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This study aims to model genetic, immunologic, metab-
olomics, and proteomic biomarkers for development of
islet autoimmunity (IA) andprogression to type 1 diabetes
in a prospective high-risk cohort. We studied 67 children:
42 who developed IA (20 of 42 progressed to diabetes)
and 25 control subjects matched for sex and age. Bio-
markers were assessed at four time points: earliest
available sample, just prior to IA, just after IA, and just
prior to diabetes onset. Predictors of IA and progres-
sion to diabetes were identified across disparate sour-
ces using an integrative machine learning algorithm
and optimization-based feature selection. Our integra-
tive approach was predictive of IA (area under the
receiver operating characteristic curve [AUC] 0.91)
and progression to diabetes (AUC 0.92) based on
standard cross-validation (CV). Among the strongest
predictors of IA were change in serum ascorbate,
3-methyl-oxobutyrate, and the PTPN22 (rs2476601)
polymorphism. Serum glucose, ADP fibrinogen, and
mannose were among the strongest predictors of pro-
gression to diabetes. This proof-of-principle analysis is
the first study to integrate large, diverse biomarker
data sets into a limited number of features, highlight-
ing differences in pathways leading to IA from those
predicting progression to diabetes. Integrated models,
if validated in independent populations, could provide
novel clues concerning the pathways leading to IA
and type 1 diabetes.

Type 1 diabetes results from autoimmune destruction of
insulin-producing pancreatic b-cells. Clinically apparent

diabetes is typically preceded by a period of islet auto-
immunity (IA), marked by appearance of autoantibodies
against islet autoantigens (1). While there is consensus
that chronic autoimmune destruction of b-cells is trig-
gered by an interaction of environmental factor(s) with
a relatively common genetic background, the specific
cause remains elusive. Prospective cohort studies have
reported a number of demographic, immune (2–4),
genetic (5–10), metabolomic (11,12), and proteomic
(13–15) predictors of IA and/or progression from IA to
diabetes. Each analytic approach offers unique insights;
however, single data stream analysis is unable to address
the importance of technique-specific observations in the
context of other analyses. Use of data fusion methods to
integrate different data types can create models that are
more complete and accurate than those derived from any
individual source (16). Our objective was to provide proof
of principle that machine learning Bayesian modeling of
disparate biomarkers can yield useful integrated models
for hypothesis generation. Applied to longitudinally col-
lected biomarkers, such integrated models could provide
novel clues concerning pathways leading to IA and/or
diabetes. This integrative modeling approach could im-
prove personalized prediction of progression through
presymptomatic stages of type 1 diabetes.

RESEARCH DESIGN AND METHODS

Study Participants
We performed a nested case-control study of children
participating in the Diabetes Autoimmunity Study in the
Young (DAISY) cohort. DAISY follows prospectively 2,547
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children at increased risk for type 1 diabetes. The cohort
consists of first-degree relatives of patients with type
1 diabetes (FDRs) and general population children with
type 1 diabetes–susceptibility HLA DR-DQ genotypes
identified by newborn screening (17,18), recruited be-
tween 1993 and 2004. Follow-up results are available
through 29 September 2017. Written informed con-
sent was obtained from subjects and parents. The Col-
orado Multiple Institutional Review Board approved all
protocols.

Outcome Measures
Autoantibodies were tested at 9, 15, and 24 months and,
if negative, annually thereafter; autoantibody-positive
children were retested every 3–6 months. Radio-
immunoassays for insulin (IAA), GAD (GADA), insulinoma-
associated protein 2 (IA-2A), and/or zinc transporter
8 (ZnT8A) autoantibodies were conducted as previously
described (19–23). Subjects were considered persistently
islet autoantibody positive if they had two or more con-
secutive confirmed positive samples, not due to maternal
islet autoantibody transfer, or had one confirmed positive
sample and developed diabetes prior to next sample
collection. Diabetes was diagnosed using American Di-
abetes Association criteria.

