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Abstract: Development of bio-based active packaging systems for lipid stabilization
presents critical importance in preserving lipid integrity and ensuring food safety.
Zein/citric acid (Z/CA) composite films containing grape seed ethanol extract (GSEE)
(0–8% w/w) were prepared by the solvent casting method. The structural, functional, and
environmental properties of the films, including physical and chemical properties, me-
chanical properties, antioxidant capacity, antibacterial activity, oxidation inhibition effect,
and biodegradability, were comprehensively characterized and evaluated. Progressive
GSEE enrichment significantly enhanced film thickness (p < 0.05), hydrophobicity, and
total phenolic content, while increasing water vapor permeability by 61.29%. Antioxidant
capacity demonstrated radical scavenging enhancements of 83.75% (DPPH) and 89.33%
(ABTS) at maximal GSEE loading compared to control films. Mechanical parameters exhib-
ited inverse proportionality to GSEE concentration, with tensile strength and elongation
at break decreasing by 28.13% and 59.43%, respectively. SEM microstructural analysis
revealed concentration-dependent increases in surface asperity and cross-sectional phase
heterogeneity. Antimicrobial assays demonstrated selective bacteriostatic effects against
Gram-negative pathogens. Notably, the composite film containing 6 wt% GSEE had a
remarkable restraining effect on the oxidation of lard. The soil degradation experiment has
confirmed that the Z/CA/GSEE composite film can achieve obvious degradation within
28 days. The above results indicate that the Z/CA/GSEE composite material emerges as a
promising candidate for sustainable active food packaging applications.

Keywords: zein; grape seed ethanol extract; bio-based composite film; antioxidant property;
antibacterial property; soil degradability; food packaging

1. Introduction
In food processing, the appropriate selection of food packaging materials is crucial

for maintaining the quality of food and extending its shelf life. Traditional petroleum-
based plastic films have been widely used as packaging materials because of their low
density, low cost, and excellent molding properties [1]. However, because of their non-
biodegradable nature and the potential risk of migrating harmful components to food
during the storage stage, the environment and consumers’ health have been seriously
threatened [2]. Consequently, bioactive and biodegradable green packaging materials are
now a research focus and major development direction in food packaging [3]. Currently,
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biodegradable materials, including polysaccharides (such as starch, cellulose, and chitosan),
proteins (like soy protein, zein, and whey protein), and lipids (for example, paraffin and
shellac resin), have been utilized in the preparation of biodegradable films [4].

Zein is produced as a by-product of the corn starch processing industry. This protein
is rich in hydrophobic amino acids, especially proline and glutamine. Still, it lacks essential
amino acids such as lysine and tryptophan, so its nutritional value is relatively limited [5].
Zein has good film-forming ability and can be made into continuous, transparent films with
specific mechanical strength. Its molecules are held together by a multitude of hydrogen
bonds and hydrophobic interactions, which contribute to the structural stability of the
film [6]. However, pure zein films have several limitations. For example, they exhibit poor
flexibility, suboptimal barrier properties, and reduced mechanical strength in humid envi-
ronments, which limits their widespread application in food packaging [7]. To improve the
mechanical properties of zein films, researchers have tried to modify them using physical,
chemical, or biological methods [8]. Citric acid, a common organic acid, is a cross-linker
in zein film systems. Through its interaction with zein molecules, the arrangement and
aggregation state of molecular chains can be changed, thereby enhancing the flexibility
and ductility of the film and improving its mechanical and barrier properties [9]. How-
ever, simultaneously achieving antioxidant and antibacterial functions remains the major
challenge for functional packaging films.

