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Licorice flavonoids (LCFs) are natural flavonoids isolated from Glycyrrhiza which are known to
have anti-melanoma activities in vitro. However, the molecular mechanism of LCF anti-
melanoma has not been fully understood. In this study, network pharmacology, 3D/2D-
QSAR, molecular docking, and molecular dynamics (MD) simulation were used to explore the
molecular mechanism of LCF anti-melanoma. First of all, we screened the key active
components and targets of LCF anti-melanoma by network pharmacology. Then, the
logIC50 values of the top 20 compounds were predicted by the 2D-QSAR pharmacophore
model, and seven highly active compounds were screened successfully. An optimal 3D-QSAR
pharmacophore model for predicting the activity of LCF compounds was established by the
HipHop method. The effectiveness of the 3D-QSAR pharmacophore was verified by a training
set of compounds with known activity, and the possible decisive therapeutic effect of the
potency group was inferred. Finally, molecular docking and MD simulation were used to verify
the effective pharmacophore. In conclusion, this study established the structure–activity
relationship of LCF and provided theoretical guidance for the research of LCF anti-melanoma.
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1 INTRODUCTION

Melanoma is a common skin cancer with a high annual mortality rate, accounting for 80% of all skin
cancer deaths, and is considered a serious health problem (Rastrelli et al., 2014). At present, surgical
resection of melanoma is the most common treatment, but most patients with advanced melanoma
are ineffective and prone to recurrence (Chen et al., 2019). In addition, the use of multidisciplinary
methods such as chemotherapy, radiotherapy, and immunotherapy of melanoma is also a common
treatment, but it will have an irreversible impact on skin, tissue, and organs (Liu et al., 2013; Lang
et al., 2019). Therefore, more and more researchers have paid attention to finding an effective
alternative therapy for melanoma (Naidoo et al., 2018; Zhang et al., 2018; Song et al., 2021).

Edited by:
Nino Russo,

University of Calabria, Italy

Reviewed by:
Quan Vo,

University of Science and
Technology-The University of Danang,

Vietnam
Zoran Markovic,

University of Kragujevac, Serbia

*Correspondence:
Hongxia Zhu

gzzhx2012@163.com
Qiang Liu

liuqiang@smu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Theoretical and Computational
Chemistry,

a section of the journal
Frontiers in Chemistry

Received: 05 January 2022
Accepted: 04 February 2022
Published: 02 March 2022

Citation:
Hu Y, Wu Y, Jiang C, Wang Z, Shen C,
Zhu Z, Li H, Zeng Q, Xue Y, Wang Y,
Liu L, Yi Y, Zhu H and Liu Q (2022)

Investigative on the Molecular
Mechanism of Licorice Flavonoids

Anti-Melanoma by Network
Pharmacology, 3D/2D-QSAR,

Molecular Docking, and Molecular
Dynamics Simulation.

Front. Chem. 10:843970.
doi: 10.3389/fchem.2022.843970

Frontiers in Chemistry | www.frontiersin.org March 2022 | Volume 10 | Article 8439701

ORIGINAL RESEARCH
published: 02 March 2022

doi: 10.3389/fchem.2022.843970

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.843970&domain=pdf&date_stamp=2022-03-02
https://www.frontiersin.org/articles/10.3389/fchem.2022.843970/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.843970/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.843970/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.843970/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.843970/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.843970/full
http://creativecommons.org/licenses/by/4.0/
mailto:gzzhx2012@163.com
mailto:liuqiang@smu.edu.cn
https://doi.org/10.3389/fchem.2022.843970
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.843970


In recent years, natural products have been widely used in
medicine and pharmacology because of their potential
chemotherapeutic activity (Kang et al., 2017). As an
alternative therapy in modern medicine, natural products
have been shown to have better antitumor activity with fewer
side effects (Cho et al., 2015). LCF is a kind of natural active
ingredient extracted from Glycyrrhiza and has a variety of
biological activities, such as antioxidant, hepatotoxicity, anti-
inflammatory, anti-ulcer, anti-allergy, antivirus, antitumor,
and other biological activities (Uto et al., 2019). For example,
among LCFs, licochalcone B reduces inflammation,

migration, angiogenesis, and tumorigenesis and induces
cell cycle arrest and apoptosis of various cancer cells
in vitro and in vivo (Yuan et al., 2014; Oh et al., 2016).
Isoliquiritigenin can inhibit cell proliferation and induce cell
apoptosis by reducing hypoxia and glycolysis in B16F10
mouse melanoma cells (Wang et al., 2016). Although these
studies have proved that LCFs have an antitumor biological
function, there are few reports available on the molecular
mechanism of LCF anti-melanoma.