Selection of Subjects for Analyses
Sixty-seven children were selected in July of 2011 from the
DAISY cohort for studies of metabolomic, proteomic, and
immune predictors. Of those, 22 children developed
diabetes (T1D group), 20 had developed persistent
IA and were islet autoantibody positive at their last study
visit (AbPos group), and 25 were control subjects (control
group). Control subjects were frequency matched with
subjects in the combined T1D and AbPos group on the HLA
DR-DQ genotypes, age, sex, and FDR status. As of 29 Sep-
tember 2017, all control subjects have been negative for
all islet autoantibodies. Of the AbPos group, four pro-
gressed to diabetes in subsequent years at median age
17.8 years. These individuals were retained in the AbPos
group. Supplementary Fig. 1 describes subject selection.
Supplementary Table 1 presents individual autoanti-
body histories of all case and control subjects at
relevant time points.

Specimens for Analysis
When available, samples for each subject were analyzed for
metabolomic, proteomic, and immune biomarkers at four
time points: T1, earliest available sample prior to de-
velopment of islet autoantibodies (typically age 9–15
months); T2, just prior to development of first auto-
antibody; T3, just after development of first autoanti-
body; and T4, just prior to diagnosis of diabetes or most
recent sample for AbPos subjects at time of sample
selection.

Of the subject with T1D, five were missing a T2 sample.
Samples from control subjects were selected to frequency

match storage time of samples from T1D and AbPos
subjects combined.

Metabolomic Analysis
Global metabolic profiling combined two separate ultra-
high-performance liquid chromatography/tandem mass
spectrometry (UHPLC/MS/MS2) injections, optimized
for basic and acidic species, and gas chromatography/
mass spectrometry (GS/MS) (Metabolon, Durham, NC).
All serum samples were stored at 280°C #1 h after
collection, never thawed until analyses, and processed
essentially as described previously (24,25). Metabolites
were identified by automated comparison of ion fea-
tures in experimental samples with a reference library
of chemical standard entries using software developed
at Metabolon (26). A total of 382 named metabolites
were included in this analysis. For statistical analyses
and data display, any missing values were assumed to be
below limits of detection, and these values were im-
puted with the compound minimum (minimum value
imputation).

Proteomic Analysis
Relative abundance of 1,001 serum proteins were mea-
sured by aptamers (Somalogic, Boulder, CO) (27). Addi-
tionally, 49 peptides (representing 24 proteins) were
measured by LC-MRM/MS in the laboratory of Drs.
Thomas Metz and Qibin Zhang at Pacific Northwest
National Laboratory as previously described (28).

Immune Markers
Cytokines were measured using a Human Custom Cyto-
kine 9-Plex assay (Meso Scale Discovery, Rockville, MD)
and included interferon (IFN)-a2a, interleukin (IL)-6,
IL-17, IL-1b, interferon g–induced protein (IP)-10, mono-
cyte chemotactic protein (MCP)-1, IFN-g, IL-1a, and
IL-1ra (4).

Genotyping
All 106 non-HLA SNPs available for these subjects were
included. Locus and reference for genotyping are shown in
Supplementary Table 2. As genetic data were derived from
several analyses, some genes were represented by more
than one SNP and the rs2476601 SNP for PTPN22 was
present in two genetic feature sets from separate analyses
(Supplementary Table 2).

Metadata
Individual metadata included in the model consisted of age
at sampling, sex, Hispanic ethnicity, and FDR status (clas-
sified as mother with type 1 diabetes, other FDR with type
1 diabetes, or no FDR) Additionally, subjects were classified
by four HLA risk categories based on typing for HLA class II
alleles as previously described (29).