The wine industry is one of the significant agricultural product processing sectors
globally, generating a substantial amount of solid by-products annually during the produc-
tion process. Statistics reveal that these related processing activities yield approximately
14.5 million tons of waste materials each year, primarily consisting of grape pomace (in-
cluding grape skins, stems, and seeds, among others), which constitutes about 20–30% of
the raw grapes [10]. Within these waste materials, the proportion of grape seeds fluctuates
based on the grape variety and processing technique, typically ranging from 5% to 10% [11].
In the food industry, grape seeds are usually used as compost or animal feed. However, the
polyphenolic substances with various biological activities contained in them have not been
exploited yet. According to relevant reports, grape-seed extracts are rich in polyphenolic
substances such as catechin, epicatechin, gallic acid, and proanthocyanidins, and these
substances have been proven to possess good antibacterial, antioxidant, anti-inflammatory,
and other biological activities [12,13]. When the GSEE is added to the film, it can effectively
reduce the growth rate of bacteria and the oxidation rate of fat, and maintain the color
stability of the product under low-temperature storage conditions [14].

Currently, researchers are incorporating extracts from various biological wastes into
bio-based films. For example, extracts from onion skins [15], lemon peels [16], grape
pomace [17], watermelon rinds [18], water chestnut peels [19], and walnut shells [20] have
been used to blend with film-forming matrices to prepare active films.

Therefore, the grape-seed extract is added to the zein-citric acid composite film. This
measure can not only effectively utilize this agricultural waste resource to achieve the
goal of resource reuse, but also endow the composite film with excellent antioxidant and
antibacterial properties. Currently, while polyphenolic biofilms have been extensively
researched, this study diverges from previous work that concentrated solely on the direct
effects of grape seed ethanol extract. The zein/citric acid matrix serves as a synergistic
platform, enhancing the stability and controlled-release properties of grape seed ethanol
extract and addressing the issue of rapid degradation of polyphenolic substances [21].

During the storage and transportation stages, solid fats are highly susceptible to the
effects of metal ions, oxygen, and microorganisms, which leads to the deterioration of their
quality and flavor [22]. Current research mainly focuses on the antioxidant packaging of
liquid fats, but there is insufficient attention paid to the active packaging materials for
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solid fats. On this basis, a ternary composite film system of grape seed extract-zein-citric
acid was innovatively constructed. The effects of different concentrations of grape seed
extract on the mechanical properties, barrier properties, and antioxidant and antibacterial
properties of the zein/citric acid (Z/CA) composite films were systematically analyzed.
Through the analysis of the microstructure of the film, the relationship between the structure
and properties of the film was revealed in detail. In addition, the inhibitory effect of the
composite film on the peroxide value during the storage of solid fats was also analyzed,
thus providing theoretical support for the development of environmentally friendly and
functional packaging for lipid-based food products.

2. Materials and Methods
2.1. Materials

Grape seeds and lard were from Jiefangmen Market in Qiqihar, China (Qiqihar, China).
Zein (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) was from Shanghai Aladdin
Biochemical Technology Co., Ltd. The yeast extract was sourced from Guangdong Huankai
Microbial Technology Co., Ltd. (Guangzhou, Guangdong, China). DPPH and ABTS were
from Sigma-Aldrich Chemical Company in the United States (Sigma-Aldrich Chemical
Company, St. Louis, MO, USA). Acquisition of additional chemical reagents was conducted
through Tianjin Kaitong Chemical Reagent Co., Ltd. (Huankai Microbial Technology Co.,
Ltd., Guangzhou, Guangdong, China).

2.2. Preparation of GSEE

Anthocyanins extraction from grape seeds was modified according to the method of
Wang et al. [23]. GSEE was stored in a −20 ◦C for use.

2.3. Preparation of Z/CA/GSEE Composite Film

The Z/CA/GSEE films were prepared by the solution casting method according to
the method of Wang et al. [23]. The films were named Z/CA/GSEE-0%, Z/CA/GSEE-2%,
Z/CA/GSEE-4%, Z/CA/GSEE-6%, and Z/CA/GSEE-8% according to the amount of
GSEE added.

2.4. Characterization
2.4.1. Fourier Transform Infrared Spectrum (FTIR) Determination

Fourier transform infrared spectroscopy of Z/CA/GSEE films was determined accord-
ing to the method of Qin et al. [24].