Network pharmacology is a new subject derived from system
biology, which combines computer biology with network analysis
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(Lv et al., 2020; Jiao et al., 2021). It can explain the
pharmacological mechanism of drugs on complex diseases
through multicomponent, multi-target, and multi-approach
(Xia and Tang, 2021). Quantitative structure–activity
relationship (QSAR) is the use of mathematical statistics to
study and reveal the quantitative laws of change between the
activity of a compound and its molecular structure or
physicochemical characteristics, thereby allowing these “laws”

to be used to assess new chemical entities (Wang et al., 2015;
Alves et al., 2016; Yan et al., 2020). Therefore, if the bioactivity
data of a series of structural analogs can be collected, the QSAR
method can be used to predict the related activity of unknown
compounds (Muratov et al., 2020; Yadav et al., 2020). For
example, Tawassl et al. established a 2D-QSAR model of a
pyrazole kinase inhibitor (EGFR) containing a thiourea
skeleton using the QSAR method and successfully predicted its

FIGURE 1 | Structural formulae and corresponding IC50 values of 20 training set compounds.
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bioactivity as an EGFR kinase inhibitor using the 2D-QSAR
model (Hajalsiddig et al., 2020). Gao et al. used known
tyrosinase inhibitors to generate a 3D-QSAR model and
successfully screened out tyrosinase inhibitors with high
activity (Gao, 2018). Molecular docking is a method to
predict the binding posture and affinity between the
receptor protein and ligand through the interaction
between the ligand and receptor, which can be used to
explain the mechanism of action between drug targets
(Ren et al., 2019; Avdovic et al., 2021). Molecular
dynamics (MD) is one of the most commonly used
methods in molecular simulation. This method is a key
theoretical method to evaluate the stability and flexibility
of molecules by dynamically describing the motion of
molecules based on the molecular force field (Hildebrand
et al., 2019; Avdović et al., 2022).

In this study, we screened the key active components and
targets of LCF anti-melanoma by network pharmacology.
Then, the logIC50 of tyrosinase was successfully predicted
by the 2D-QSAR pharmacophore model, and the optimal 3D-
QSAR pharmacophore model for predicting the activity of
LCF compounds was constructed by the HipHop method.
Finally, the molecular mechanism of LCF anti-melanoma was
revealed by molecular docking and MD simulation.

2 MATERIALS AND METHODS

2.1 Network Pharmacology
In order to clarify the complex relationship between LCF and
melanoma-related targets, network pharmacological methods
were used to analyze the network. The UHPLC–Orbitrap-MS
method was used to detect the relevant chemical components of
LCF (Supplementary Table S1), and the compound was
identified, and its structure was downloaded using the
PubChem database (Supplementary Table S2), which was
saved in the SDF format. The Swiss database was used to
predict the target of each compound. Search for “melanoma”
in the GeneCards database to collect relevant targets (relevance
score >15). Draw a Venn diagram for the predicted targets of
active ingredients and disease-related targets, take the
intersection targets (Supplementary Figure S1;
Supplementary Table S3), and get the potential target of LCF
anti-melanoma. Then, enter the potential targets for melanoma
treatment into the STRING database, and set the target as
“Homo” to construct a protein–protein interaction (PPI)
diagram of potential targets for melanoma treatment
(Supplementary Figure S2). Potential target pathway
enrichment was generated through the DAVID 6.8 database
(Wang et al., 2021). Finally, Cytoscape v3.8.2 software (https://

FIGURE 2 | Structural formulae and corresponding IC50 values of 12 test set compounds.
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FIGURE 3 | Top ten results of GO functional enrichment of biological processes (BP), cell components (CC), and molecular functions (MF).

FIGURE 4 | Bubble diagram of KEGG pathway enrichment.

Frontiers in Chemistry | www.frontiersin.org March 2022 | Volume 10 | Article 8439705

Hu et al. Licorice Flavonoids Anti-Melanoma, 3D/2D-QSAR

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


cytoscape.org/download.html) was used to construct a “C-T-P"
network of 44 compounds, 18 targets, and 10 signaling pathways
closely related to melanoma to elucidate the effective mechanism
of LCF anti-melanoma. Among them, the “C-T-P” network
diagram involves 73 nodes and 257 edges, and these “nodes”
are used to represent compounds, targets, and paths. Associations
between nodes are represented by an edge that analyzes the
degree of association between nodes based on the degree value
(Wang et al., 2020).

2.2 Construction of the QSAR
Pharmacophore Model
Different datasets of 32 experimentally identified tyrosinase
inhibitors were obtained from the published literature (Gao,
2018; Zolghadri et al., 2019) (Figures 1, 2). The molecules
were drawn by the ChemDraw module in ChemOffice, and
the energy was minimized by the Minimization module in

Discovery Studio software (Discovery Studio 2019; BIOVIA;
San Diego, USA). The obtained conformations were used for
subsequent analysis. All molecular modeling calculations were
performed by Discovery Studio software. Compounds of 20
tyrosinase inhibitors were used to construct training sets for
the formation of QSAR pharmacophores. To ensure the
accuracy of the model, the selected tyrosinase inhibitor activity
values span four quantity sets (0.029–420 μm), and 12 other
compounds of tyrosinase inhibitors were selected to construct
a test set (0.17–259 μm) to generate QSAR pharmacophore. The
QSAR method was based on multiple linear regression (MLR),
partial least squares (PLS), and other statistical methods to reveal
the quantitative change law between the activity of compounds
and their molecular structure or physicochemical characteristics.
Therefore, in the construction of the QSAR model, the biological
activity represented by the logIC50 value was the dependent
variable, and its corresponding physical and chemical
properties were the independent variables (Lagunin et al., 2018).