Statistics and Machine Learning
SAS, version 9.4 (SAS Institute, Cary, NC), was used to
analyze descriptive data for groups. Integrative machine
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learning, based on the set of demographic characteristics,
gene variants, cytokines, proteins, and metabolites, was
used to evaluate whether predictive models can separate
future cases from control subjects, as well as identify the
primary features that distinguish the groups. Two disease
stages were modeled. 1) Development of IA: transition
from T1 to T2 among combined AbPos and T1D subjects
versus control subjects. 2) Progression to diabetes: tran-
sition from T3 to T4 among T1D versus AbPos subjects.
Transition between time points is represented in analysis
by determining log fold difference of cytokine, protein, or
metabolite between time points. Integrative machine
learning was performed using probability-based inte-
gration of multiple data streams via the Posterior Prob-
ability Product (P3) (16,30). Feature selection was
performed in the context of the integrated model using
a Repeated Optimization for Feature Interpretation
(ROFI) approach (31). The ROFI-P3 algorithm for this
analysis is described in detail in Supplementary Fig. 2.
It has several key characteristics amenable to identi-
fying and evaluating important features of diabetes
progression across disparate data sources, which in-
clude allowing each data set to be modeled with the
optimal machine learning algorithm and features to
be assigned importance metrics through repeated
analyses.

The first step requires selection of the machine learning
method to model each data set (e.g., metabolomic, pro-
teomic, etc.). We evaluated seven machine learning clas-
sification methods with all features in each data set where
a feature is the ratio of the measurements between time
points for a case or control subject, including random
forest (RF), logistic regression (LR), k-nearest neighbors
(KNN), linear discriminant analysis (LDA), support vector
machine (SVM) with a radial basis function (RBF) kernel,
SVM with a linear (LIN) kernel, and naive Bayes (NB).
Supplementary Fig. 3 shows average area under the re-
ceiver operating characteristic (ROC) curve (AUC) based
on fivefold CV repeated 100 times. The only requirement
of this step is that a machine learning classifier can
output the posterior probability, defined as the prob-
ability that class i ðciÞ is observed given the data for
subject s of data set j ðDsiÞ; P(cijDsj). The posterior prob-
abilities are generated using the standard functions in the
R programming language for each machine learning
algorithm.

Integration via the P3 approach is a naïve product-
based integration as the product of the posterior proba-
bility of each sample as related to each data sets:

∏
j

P
�
cijDsj

�

(16,30). These integrated probabilities can be used to
compute the accuracy of the integrated model using a stan-
dard AUC. Feature selection is performed on the integrated
model to assure that features selected are those that work
best in combination across disparate sources. Selection

utilizes a statistical optimization algorithm, such as sim-
ulated annealing, which is not affected by the order of
features in the data set and allows the algorithm to move
out of local minima by updating the solution at each
iteration based on the current feature state and sampling
in proportion to including or excluding the variable of
interest. Thus, for each feature change proposal, this is
based on looking at the difference of the accuracy of the
current state (AUCCurrent) and an updated solution
(AUCUpdated). The updated solution is selected in pro-
portion to:

exp
�
AUCUpdated 2AUCCurrent�

D

�

based on a uniform distribution between 0 and 1, where
D 5 0.25 for this analysis. For each run of the algorithm,
we perform 100 random changes of individual features and
keep or discard the change based on this exponential
difference between AUC values. After each 100 proposals
and potential updates, we determine whether the solution
has converged based on the difference between the AUC
prior to the 100 feature evaluations and the current
solution. If this value is,d, which was set to 1E-4 for this
analysis, it is determined that the solution has converged
(31).

Within ROFI-P3, the AUC is computed based on fivefold
CV for every feature evaluation. We repeat the algorithm in
conjunction with CV for 100 repetitions, each of which
yields a single feature set solution. We use the 100 repe-
titions to obtain a feature ensemble solution, which gives
the likelihood that the feature would be selected for
inclusion in the model. This is represented as the per-
centage of times that a specific feature was selected to be
in the model. This also has the additional benefit of
yielding robust measures of uncertainty on our classi-
fication accuracy metrics.

To evaluate the performance of the ROFI-P3 method
versus established optimization methods, we compared
ROFI-P3 with standard recursive feature elimination (RFE)
approaches. RFE is a method used extensively in biology in
combination with various machine learning algorithms,
such as LDA and SVM (16,30,32,33). RFE is readily avail-
able in most statistical programming languages and is
simple to implement. It is a greedy algorithm that se-
quentially eliminates the feature that yields the maxi-
mum AUC.