2.4.2. X-Ray Diffraction Analysis (XRD)

The parameters of the instrument were set as 45 kV and 200 mA. The diffraction
angle was set such that 2θ ranged from 5◦ to 60◦. The scanning speed was set at
4◦ per minute [24].

2.4.3. Scanning Electron Microscopy (SEM)

The microscopic structure of the Z/CA/GSEE films was analyzed using a scanning
electron microscope ((S-4300, Hitachi, Tokyo, Japan) according to the method described by
Wang et al. [25].

2.4.4. Determination of Thickness

The thickness of the Z/CA/GSEE film was measured following the approach proposed
by Chen et al. [26].
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2.4.5. Optical Properties

The light values of a*, b* and L* for the film samples were measured by referring to
the method of Gao et al. [27].

The opacity was measured according to the method of Sukhija et al. [28].

2.4.6. Determination of Mechanical Properties

The mechanical characteristics of Z/CA/GSEE coatings were assessed using the
protocol outlined by Huang et al. [29].

2.4.7. Determination of Water Vapor Transmittance (WVP)

The WVP determination method of Z/CA/GSEE film was adopted by Gao et al. [27].

2.4.8. Determination of the Water Contact Angle (WCA)

The WCA of the film samples were measured by referring to the method of
Lei et al. [30].

2.4.9. Total Phenolic Content and Radical Scavenging Properties of Composite Films

The Z/CA/GSEE films’ overall phenolic concentration was assessed utilizing the
protocol described by Xie et al. [31], and the results were expressed as GAE mg/dw/g
(GAE: gallic acid). The DPPH and ABTS radical scavenging capacities of the Z/CA/GSEE
films were measured using the method of Gao et al. [27].

2.4.10. Antibacterial Activity of Composite Films

The antimicrobial activity of the composite membranes was performed using the
method described by Meng et al. [32] with some modifications.

2.4.11. Determination of the Degradability of the Composite Membrane Soil

The soil degradability of the composite film was determined according to the method
of Su et al. [33].

2.4.12. Determination of Peroxide Value (POV) of Composite Film Packaging Lard

The POV are determined according to the method of Gao et al. [27]. Each sample is
measured three times, and the results are averaged.

2.4.13. Data Processing

Experimental results were reported as mean values ± standard deviations. To analyze
the significance of data differences, Duncan’s multiple range test in SPSS 26 software (SPSS
Inc., Chicago, IL, USA) was employed. Origin 2022 software (Microsoft, WSU, USA) was
utilized to plot the experimental data.

3. Results and Discussion
3.1. FTIR Analysis of the Thin Film

Through infrared spectroscopy analysis, the interactions and changes in chemical
compositions within the composite film were studied [34]. It can be seen from Figure 1, the
characteristic peak in the spectrum of the Z/CA/EEOS-0% film at 3288 cm−1 corresponds
to the O-H stretching vibration. The peak at 2924 cm−1 can be attributed to the C-H
stretching vibration [35].
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Figure 1. FTIR of Z/CA/GSEE−0%, Z/CA/GSEE−2%, Z/CA/GSEE−4%, Z/CA/GSEE−6% and
Z/CA/GSEE−8% films.

The C=O stretching vibration corresponds to an absorption peak located at 1647 cm−1,
and the peak at 1175 cm−1 indicates the symmetrical C-O stretching vibration. Compared
with the Z/CA/GSEE-0% film, the film with the addition of GSEE did not show additional
peaks, indicating that the addition of GSEE will not change the chemical structure of the
film. As the concentration of GSEE increases, the O-H stretching vibration shifts from
3290 cm−1 to 3288 cm−1. This shift is likely due to the formation of hydrogen bonds
between the hydroxyl groups of GSEE and the amino groups of zein, thereby enhancing
the intermolecular interactions within the film matrix. Tao et al. [36] reported that when
the extract of Chinese gall was incorporated into the chitosan film, a similar shift in the
O-H stretching vibration also occurred, indicating the enhancement of hydrogen bonds,
thereby improving the stability of the film.