FIGURE 5 | “C-T-P” network.
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2.2.1 Construction of the 2D-QSAR Pharmacophore
Model
This section uses Discovery Studio software to build the 2D-
QSAR model. A computational molecular property module was
used to calculate the 2D molecular properties of the training set
and the test set (Taxak and Bharatam, 2013). Multiple linear
regression (MLR) and partial least squares (PLS) were used to
construct the structure–activity relationship model (Hajalsiddig
et al., 2020). The biological activity of a compound was defined as
logIC50, and the physicochemical parameters used in establishing
the structure–activity relationship were the 2D properties of the
compound calculated in the software, such as AlogP, molecular

properties (molecular weight), molecular property count
(Num_Aromic Rings, Num_-H_Acceptors, Num_H_Donors,
Num_Ring, and Num_Rotatable Bond), and surface area and
volume (Moner _ Decononal Surface) (Imran et al., 2015).

2.2.2 Construction of the 3D-QSAR Pharmacophore
Model
The 3D-QSAR pharmacophore model was constructed using the
HipHop method of the Common Feature Pharmacophore
Generation module under the Pharmacophore item in
Discovery Studio software (Kim et al., 2021). The HipHop
method constructs a pharmacophore model based on the

FIGURE 6 | Distribution of degree values of partial compounds (A) and target (B) in Network Diagram.
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known 3D structure and bioactivity data of a series of compounds
and describes the common characteristics of their bioactivity. The
established pharmacophore model can be used to explore the
structure of the compound and its biological activity (Wang et al.,
2008). Briefly, set the principal value of a compound with IC50

below 1 μm to 2 and the MaxOmitFeat value to 0 (all chemical
characteristics of the compound are considered when constructing
the pharmacophore model, and all the characteristic elements of
the established pharmacophore must be matched). Set the
principal and MaxOmitFeat values of compounds higher than
1 μm for IC50 to 1 (the conformational space should be referred to
when modeling, but the modeling result can have a characteristic
element that does not match it). Feature mapping was used to
identify the characteristic elements of the training set, to study the
molecules, including those main characteristic elements, and then
set the obtained characteristic elements as the characteristic
elements of the pharmacophore effect to be considered by
HypoGen, namely hydrogen bond receptor (HBA), hydrogen
bond donor (HBD), hydrophobic center (H), cationic group
(PI), and aromatic ring center (R) were five items as possible
pharmacophore characteristic elements (Fan et al., 2018). The
range of each pharmacodynamic element was 0–5. The upper
limit of 255 conformations for each compound was set, and only
conformations with an energy difference of 10 kcal mol−1 from the
lowest conformations were preserved. After calculation, only 10
pharmacophore models with the highest scores were retained
(Jiang et al., 2016). The established pharmacophore model was
verified by using the training set and ligand analyzer calorimeter.
A good pharmacophore model should have a high matching
performance to the active compounds.

2.3 Molecular Docking
A total of seven active molecules predicted by the pharmacophore
model were selected as ligand molecules, and the Tyr with the
highest score screened by network pharmacology was selected as

a receptor protein, and the structure of tyrosinase (EC 1.14.18.1)
protein was downloaded from PubChem. The Full Minimization
module of Discovery Studio is used to minimize energy of
small molecules, and the CHARMM force field is set to assign
to the structure. This structure is used as the starting
conformation to perform molecular docking (Ahmed et al.,
2017). Molecular docking was performed using Discovery
Studio software (Saxena et al., 2018). LibDockScore ≥90
indicates that the ligand and receptor affinity is strong,
and the ligand binding is easier (Chen peng et al., 2021).
The smaller the docking bond energy is, the more stable the
complex of the ligand and protein is (Chen Weijian et al.,
2021). The result with the highest score for molecular
docking will be presented as the final conformation, from
which the interaction energy after docking can be calculated.
The associated free energy can be calculated by Eq. 1 (Pal
et al., 2019).