Data and Resource Availability
The data sets generated during and/or analyzed during the
current study are available from the corresponding author
upon reasonable request.

RESULTS

Characteristics of the study subjects are presented in Table
1. Ages at visits ranged from 6 months to almost 21 years
old with similar ages at time points T1, T2, T3, and T4
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(Supplementary Table 3). Demographic (metadata), ge-
netic, immune, metabolic and proteomic biomarkers were
analyzed across these four distinct time points.

First, we determined the optimal machine learning
algorithm for each of the data types (Supplementary Fig.
3). Next, we analyzed the ability of ROFI-P3 to predict the
changes leading up to two stages of type 1 diabetes: 1)
seroconversion and 2) progression to diabetes. ROFI-P3
was performed, and for each repetition features were
selected. Each feature is represented as the percentage of
times it is selected as part of the model during 100 rep-
etitions. For comparison, we also ran RFE for multiple
repetitions, each time permuting the features, since the
order of the features has a direct relationship with those
selected. This allowed us also to represent RFE features as
the percentage of times they were selected. To evaluate
how well the methods work, a feature selection threshold

is selected and an ROC curve was generated only on this
reduced model using fivefold CV to build and test the
model independently and to minimize overfitting. Fig. 1A
and B show the results of these comparisons at a 50%
frequency selection, i.e., features selected at least 50% of
the time for both ROFI-P3 and RFE, as well as if no
feature selection is performed. Various thresholds were
evaluated, and the ROFI-P3 integrated feature selection
approach was consistently more accurate than RFE. This
demonstrated a clear advantage over both the RFE se-
lection and simple combination of all features for pre-
diction of development of IA (AUC 0.91 vs. 0.84 and 0.64,
respectively, P , 0.0001) and progression (AUC 0.92 vs.
0.82 and 0.64, respectively, P, 0.0001) at a 50% feature
selection threshold. We further evaluated the method in
the context of the classification of specific individuals
rather than a global metric of classification. If we select

Table 1—Characteristics of the study participants

Control AbPos T1D P

N 25 20 22

HLA DR group, n 0.55
4/4, 4/3, or 4/X and DQB1*03:02 17 15 17
3/3 or 3/X 5 3 3
Other 3 2 2

FDR, n (%) 9 (36) 11 (55) 15 (68) 0.08

Female sex, n (%) 13 (52) 8 (40) 10 (45) 0.72

NHW ethnicity, n (%) 20 (80) 15 (75) 21 (95) 0.17

Age (years) at development of IA, median (IQR) 7.4 (5.4, 9.9) 5.2 (2.9, 7.9) 0.06

Age (years) at development of diabetes, median (IQR) 11.0 (9.4, 13.7) —

All comparisons by x2 except age at IA, which was compared usingWilcoxon rank sum test. IQR, interquartile range; NHW, non-Hispanic
white; X, neither HLA DR4 nor DR3.

Figure 1—ROCcurves.A: Comparing development of IA in control group vs. combinedAbPos and T1Dgroups at transition from earliest time
point (T1) to preseroconversion (T2). B: Comparing progression to T1D—transition from postseroconversion (T3) to before T1D diagnosis
(T4)—in AbPos vs. T1D groups. Dotted line, prediction based on all features; gray dashed line (RFE), prediction based on features selected
50% of the time or more using recursive feature elimination; solid black line (ROFI), prediction based on features selected at least 50% of the
time using ROFI-P3 algorithm; black dashed line (in panel B only), prediction based on glucose change from T3 to T4.
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a defined reasonable false positive rate of 10% for the
development of IA (Fig. 1A), we would correctly classify
67.6% of those who developed IA with ROFI-P3. The
percentages drop to 56.5% and 31.5% for the RFE selec-
tion and simple combination approaches, respectively.
The prediction is slightly better for the progression end
point; ROFI-P3 correctly identifies 71.6% compared with
61.4% for RFE and 18.3% for simple combination (Fig.
1B). The top features selected by ROFI-P3 at a 50%
frequency or higher for analysis of development of IA
(Supplementary Fig. 4A) and progression to diabetes
(Supplementary Fig. 4B) included features from five of
the six data sets.