3.2. X-Ray Diffraction (XRD) Analysis of the Film

X-ray diffraction (XRD) is a benchmark method for characterizing amorphous struc-
tures of materials [3]. The XRD patterns of the Z/CA/GSEE composite membranes with
different concentrations of GSEE are shown in Figure 2. The diffraction peaks at ap-
proximately 10◦ and 20◦ (2θ) correspond to the α-helix and β-sheet structures of zein,
respectively. As the GSEE concentration increased from 0 wt% to 8 wt%, a reduction in the
intensity of the diffraction peaks, which implied a reduction in crystallinity. This is because
GSEE disrupts the secondary structure of zein via hydrogen bonding and hydrophobic
interactions and competes with citric acid for cross-linking sites. Ultimately, it diminishes
the crystallinity of the composite film, causing the film structure to shift towards an amor-
phous state [37]. The reduction in crystallinity due to the rise in GSEE concentration is
in line with the research findings of Zhang et al. [38]. The addition of black plum extract
also lessens the intensity of the film’s diffraction peaks as the extract rich in anthocyanins
disrupts the ordered packing of the film. However, incorporating purple corn extract can
boost the intensity of the film’s diffraction peaks, and this might be due to the creation of a
more ordered film structure [24]. Consequently, the crystallinity of the anthocyanin-rich
film is notably influenced by the source of anthocyanins.
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3.3. Analysis of the Microstructure

The microstructure of the film is determined by the interactions among its constituent
materials, and these interactions will further affect various properties of the film, such
as thickness, optical properties, mechanical strength, barrier properties, and antibacterial
properties [16]. The surface morphology of zein-based films containing different contents
of GSEE is shown in Figure 3. The surface of the composite film without GSEE (Figure 3A)
exhibits smooth and flat characteristics, without noticeable particles or defects, which
indicates that zein/citric acid and GSEE have good compatibility, forming a uniform
matrix structure. Its cross-section (Figure 3F) shows relatively dense properties without
noticeable voids or delamination. When the GSEE concentration rises to 2 wt%, minuscule
irregular protrusions emerge on the film surface (Figure 3B), potentially stemming from
the interaction between the GSEE components and the matrix. The cross-section, as shown
in Figure 3G, maintains a relatively consistent appearance. Nevertheless, some minute
structural alterations are discernible. This indicates that the incorporation of GSEE has
already begun to exert an influence on the film’s internal structure. When the GSEE
concentration reaches 4 wt%, the irregularity of the film surface (Figure 3C) becomes more
apparent, and more dispersed small particles appear, likely due to the aggregation of certain
substances in GSEE. The cross-section (Figure 3H) shows some uneven layers, indicating
that the further increase in the GSEE concentration has led to the reorganization of the
internal structure of the film. When the GSEE concentration is 6 wt%, the particles on the
film surface (Figure 3D) become larger and more unevenly distributed, and the surface
roughness increases significantly. Apparent voids and discontinuous areas can be seen in
the cross-section (Figure 3I), which may affect the film’s performance. When the GSEE
concentration reaches 8 wt%, the film surface presents a highly irregular morphology,
with many larger particles and uneven areas. The cross-section (Figure 3J) shows severe
structural disorder, with large voids and delamination. The structural changes in the film
observed in this study are somewhat related to the previous research results. For instance,
in the research conducted by Wang et al. [18], comparable surface and internal structural
modifications were noted when watermelon peel extract was incorporated into the film
matrix composed of chitosan (CS) and guar gum (GG). They discovered that with the
rise in the extract’s concentration, the film’s surface roughness grew. This was due to the



Foods 2025, 14, 1698 7 of 18

aggregation phenomenon stemming from the interaction between the bioactive components
within the extract and the polymer matrix. Likewise, in the work of Nor Adilah et al. [39],
mango peel extract (MPE) was incorporated into fish gelatin film for active food packaging
applications. As the concentration of mango peel extract in the gelatin film was raised from
1% (w/w) to 5% (w/w), a comparable granular manifestation was also detected.
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3.4. The Thickness, Color, and Opacity of the Composite Film