ΔGBinding � EComplex − (EProtein + ELigand), (1)

2.4 MD Simulation
MD simulations were performed using the Standard Dynamics
Cascade module of Discovery Studio software for protein and
ligand complexes with the highest fractions after molecular
docking (El et al., 2020), to explore the stability of ligand
molecules in proteins. The system was modeled using an
extended simple point charge (SPC/E) water model in which the
entire system was placed in a solvent chamber with a periodic
boundary filled with water molecules and further stabilizes the
charge using Cl− and Na+ to keep the entire simulation system
electrically neutral. Initially, the steepest descent method was used to
minimize the energy of the entire system (Barcellos et al., 2019). The
system was then balanced by the NVT ensemble (constant number,
volume, and temperature of particles) and the NPT set (constant
number, pressure, and temperature of particles). Finally, the final

TABLE 1 | Top 20 potentially effective compounds in the prescription.

PubChem ID Compound Degree

5318999 Licochalcone B 9
932 Naringenin 7
1889 DL-Liquiritigenin 6
114829 Liquiritigenin 6
503737 Liquiritin 6
471722 Mosloflavone 6
77793 4′-Methoxyflavone 6
5318998 Licochalcone A 5
442793 6-Gingerol 5
5281894 7-Hydroxyflavone 5
6442675 Retrochalcone 5
73571 Sakuranetin 5
2353 Berberine 5
5280378 Formononetin 4
9840805 Licochalcone C 4
5319000 Licoflavone A 4
54682930 4-Hydroxycoumarin 4
90479675 Glabrolide 4
5281708 Daidzein 3
445858 Ferulic acid 3

TABLE 2 | Potential therapeutic targets.

Gene official symbol Degree

TYR 18
RAF1 18
MET 17
BRAF 16
PIK3CA 16
KIT 15
AKT1 14
MMP2 14
TERT 13
MDM2 13
MAP2K1 12
HRAS 11
CDK4 9
VEGFA 9
IL2 9
CTNNB1 5
CHEK2 3
MGMT 1
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protein–ligand complex model of MD simulation was obtained by
generating trajectories (Lin et al., 2019).

3 RESULTS AND DISCUSSION

3.1 Network Pharmacology Analysis
3.1.1 GO/KEGG Analysis Results
The 18 intersection targets were inputted into the DAVID
database for GO and KEGG bioenrichment analysis. As shown
in Figure 3, GO analysis results showed that the involved
biological processes (BP) mainly include the processes of
positive regulation of transcription from RNA polymerase II
promoter, negative regulation of the apoptotic process, signal
transduction, MAPK cascade, positive regulation of gene
expression, and protein phosphorylation. The cell components
(CC) involved mainly include the plasma membrane, nucleus,
cytosol, cytoplasm, nucleoplasm, perinuclear region of the

cytoplasm, and other components. The molecular functions
(MF) involved mainly included the functions of protein
binding, ATP binding, protein kinase activity, protein serine/
threonine kinase activity, identical protein binding, and protein
heterodimerization activity.

By analyzing the metabolic pathway of KEGG, 72 signaling
pathways were enriched, of which 70 pathways were qualified (p <
0.05). Figure 4 shows the ten major pathways of LCF anti-
melanoma. The main channels involved were pathways in
cancer, proteoglycans in cancer, PI3K-Akt signaling pathway,
Rap1 signaling pathway, melanoma, glioma, Ras signaling
pathway, central carbon metabolism in cancer, Fox O
signaling pathway, melanogenesis, and so on. These key
pathways can regulate the proliferation and apoptosis of
melanoma cells and participate in the development of
melanoma. At the same time, we found that Tyr, Map2k1, Kit,
Ctnb1, Raf1, Hras, and other key targets regulate several key
pathways together to play a therapeutic role.

TABLE 3 | Based on the 2D-QSAR test set compound experimental and predicted activity logIC50.

Compound no. Experiment logIC50 Predicted (MLRModel) logIC50 Predicted (PLSModel) logIC50

Tyr-21 −0.77 −0.59 −0.74
Tyr-22 0.77 1.14 1.04
Tyr-23 0.90 0.39 −0.02
Tyr-24 1.21 1.81 0.73
Tyr-25 1.46 1.56 1.57
Tyr-26 1.50 1.69 1.46
Tyr-27 1.56 1.37 1.76
Tyr-28 1.76 2.38 1.36
Tyr-29 1.80 2.01 2.28
Tyr-30 2.05 2.40 2.25
Tyr-31 2.18 2.34 1.97
Tyr-32 2.41 1.50 2.29

TABLE 4 | Based on the 2D-QSAR model to predict the activity logIC50 of LCF.