The top features selected by ROFI-P3 as predictors of
IA are shown in Table 2. Percent selected is a measure of
the number of times a particular feature was selected in the
100 iterations of the algorithm, an indication of the
importance of that feature in the prediction of outcome.
Supplementary Table 4 shows all 76 features selected at

50% frequency or higher. Further detail regarding these
features is shown in Supplementary Tables 5–8. Box
plots of the log fold change in abundance in these top
metabolites, proteins, and peptides from T1 to T2 for IA
and control subjects are shown in Fig. 2.

The top features selected by ROFI-P3 as predictors of
progression from IA to diabetes are shown in Table 3, while
all 83 features selected at 50% frequency or higher are
shown in Supplementary Table 9. Characteristics of fea-
tures including genotypes or direction of change in abun-
dance from T3 to T4 are further described in Supplementary
Tables 10–13. Figure 3 shows the box plots for control and AbPos
groups of the log fold change of each feature from T3 to T4.

Of note, the metabolite glucose is the top selected fea-
ture, as could be expected during the progression to T1D. To
evaluate the value of adding additional features to glucose, we
ran a logistic regression using glucose alone as the predictor
for progression to T1D compared with that of the selected
ensemble. Change in glucose alone was able to classify

Table 2—The top 16 predictors for development of IA

Selected (%) Source Feature Function/description

100 Metabolite Ascorbate (vitamin C) Antioxidant and coenzyme

100 Metadata Age (years) Age at T1

98 Metadata First-degree relative status Grouped by mother with type 1 diabetes, other FDR
(sibling or father), or no FDR

94 Metabolite 3-methyl-2-oxobutyrate Branched-chain organic acid; precursor to leucine
and valine synthesis

93 Protein FCRL3 (Fc receptor-like protein 3) Promotes TLR9-induced B-cell proliferation,
activation, and survival

91 Metabolite 4-hydroxyhippurate Microbial end product derived from polyphenol
metabolism by the microflora in the intestine

90 Metadata Hispanic Self-report of Hispanic ethnicity

90 Protein NKG2D type II integral membrane
protein/KLRK1 (Killer cell lectin-like
receptor subfamily K member 1)

Stimulatory and costimulatory innate immune
response on activated killer cells; involved in
immunosurveillance of virus-infected cells

89 SNP rs2476601 (PTPN22) Autoimmunity gene; negative regulator of
T-cell receptor signaling

89 Protein SSRP1 (Structure Specific Recognition
Protein 1)/FACT (Facilitates Chromatin

Transcription) complex subunit

The FACT complex plays a role in mRNA
elongation, DNA replication, and DNA repair

89 Metabolite Pyroglutamine Glutamine and glutathione metabolism

87 Protein MMP-2 Metalloproteinase involved in diverse functions
including angiogenesis, tissue repair, and inflammation

86 Protein Activin A Member of TGF-b superfamily of cytokines; plays
role in regulation of tissue homeostasis, organ

development, inflammation, cell proliferation, and apoptosis

85 SNP rs2476601 (PTPN22) Autoimmunity gene; negative regulator of T-cell
receptor signaling

84 Protein CSK21 (Casein kinase II
subunit alpha)

Regulates various cellular processes including
cell cycle progression, apoptosis, and transcription

as well as response to viral infections

84 SNP rs3087243 (CTLA4) Autoimmunity gene; negative regulator of T-cell responses

Analysis by ROFI-P3 comparing control subjects with pooled antibody-positive subjects and subjects with type 1 diabetes. Ranking by
selection frequency for metabolites and proteins (fold change from T1 to T2) or SNPs (risk allele count). Proteins: www.genecards.org and
www.uniprot.org. SNPs: www.SNPedia.com. Metabolite: www.hmdb.ca.
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a majority of case subjects, but the AUC for the ROFI-P3
(0.91) was significantly higher than that for glucose alone
(0.83, P , 0.00001) (Fig. 1B). As expected for the end
point of development of IA, the AUC of glucose is not
predictive: 0.48.