The thickness of the composite film serves as a vital parameter in the evaluation of its
performance as a food packaging material [40]. The thickness of the film has a significant
impact on the light transmittance, WVP, and mechanical strength [41]. As depicted in
Table 1, within the scope of this investigation, the thickness, color parameters, and opacity
of the Z/CA/GSEE composite film underwent analysis. With the upward trend of the
GSEE concentration, there was a significant increase in the thickness of the film. When the
GSEE concentration reached 8 wt%, the thickness increased by 44.76%. Firdaus et al. [16]
investigated a packaging film made from lemon peel pectin and chitosan, into which they
incorporated a bioactive extract from neem leaves. They found that, when the concentration
of the neem leaf extract was raised to 2%, the thickness of the film increased by 53.57%. Such
a tendency results from the rise in the solid content in the film matrix and the interference
with the film’s ordered structure caused by the extract droplets. Conversely, the research
carried out by Kahya et al. [42] indicated that, upon integrating sage and rosemary extracts
into the chitosan film at a volume ratio of 1:4, the film thickness dropped from 0.056 mm to
0.026 mm.
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Table 1. Thickness, color parameters, opacity, and images of composite films with different GSEE
concentrations.

Concentration
of the Extract Thickness L* a* b* Opacity/% Picture

0% 0.105 ± 0.02 e 76.14 ± 0.24 a 4.17 ± 0.19 d 65.89 ± 0.33 a 4.59 ± 0.02 e
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ever, when the extract concentration was further raised to 8 wt%, the TS declined, drop-
ping by 28.13% compared to the film without the extract. This may be because GSEE in-
creases the active sites available for cross-linking in zein molecules, thereby improving 
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Conversely, the visual characteristics of food packaging are of vital significance in
shaping consumers’ perception. Plant extracts rich in polyphenols may interact with
biopolymers, thus leading to color changes [43]. As the concentration of GSEE rose, the color
parameters (L*, a*, and, b*) exhibited notable alterations. When the GSEE concentration
increased from 0 wt% to 8 wt%, the L* value decreased by 20.87%, suggesting that the color
of the film deepened. The a* value was significantly increased by 76.19%, while the b* value
representing the degree of yellowness decreased by 24.43%. These changes indicate that
the incorporation of GSEE made the film exhibit a reddish tone, which is mainly caused by
the added polyphenolic extract. Moreover, to fulfill consumers’ expectations of visually
assessing the contents of packaged food, the packaging film must possess a certain level
of transparency. However, incorporating grape seed extract into the zein-based film will
reduce its transparency, which is directly related to the concentration of GSEE. As the GSEE
concentration rose, the opacity of the film increased steadily. Compared with the composite
film without GSEE, when the GSEE concentration was 8 wt%, the opacity increased by
43.26%. This finding aligns with the research outcomes of S.G. et al. [44]. When they added
plant extracts to the sodium carboxymethyl cellulose (CMC) and gelatin (GA) matrix,
they found that, with the addition of basil leaf (RL) extract and mint (MP) extract, the
transparency of the CMC film decreased by 38.91% and 30.95%, respectively. Although
opacity helps protect light-sensitive foods from UV degradation, excessive opacity may
have a negative impact on the appeal to consumers.