PubChem ID Compound Predicted (MLRModel) logIC50 Predicted (PLSModel) logIC50

5318999 Licochalcone B 0.26 −0.06
932 Naringenin 2.36 1.82
1889 DL-Liquiritigenin 1.92 1.83
114829 Liquiritigenin 1.92 1.83
503737 Liquiritin 3.42 1.92
471722 Mosloflavone 3.24 2.44
77793 4′-Methoxyflavone 3.44 2.68
5318998 Licochalcone A −0.37 −0.13
442793 6-Gingerol −0.42 −0.34
5281894 7-Hydroxyflavone 2.20 2.06
6442675 Retrochalcone −0.38 −0.11
73571 Sakuranetin 2.65 1.96
2353 Berberine 3.74 2.89
5280378 Formononetin −0.38 −0.11
9840805 Licochalcone C 2.65 1.96
5319000 Licoflavone A −0.38 −0.11
54682930 4-Hydroxycoumarin 2.65 1.96
90479675 Glabrolide 3.74 2.89
5281708 Daidzein −0.38 −0.11
445858 Ferulic acid 2.65 1.96
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3.1.2 Compound-Target-Pathway Network
Construction
To better understand the mechanism of LCF in the treatment of
melanoma, we used Cytoscape 3.8.2 to build a “C-T-P” network
diagram (Figure 5) and analyzed the degree values of various
parts through a histogram (Figure 6; Tables 1, 2). In the
network, the triangle represents the signaling pathway, the
circle represents the target protein, and the diamond
represents the active component. In the histogram,
licochalcone B, naringenin, DL-liquiritigenin, liquiritigenin,
liquiritin, mosloflavone, 4′-methoxyflavone, licochalcone A,
6-gingerol, 7-hydroxyflavone, retrochalcone, sakuranetin, and
berberine showed higher degree values, indicating that these
active ingredients play a major role in the process of anti-
melanoma (Figure 6A). The potential targets of LCF in the
treatment of melanoma show higher values of Tyr, Raf1, and
Met (Figure 6B), indicating that these targets were the key
targets of melanoma resistance. Therefore, this study suggests
that the anti-melanoma mechanism of LCF was the result of
multi-compound and multi-target interactions.

3.2 Analysis of the 2D-QSAR
Pharmacophore Model
Through the network pharmacological screening, we found that
the degree value of the Tyr target was the first, which indicates
that it may be the main target of LCF anti-melanoma, and a large
number of reports also confirmed this view (Solano et al., 2006;
Jawaid et al., 2009; Gao, 2018; Pu et al., 2020). Therefore, this
part uses this target corresponding tyrosinase as the activity
research.

3.2.1 2D-QSAR Pharmacophore Model With Activity
Prediction
The 2D-QSAR constructed by the MLR/PLS method can predict
the activity of unknown compounds very well. Supplementary
Figures S3, S4 show the linear regression equation of the 2D-
QSAR model established by multiple linear regression (MLR)
and partial least squares (PLS). The correlation coefficients (r2)
of the training set compounds constructed by the MLR/PLS
method were 0.984 and 0.894, respectively, which showed that
the model constructed by the MLR method had better predictive
ability than that constructed by the PLS method. Based on the

established 2D-QSAR pharmacophore model, the test sets were
used for validation, and the experimental and predictive
activities (semi-inhibitory concentrations) of these test sets
are listed in Table 3. The logIC50 of the test set can be
divided into three groups: logIC50 < 0, high activity; 0 ≤
logIC50 ≤ 2.176, medium activity; and logIC50 > 2.176, low
activity or inactivity (Gao, 2018). It can be seen from Table 3
that the model compounds based on MLR have large quality
errors, most compounds have low accuracy, and only a few of
them can be accurately predicted. Except for a few compounds,
the 2D-QSAR pharmacophore model established by PLS can
correctly predict the activities of other compounds. Therefore,
compared with the model established by MLR, the model
established by PLS shows good accuracy.

3.2.2 Prediction of LCFActivity Based on the 2D-QSAR
Pharmacophore Model
In order to explore the structural characteristics of LCF anti-
melanoma, this part used the 2D-QSAR pharmacophore model
constructed by the MLR/PLS method to predict the anti-
melanoma activity of LCF compounds. Table 4 shows the
predicted activity of the top 20 LCF compounds screened by
network pharmacology (logIC50). As shown in Table 4,
licochalcone A, 6-gingerol, retrochalcone, formononetin, licoflavone
A, and daidzein showed higher activity in the model established by
MLR, with logIC50 values of −0.37, −0.42, −0.38, −0.38, −0.38, and
−0.38, respectively. Similarly, the IC50 values of licochalcone B,
licochalcone A, 6-gingerol, retrochalcone, formononetin, licoflavone

TABLE 5 | Parameters of 10 common features of the pharmacophore.

Pharmacophore Feature Rank Direct Hit Partial Hit Max Hit

01 HDDA 64.452 1111111 0000000 4
02 HDDA 64.393 1111111 0000000 4
03 HDDA 64.393 1111111 0000000 4
04 HDDA 63.658 1111111 0000000 4
05 HDDA 63.658 1111111 0000000 4
06 HDDA 63.532 1111111 0000000 4
07 HDDA 63.532 1111111 0000000 4
08 HAAA 63.052 1111111 0000000 4
09 HAAA 62.993 1111111 0000000 4
10 HAAA 62.993 1111111 0000000 4

FIGURE 7 | Electrostatic field coefficient contour map (A) and the stereo
field coefficient contour map (B) of the training set molecules matched to the
3D-QSAR model.
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FIGURE 8 | Heat map of the predicted compounds by the 10 pharmacophore models for the test set compounds.