Overfitting is often an issue with machine learning,
especially when sample sizes are only large enough to

allow CV. To evaluate whether the top features could
separate the groups with an unsupervised approach,
principal component analysis (PCA) was utilized on only
the top qualitative omics features in Tables 1 and 2. From
the PCA plot, the first component can visually separate the
two groups for both predictors of IA (Fig. 4A) and pro-
gression from IA to diabetes (Fig. 4B) without prior

Figure 2—The top 10 protein, peptide, andmetabolite predictors for development of IA. For each analyte, the box plots show log fold change
from time 1 (T1) to time 2 (T2) for case and control subjects with individual values noted by circles. The value of log2(T22 T1) is positive with
increasing trajectory and negative with decreasing trajectory.
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knowledge of the groups. This demonstrates that al-
though there may be some overfitting, the methodology
in general is identifying features that can discriminate
the groups of interest.

DISCUSSION

Identification of causative factors in the development of IA
and type 1 diabetes has been elusive. Recent observations
regarding the role of vitamin D in risk of IA has underlined
the importance of understanding environmental expo-
sures in the context of genetic background (34). Thus,
analysis that integrates multiple data streams has the
potential to identify unique ensembles of pathogenic
features. This proof-of-concept analysis represents the
first integration of disparate omics data sets for the
prediction of IA and type 1 diabetes. The ROFI-P3 ap-
proach solves the feature selection process through hun-
dreds of iterations, resulting in a probability measure for
each individual feature. This allows the reduction of large
data sets to a smaller, more informative set of features
as well as a robust measure of feature-level uncertainty.
The biomarker panels identified in this analysis represent
an individualized prediction algorithm based on a set of
disparate features (e.g., metabolites, proteins in combina-
tion with genetics, and standard risk factors) selected in at

least 50% of the iterations. These models predicted de-
velopment of IA and progression to diabetes with an AUC
of 0.91 and 0.92, respectively. It should be noted that as
the analysis incorporated change in protein, metabolite,
or cytokine over time, selected features represent fea-
tures whose change, not absolute value, is associated with
outcome.

To predict development of IA, several metadata features
were included, which serves to adjust the analysis for these
factors. Among the most highly selected features were all
five metadata elements: age, FDR status, Hispanic ethnic-
ity, HLA risk group, and sex, indicating that these cate-
gories were important in conjunction with other features
in the prediction of IA.

Two highly selected features were genetic markers asso-
ciated with development of IA: PTPN22 (rs2476601) and
CTLA4 (rs3087243 and rs231775) (5,35). Both PTPN22
(rs2476601) and CTLA4 (rs3087243 and rs231775) were
selected twice in this analysis, as they were included in
the feature set comprising data from multiple separate
genetic analyses. The observation that the same SNPs
were selected twice provides additional evidence of ro-
bustness of this analytical approach.

Many of the most frequently selected features were
metabolites. The highest selected feature was ascorbate