3.5. Analysis of Mechanical Properties

The mechanical properties of the film are typically quantified by the tensile strength
(TS) and the elongation at break (EAB). These two properties are considered the crucial
factors for gauging the strength and flexibility of the material [45]. As shown in Figure 4, as
the quantity of GSEE increased, the EAB of the zein-based film decreased significantly. Con-
versely, the TS exhibited a pattern of initially rising and subsequently declining (p < 0.05).
Specifically, when the addition amount of GSEE increased from 0 wt% to 8 wt%, the
elongation value at break was reduced by 59.43%. Regarding the TS, when the extract
concentration increased to 4 wt%, the film’s TS reached a maximum of 10.37 MPa. However,
when the extract concentration was further raised to 8 wt%, the TS declined, dropping by
28.13% compared to the film without the extract. This may be because GSEE increases the ac-
tive sites available for cross-linking in zein molecules, thereby improving the cross-linking
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efficiency of citric acid and enhancing the tensile strength. Subsequently, an excessive
amount of GSEE may occupy the binding sites of citric acid, leading to the fragmentation
of the network structure. This, in turn, causes a decrease in the overall strength of the
material and simultaneously reduces the elongation at break [46]. Silva et al. [3] found that,
when the extract of Schinus terebinthifolia leaves was added to the yam starch film matrix,
with the continuous increase in the extract concentration, the mechanical properties of the
film decreased accordingly. This occurs due to the absence of intermolecular interactions
between the extract of Schinus terebinthifolia leaves and yam starch. As a result, the
flexibility of the film is impeded. Meng et al. [47] also found similar results in the study of
chitosan–starch films incorporated with peanut shell extract. They held the view that the
addition of plant extracts abundant in polyphenols led to this reduction in flexibility.
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3.6. Water Vapor Permeability (WVP)

WVP is regarded as one of the critical indicators for measuring the moisture-proof
performance of packaging films, and it is directly associated with the quality and durability
of packaged food [48]. The correlation between the GSEE concentration and the WVP
value is shown in Figure 5. The study indicates that, as the GSEE concentration increases
from 0 wt% to 8 wt%, the WVP value shows a distinct upward trend. When the GSEE
concentration is 0 wt%, the WVP value is approximately 1.2 × 10 g/(m·s·Pa). When
the GSEE concentration is increased to 8 wt%, the WVP value is increased by 61.29%.
This may be due to the fact that the addition of GSEE disrupts the ordered structure
of zein, forming a looser amorphous network. Such structural changes may generate
more discontinuous micro-pore channels, providing pathways for the diffusion of water
molecules, thus facilitating the penetration of water vapor [49]. This is consistent with the
results of X-ray diffraction (XRD). Similar research findings indicate that Wang et al. [23],
while investigating the active film made from corn starch/carrageenan and grape seed
extract, discovered that as the concentration of GSEE rose from 0% to 5%, the WVP went
up by 31.65%. Song et al. [50] found in their study on the preparation of composite active
packaging films using tapioca starch/pectin (TSP) and broccoli leaf polyphenols (BLP) as
raw materials that as the amount of BLP added increased, the WVP gradually decreased.
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However, when the addition amount of BLP reached 5%, the WVP increased compared
with that when the addition amount was 3%. This increase may be due to the fact that BLP
increased the thickness and density of the TSP + BLP composite film, thus hindering the
penetration of water molecules.
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3.7. Antioxidant Activity

Total phenolic content (TPC) is employed to assess the quantity of phenolic compounds
within the sample. Specifically, this activity serves to identify the samples abundant in
polyphenols and flavonoids, and these compounds are capable of functioning as free radical
scavengers and oxidative stress alleviators [51]. Figure 6a depicts the alterations in the
TPC within the composite films featuring varying amounts of GSEE addition. As the GSEE
addition amount increases from 0 wt% to 8 wt%, the TPC of the composite film shows a
distinct upward trend (p < 0.05). When the GSEE addition amount is 0 wt%, the TPC is
approximately 4 GAEmg/DW g, and when the addition amount reaches 8 wt%, the TPC is
increased by 69.29%. This indicates that the addition of GSEE can significantly increase the
TPC of the composite film. In the study of the combination of pectin, konjac glucomannan
and tea polyphenols, the incorporation of tea polyphenols notably increased the antioxidant
ability of the film [30]. Ma et al. [52] found in a study on the preparation of slow-release
antioxidant films using starch, potato peel polyphenols and chitosan nanoparticles that the
addition of potato peel polyphenols improved the antioxidant performance of the film.