TABLE 6 | Matching degree of the test set compounds predicted by the 10 pharmacophore models.

Compound
no.

01 02 03 04 05 06 07 08 09 10

Tyr-1 3.70 3.00 2.74 2.49 2.24 3.91 3.91 3.66 2.43 2.66
Tyr-2 2.95 2.53 2.68 3.52 3.78 3.17 2.52 2.90 2.51 2.56
Tyr-3 2.12 2.55 0.04 1.24 0.50 2.26 1.35 1.79 2.73 0.64
Tyr-4 2.27 1.83 0.82 1.02 0.43 0.89 2.13 2.51 0.812 2.33
Tyr-5 2.74 0.157 2.61 2.50 2.34 0.36 2.67 2.92 2.00 2.73
Tyr-6 0.68 2.20 2.14 2.06 2.21 1.04 1.42 0.71 2.06 2.14
Tyr-7 2.20 2.18 2.19 2.38 0.49 2.48 2.499 2.10 2.18 2.00
Tyr-8 2.00 1.99 1.99 2.00 1.99 2.00 2.00 2.00 2.00 2.00
Tyr-9 1.98 1.88 1.89 1.32 1.40 1.85 2.11 1.93 1.58 1.66
Tyr-10 2.25 2.08 2.17 2.32 2.99 1.95 1.91 2.00 2.00 2.00
Tyr-11 0.22 2.02 0.56 0.40 1.14 1.63 2.55 0.62 0.48 1.81
Tyr-12 0.92 0.93 0.87 1.45 1.21 1.11 0.98 1.00 1.00 1.00
Tyr-13 2.00 1.87 1.95 1.82 1.77 2.00 1.92 2.00 1.95 1.87
Tyr-14 1.19 2.06 0.93 1.96 1.82 1.47 2.07 1.89 0.93 2.06
Tyr-15 2.38 1.87 1.77 2.08 1.80 2.32 0.28 2.43 1.05 2.01
Tyr-16 1.54 1.81 1.69 2.36 2.27 1.39 1.41 2.24 1.65 1.80
Tyr-17 1.93 2.39 0.54 1.85 1.97 2.29 0.41 1.90 1.98 1.98
Tyr-18 1.84 2.48 0.64 1.92 1.90 2.28 1.91 1.99 1.96 1.96
Tyr-19 1.01 2.62 1.92 0.06 0.78 2.49 2.79 1.10 1.74 2.62
Tyr-20 1.76 1.81 1.70 2.00 2.00 1.97 1.97 1.83 1.70 1.81
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A, and daidzein in the PLS model were −0.056, −0.14, −0.34, −0.11,
−0.11−0.11, and−0.11 and showed higher activity, respectively. In the
prediction of the two models, except for licochalcone B, the predicted
activity values of other compounds were basically the same. Therefore,
although the 2D-QSARpharmacophoremodel established byMLR in
the validation of the test set shows the poor predictive effect, it still has
a good predictive ability. In addition, since the model established by
PLS has better accuracy, we selected the predicted values of the 2D-
QSAR pharmacophore model constructed by the PLS method as the
follow-up study.

In conclusion, seven compounds with high activity were
screened from the 2D-QSAR pharmacophore model
constructed by the MLR/PLS method in this study
(Supplementary Figure S5). Meanwhile, this study showed
that LCF has good anti-melanoma activity and provides
theoretical guidance for clinical research of LCF anti-melanoma.

3.3 3D-QSAR Pharmacophore Model
Analysis
Although the 2D-QSAR pharmacophore model has successfully
predicted the high activity characteristics of seven compounds, the
structure–activity relationship between the common structures of
these seven compounds and diseases was not known. Therefore, this
part will use the 3D-QSAR pharmacophore model to explore the
structure–activity relationship of LCF anti-melanoma.

3.3.1 Construction of the 3D-QSAR Pharmacophore
Model by the HipHop Method
In order to elucidate the structure–activity relationship of LCF
anti-melanoma and search for the best pharmacophore model of
LCF against melanoma, a total of 10 3D-QSAR pharmacophore
models were generated using the HipHop method in this part.
Table 5 shows the matching degree of 10 pharmacophore models
with seven compounds with high activity in LCF. Each row in the
table represents a pharmacophore. As shown in the table, the first
pharmacophore has the higher score, so “pharmacophore 01” can
be selected as the optimal pharmacophore for the follow-up
study. Among them, the features in “pharmacophore 01” are
HDDA, indicating that this pharmacophore contains one
hydrophobic feature, two hydrogen bond donor features, and
one hydrogen bond acceptor feature. The spatial arrangement of
the pharmacophore is shown in Supplementary Figure S6. The
rank indicated a score of 64.452 for this pharmacophore; Direct

Hit indicated that the pharmacophore characteristics matched
with seven small molecules. Partial Hit indicates that the number
of partial matching pharmacophores with seven small molecules
is 0. Max Fit indicated that each of the four pharmacophores
could be matched with seven small molecules. Therefore, this
study showed that “pharmacophore 01” is the best model of the
anti-melanoma pharmacophore of LCF.

