7. Correlation between actual and (a) ANFIS model predicted absorption (%), (b) ANN model predicted absorption (%).

Figure 8. Comparison of ANFIS and ANN predicted results with the actual
result for absorption (%).
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On the other hand, the original characteristics of the treated fabrics
found by the experiment are sustained in the case of the model pre-
diction (for both ANFIS and ANN). As presented in Figure 8, the trend of
the behavior of the samples also fits excellently. Table 2 and Figure 8
show that the ANFIS model performed outstandingly for sample A,
whereas the ANN model was excellent for sample F, where the absolute
error was 0% and 0.16%, respectively. In the case of sample C, both
models exhibited a poor performance with slightly higher absolute
error (1.49% for ANFIS and 4.37% for ANN), but never exceeded the
tolerable limit.

From the prediction errors and Figures 7 and 8, it is certain that the
model predicted values are close enough with the experimental values in
almost each test condition, along with remarkable similarity in the trend
of the behavior of the samples. Therefore, it is evident that the models are
suitable with excellent accuracy.

4. Conclusion

The findings of the research not only satisfied its primary objectives
but also opens a new possibility for predicting the properties of PU-
treated textiles. The developed ANFIS and ANN models and their
7

comparison have established the suitability of the models to be used in
the practical field. From the analyses, the conclusion can be drawn as:

a) The coefficient of determination (R2) was found to be 0.98 and 0.93
for ANFIS and ANN models, respectively. The results imply a good fit
between the model-predicted data and experimental data in both
cases, indicating the models' suitability and compatibility.

b) The root-mean-square error (RMSE) between the predicted and
experimental values of absorption % was found to be 0.61 for the
ANFIS model and 1.28 for the ANN model.

c) The mean absolute error percentage (MAEP) between the predicted
values and experimental values of absorption % was found to be 0.76
and 1.18 for the ANFIS and ANN model respectively, which are much
lower than the acceptable limit of 5%.

d) In terms of overall efficiency, the ANFIS model (R2¼ 0.98) performed
better than the ANN model (R2 ¼ 0.93), though both models are
satisfactory enough. This is maybe because of working with a small
number of datasets. Working with an enormous number of datasets
may exhibit more efficiency in the case of the ANN model.

The bright side of the research is that the models are customizable
and capable of eliminating a lot of trial-and-error effort to predict the
textile material's property. Furthermore, it can flourish the scalable
production of functional textiles with minimum hassle and constriction
regarding the desired property of the final product.

To develop and investigate the performance of the models in the
future, i) more datasets, ii) other types of binders than acrylic, and iii)
different types of fabrics can be considered.

5. Limitations

This paper only discusses the water absorption property of PU-treated
polyester fabrics. But considering more properties would give a better
insight into the behavior of the treated fabrics. Moreover, working with
more data improves the prediction capability of the ANFIS and ANN
models. The number of datasets presented in this paper is not far below of
some other researchers, but working with more data would give more
accurate results.
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