Table 3—The top 16 predictors of progression from IA to diabetes

Selected (%) Source Feature Function/description

100 Metabolite Glucose Carbohydrate metabolism

100 Metadata Age (years) Age at T3

100 Metabolite ADP fibrinogen Coagulation

100 Protein DRR1 (downregulated in renal cell carcinoma 1)/
actin-associated protein FAM107A

Regulation of cytoskeleton organization and cell
growth

99 Metabolite Mannose Carbohydrate metabolism

98 Protein RAD51 (DNA repair protein RAD51 homolog 1) Response to DNA damage; DNA repair

98 Protein CYTF (cystatin-F) Inhibits cathepsin L; may play a role in immune
regulation

97 Protein MAPKAPK3 (MAP kinase–activated protein
kinase 3)

Stress-activated serine/threonine protein kinase

92 SNP MHC (rs3117103) SLE-associated genetic variant on chromosome 6

91 SNP From GWAS for T1D (rs7221109) Type 1 diabetes–associated genetic variant on
chromosome 17

90 Protein Plasminogen Dissolves fibrin in blood clots; plays a role in
inflammation and tissue remodeling

89 Metabolite Ribose Carbohydrate metabolism

89 Protein IL-11 RA (interleukin-11 receptor subunit a) Development and proliferation of mesenchymal
cells

89 SNP HLA DQB1 8.1 (rs2157678) Type 1 diabetes–associated genetic variant;
associated with HLA DR3-B8-A1

87 Metabolite Butyrylcarnitine Fatty acid ester

86 Protein Spondin-1 Cell adhesion protein

Analysis by ROFI-P3 comparing islet autoantibody–positive subjects who progressed to diabetes with those who did not progress.
Ranking by selection frequency for metabolites and proteins (fold change from T3 to T4) or SNPs (risk allele count). Proteins: www
.genecards.org and www.uniprot.org. SNPs: www.SNPedia.com. Metabolite: www.hmdb.ca. GWAS, genome-wide association studies;
SLE, systemic lupus erythematosus.
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(vitamin C), an important antioxidant. Ascorbate was
present at lower relative abundance in participants who
developed IA at the earliest time point (T1) relative to
control subjects and rose over time (Fig. 2), while control
subjects started with a higher level and then showed
a downward trend in ascorbate levels. Discrepant tra-
jectories between these two groups were significantly

associated with IA outcome (Supplementary Table 6).
Other metabolites whose change over time predicted
outcome included 3-methyl-oxobutyrate (a-ketoisovaleric
acid), a degradation product from valine as well as a pre-
cursor to valine for leucine synthesis. These branched-chain
amino acids are known to predict development of insu-
lin resistance. They play an intriguing role in promoting

Figure 3—The top 12 protein, peptide, and metabolite predictors for progression to diabetes. For each analyte, the box plots show log fold
change from time 3 (T3) to time 4 (T4) for case and control subjects with individual values noted by circles. The value of log2(T4 2 T3) is
positive with increasing trajectory and negative with decreasing trajectory.
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lymphocyte growth and proliferation as well as cyto-
toxic T- lymphocyte activity and have been previously
identified as elevated prior to seroconversion (36).
4-hydroxyhippuric acid is a microbial end product produced
through polyphenol metabolism by intestinal microflora
(37), and serum levels are affected by altered gut perme-
ability in mice (38). Pyroglutamic acid is a derivative of
L-glutamic acid, formed nonenzymatically from glutamate,
glutamine, and g-glutamylated peptides. Elevated blood
levels of pyroglutamine may indicate problems in antiox-
idant glutathionemetabolism (39). Thismetabolite increased
during progression to IA in case subjects but decreased in
control subjects.

Finally, among the most frequent features selected for
development of IA were multiple proteins involved in
immunity and inflammation: FCRL3 (Fc receptor-like pro-
tein 3), KLRK1, MMP-2, and activin A. Also selected were
SSRP1, a protein involved in DNA repair, and CSK21,
which plays a role in apoptosis and response to viral
infections.

Of the five elements of metadata included in analysis
for progression from IA to diabetes, only age and FDR
status were among the highest selected features, indicating
that these features were important in conjunction with the
constellation of other highly selected features.

Interestingly, top-selected SNPs associated with devel-
opment of IA were different from those associated with
progression to diabetes. Of these, rs2157678 (HLA DQB1
8.1) is associated with the ancestral HLA DR3-B8-A1
haplotype (40).

In analysis of progression from IA to diabetes, selected
metabolomic features included multiple carbohydrates:
glucose, mannose, and ribose (Table 3 and Fig. 3). All
three metabolites increased in abundance in children
progressing to diabetes but decreased from T3 to T4
in the control group (Supplementary Table 11). Addi-
tionally, butyrylcarnitine, an acylcarnitine, was noted

to increase from T3 to T4 in case subjects but decrease in
control subjects. This could be explained by an overall
increase in lipolysis secondary to progressive insulino-
penia as one approaches clinical diabetes.