3.3.2 Construction of the 3D-QSAR Model by the
Energy Grid Points Method
In order to further elucidate the structure–activity relationship of
LCF anti-melanoma, non-covalent interaction between LCF and
anti-melanoma targets was explored. The 3D-QSAR model,
which uses energy grid points as a descriptor, is a regression
model based on small molecule steric and electrostatic fields and
can be used to predict the activity of unknown small ligand
molecules and to observe receptor–ligand interactions, both
favorable and unfavorable (Potemkin et al., 2017). Figure 7A
shows the contour map of the electrostatic field coefficients of the
training set molecules matched to the 3D-QSAR model. Among
them, the red area indicates that the stronger the negative charge
of the substituents in this area, the better the activity of the
compound; the blue area indicates that the stronger the positive
charge of the substituents in this area, the better the activity of the
compound. Figure 7B shows the contour map of the stereo field
coefficients of the training set molecules matched to the 3D-
QSAR model. Among them, the yellow area indicates that the
increase in the volume of the substituents in this area was not
conducive to improving the activity of the compound; the blue
area indicates that the increase in the volume of the substituents
in this area was conducive to improving the activity of the
compound. This study showed that both the shape of the
compound molecule and its electrostatic distribution have an
effect on the activity of the compound. Therefore, we can screen
the active compounds in LCF based on this information to find
better drug molecules. Meanwhile, this study also showed that
LCF has better anti-melanoma activity by producing non-
covalent bond interaction with melanoma-related targets.

3.3.3 3D-QSAR Pharmacophore Verification
In order to verify the validity of the 3D-QSAR potency model
constructed by HipHop, we need to verify whether the
pharmacophore has a good ability to distinguish between
active and inactive molecules through a known training set of

TABLE 7 | Molecular docking.

Compound Protein Libdock score Binding energy
(kcal/mol)

Ligand energy
(kcal/mol)

Protein energy
(kcal/mol)

Complex energy
(kcal/mol)

Licochalcone B Tyrosinase (EC 1.14.18.1) 107.5 41.24 8294.06 −21533.3 −13198
Licochalcone A Tyrosinase (EC 1.14.18.1) 121.1 2153.06 432.33 −21533.3 −18947.9
6-Gingerol Tyrosinase (EC 1.14.18.1) 131.4 1784.29 29.59 −21533.3 −19719.5
Retrochalcone Tyrosinase (EC 1.14.18.1) 111.9 353.69 76.74 −21533.3 −21102.9
Formononetin Tyrosinase (EC 1.14.18.1) 116.9 82.20 55.96 −21533.3 -21395.2
Licoflavone A Tyrosinase (EC 1.14.18.1) 128.4 664.88 55.46 −21533.3 −20813
Daidzein Tyrosinase (EC 1.14.18.1) 95.8 10924.9 32.94 −21533.3 −10575.5
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compounds with activity. Figure 8 shows the thermal maps of ten
3D-QSAR pharmacophore models for predicting training set
compounds. Table 6 shows the corresponding matching
degree. The closer the fit value is to 4, the better the
compound fit with the model; the closer the fit value is to 0,
the less the compound fit with the model. As shown in Figure 8,
the FitValue values of the compounds with higher activity in
“pharmacophore 01” were higher than those of the compounds
with lower activity in “pharmacophore 01”. This result indicates
that “pharmacophore 01”was the best 3D-QSAR pharmacophore
model for predicting the activity of LCF compounds. It was also
suggested that the pharmacophore model may be the decisive
therapeutic pharmacophore of LCF anti-melanoma.

In conclusion, logIC50 values of the top 20 compounds selected
by network pharmacology were predicted by the 2D-QSAR
pharmacophore model, and seven highly active compounds
were screened successfully. Then, an optimal 3D-QSAR
pharmacophore model for predicting the activity of LCF
compounds was constructed by the HipHop method. Finally,
the effectiveness of the 3D-QSAR pharmacophore was verified by
a training set of compounds with known activity, and the possible
decisive therapeutic effect of the “pharmacophore 01” was

speculated. Therefore, we will carry on with the molecular
docking and the MD simulation to carry on with the
verification of it, further discussing the LCF anti-melanoma
molecular mechanism.