Among the top proteomic features in progression from
IA to diabetes was cystatin-F, a protein that modulates
natural killer and T cell cytotoxity and RAD51, which plays
a role in DNA repair. Plasminogen, a protease important
for lysis blood clots, also plays a role in activating the
complement system. Proteins involved in cell adhesion and
growth (DRR1, IL-11 RA, and spondin-1) were also among
the most frequently selected features.

In summary, we demonstrated that the ROFI-P3 algo-
rithm can identify and evaluate known and novel predic-
tors of development of IA and progression to diabetes
across disparate data sources. Importantly, in children
with high-risk HLA genotypes, changes in relative abun-
dance of certain proteins and metabolites as well as
genetic markers predicted development of IA, and a dis-
tinct constellation of features predicted progression of
persistent IA to diabetes. Seroconversion was associated
with altered antioxidant profile, a finding that has been
noted in humans (36) and NOD mice (41). Additionally,
there are indications of altered gut permeability, an-
other proposed pathogenic mechanism (42). In contrast,
progression from IA to diabetes was associated with
altered sugars and acyl carnitines, indicating a potential
switch to alternate metabolic pathways as relative in-
sulin deficiency becomes more prominent.

The goal of this study was to develop a robust statistical
machine learning model that predicts development of IA
and progression from IA to diabetes. The major advantage
of this study is the prospective characterization of de-
veloping autoimmunity over a prolonged period of time,
with repeat longitudinal measurements of biomarkers. The
DAISY cohort has .20 years of follow-up. While a peak
incidence of IA has been observed within the first 2 years

Figure 4—PCA of (A) predictors of IA based on top 4 metabolites and 6 proteins and (B) progression from IA to diabetes on top 5 metabolites
and 7 proteins. Open circles represent control subjects, and closed circles represent combined AbPos and T1D groups. PC1, principal
component 1; PC2, principal component 2.
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of life (3,43), new seroconversion has been observed well
into adolescence and beyond (44). In addition, data from
multiple sources (clinical data, genetics, metabolomics, and
proteomics) are available to be integrated in a machine
learning framework. Limitations of this study include the
relatively small numbers of subjects in each group. Larger
cohort size could allow additional analysis, including ex-
amination of whether age at seroconversion or specific
endotypes play a role in the features selected. A further
limitation of the study is the potential bias to individuals
with later seroconversion. Both IA and T1D groups (Table
1) were older than the reported median seroconversion age
of 2.3 years in The Environmental Determinants of Di-
abetes in the Young (TEDDY) study at 7 years of follow-up
(45). In contrast, studies such as DAISY (46) and BABY-
DIAB (43), with longer follow-up beyond the early peak in
autoimmunity, observe ongoing seroconversion into later
childhood. Thus, selection of participants included indi-
viduals with seroconversion at older ages. Further, atten-
tion to requisite sample availability may have biased
against individuals with early seroconversion who often
have exceedingly rapid progression. This may impact
generalizability to such rapidly progressing individuals.

Building predictive models via machine learning is an
emerging strategy for identification of predictive bio-
markers in type 1 diabetes and other diseases; however,
challenges remain in the integration of large and diverse
data sets. Machine learning strategies that incorporate
feature selection allow identification of biomarkers that
perform well in combination. This not only selects the
most predictive features from among many but also may
lend insight into important biological mechanisms. Al-
though P3 and ROFI have both been used previously to
study omics data, this is the first combination for feature
selection in an integrative fashion. The feature sets iden-
tified using the ROFI-P3 strategy perform well in prediction
of both IA and type 1 diabetes outcome. Further, identifi-
cation of distinct panels of predictors underlines differences
between processes leading to development of IA from
pathways involved in progression to diabetes. The as-
sociated measure of probability adds further informa-
tion for interpreting the utility of various biomarkers
and could help researchers in identifying the best can-
didates to focus limited resources on validation. Further
studies will determine whether these selected features
can be validated in independent populations to predict
progression to IA or type 1 diabetes.
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