3.4 Molecular Docking Verification
In order to verify the rationality of the pharmacophore model
constructed by seven highly active compounds of LCF, molecular
docking was used to verify the model. Table 7 shows the docking
scores and docking energies of licochalcone B, licochalcone A, 6-
gingerol, retrochalcone, formononetin, licoflavone A, daidzein,
and tyrosinase. The results of docking showed that the seven
highly active compounds had a good binding activity with
tyrosinase. Among them, licochalcone B, licochalcone A, 6-
gingerol, retrochalcone, formononetin, and licoflavone A all
scored more than 100 docking points, indicating that these six
compounds play an important role in the anti-melanoma process
of LCF. Figure 9 shows the molecular docking of licochalcone B
with tyrosinase. The combination of tyrosinase and licochalcone
B occurs in the form of hydrogen bonds and π bonds. The
interaction groups were consistent with the “pharmacophore
01”. Specifically, the hydrophobic region of the benzene ring

FIGURE 9 | 3D structure (A), spatial structure (B), 2D structure (C) of tyrosinase and licochalcone B molecule docking.
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of licochalcone B interacts with the amino acid residue PHE on
tyrosinase to form a π bond with a spacing of 2.61Å. The two
hydroxyl hydrogen bond donors on licochalcone B interacted
with the GLY of the amino acid residues on tyrosinase to form
the hydrogen bond spacing of 2.91Å and 2.44Å. The carbonyl
hydrogen bond receptors on the licochalcone B compound
interact with the amino acid residue PHE on the tyrosinase to
form a hydrogen bond spacing of 2.98Å (Figures 9B,C).

Similarly, Supplementary Figure S7 shows the results of
licochalcone A, 6-gingerol, retrochalcone, formononetin,
licoflavone A, daidzein, and tyrosinase in much the same
way as licochalcone B. Therefore, molecular docking studies
have shown that the optimal “pharmacophore 01”
constructed by the 3D-QSAR pharmacophore model is the
dominant pharmacophore in the anti-melanoma activity
of LCF.

FIGURE 10 | Potential energy of licochalcone B–tyrosinase (A), licochalcone A–tyrosinase (B), and 6-gingerol–tyrosinase (C).

FIGURE 11 | RMSD to conf 1 of licochalcone B–tyrosinase (A), licochalcone A–tyrosinase (B), and 6-gingerol–tyrosinase (C).
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3.5 MD Simulation
Molecular dynamics simulation is a key theoretical method,
which can be used to obtain the stability of the protein–ligand
complex. In order to determine the binding mass of small
molecular ligands with tyrosinase after docking, the complex

was further analyzed by molecular dynamics simulation. The
RMSD curves, potential energies, and hydrogen bond heat map of
licochalcone B, licochalcone A, 6-gingerol, and tyrosinase
complexes are shown in Figures 10–12. It can be seen from
Figure 10 that after 20 ps, the trajectories of all the complexes

FIGURE 12 | Hydrogen bond heat map of licochalcone B-tyrosinase (A), licochalcone A-tyrosinase (B), 6-gingerol-tyrosinase (C).
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tend to balance, and the potential energy tends to stabilize over
time. Figure 11 showed that the RMSD curve also exhibits good
stability after 80 ps The hydrogen bond heat map also showed
that the interaction between ligand compounds and proteins was
relatively stable (Figure 12). The MD simulation results showed
that hydrogen and π bonds formed between licochalcone B,
licochalcone A, 6-gingerol, and tyrosinase help to maintain
their stability. The results also prove the rationality of the
optimal “pharmacophore 01” constructed by the 3D-QSAR
pharmacophore model. Thus, during the treatment phase,
licochalcone B, licochalcone A, and 6-gingerol inhibit
melanoma formation by interacting with tyrosinase to treat
the disease.

4 CONCLUSION

In this study, the molecular mechanism of LCF anti-
melanoma was studied by means of network pharmacology,
3D/2D-QSAR, molecular docking, and molecular dynamics
(MD) simulation. Network pharmacology studies have shown
that licochalcone B, naringenin, and DL-liquiritigenin were
key anti-melanoma active components in LCF, and Tyr was
the key target of anti-melanoma. 2D-QSAR pharmacophore
model studies have shown that licochalcone B, licochalcone A,
6-gingerol, retrochalcone, formononetin, licoflavone A, and
daidzein were highly active compounds in the anti-melanoma
activity of LCF. The results of the 3D-QSAR model showed
that the optimal pharmacophore of LCF was composed of one
hydrophobic group, two hydrogen-bonded donor groups, and
one hydrogen-bonded acceptor group. Molecular docking
studies have shown that the optimal pharmacophore model
constructed by 3D-QSAR was the dominant pharmacophore
in the anti-melanoma activity of LCF. MD simulations
showed that the hydrogen and π bond interactions between
licochalcone B, licochalcone A, 6-gingerol, and tyrosinase
were helpful to maintain their stability, which proves the
rationality of the 3D-QSAR pharmacophore model. In
conclusion, this study found the structure–activity
relationship between the structural properties and
biological activities of LCF, and a reliable statistical model

was established to confirm the anti-melanoma activity
of LCF.
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