Free radicals are considered to be the main factor causing the oxidative deterioration
of food. Therefore, packaging films capable of scavenging free radicals are of great signifi-
cance in preventing food spoilage and extending its shelf life [53]. In this study, different
concentrations of GSEE were added to the zein-based composite film, and the influence of
this addition on the DPPH and ABTS free radical scavenging abilities of the composite film
was investigated. The results (Figure 6b) show that, with the increase in the GSEE concen-
tration, both the DPPH and ABTS free radical scavenging abilities of the composite film
have been significantly improved. Specifically, when the GSEE concentration is 0 wt%, the
DPPH and ABTS free radical scavenging rates are approximately 13 ± 0.72% and 8 ± 0.18%,
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respectively; while, when the GSEE concentration reaches 8 wt%, the DPPH and ABTS free
radical scavenging rates increase by approximately 83.75% and 89.33%, respectively. This
indicates that the flavonoids and proanthocyanidins in GSEE possess the function of free
radical scavengers, which is in line with the research findings of the bioactive packaging
system [54]. Likewise, other comparable studies have discovered that, in the experiment
where the extract of Schinus terebinthifolia leaves was incorporated into the starch film,
the scavenging activity of the film with the extract against DPPH and ABTS free radicals
has been beefed up. When the concentration of the extract of Schinus terebinthifolia leaves
increases to 15%, the scavenging rates of DPPH and ABTS free radicals increase by 88.52%
and 90.16%, respectively. This improvement is positively associated with the rise in the
extract concentration within the film [3].
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Z/CA/GSEE−2%, Z/CA/GSEE−4%, Z/CA/GSEE−6% and Z/CA/GSEE−8% films. a–e Values are
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3.8. Analysis of the Water Contact Angle (WCA)

The WCA on the polymer film’s surface serves as a crucial parameter for assessing
its hydrophobic or hydrophilic characteristics. The greater the value of the water contact
angle, the more pronounced the hydrophobicity of the film [7]. As depicted in Figure 7,
with the increase in GSEE concentration, the WCA showed an increasing trend, reflecting
the continuous enhancement of the film’s hydrophobicity. When the GSEE concentration
reached 8 wt%, its WCA significantly increased by 44.65% compared with the control
group without GSEE. This phenomenon was closely related to the microstructure of the
film surface, as the aggregation of high-concentration GSEE further exacerbated the rough
and uneven surface morphology, which was completely consistent with the observations
from scanning electron microscopy (SEM) [55]. Similar results were found in a study on
incorporating the natural antibacterial agent Glossy Privet Fruit Essential Oil (FEO) into
zein films [7], where the addition of FEO enhanced the hydrophobicity of ZF films. While
the addition of natural additives generally shows potential in modifying film properties,
opposite results were observed in a study investigating the effects of alizarin/thymol
on polycaprolactone/gelatin/zein nanofiber films, where the WCA value of the films
decreased after adding thymol. This is because the phenolic hydroxyl groups in the thymol
structure form strong hydrogen bonds with water molecules, making water droplets more
likely to penetrate the film surface [56].
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3.9. Antibacterial Activity

The development of antibacterial packaging materials is regarded as being of vital
importance in prolonging the shelf-life of food. By applying antibacterial packaging tech-
nology, the original flavor and nutritional components of food can be maintained for a
longer time, thereby minimizing the spoilage and waste resulting from microbial contami-
nation [57]. Table 2 presents the antibacterial zone effects of zein-based composite films.
These films were formulated using GSEE at various concentrations, ranging from 0 wt% to
8 wt%, against Staphylococcus aureus and Escherichia coli. When the concentration of GSEE
is 0 wt%, the antibacterial zones for both S. aureus and E. coli are relatively small; as the
concentration increases, a gradual increase in the antibacterial zones can be observed. This
is likely because the GSEE contains various components with antibacterial activity, such as
polyphenols like proanthocyanidins. These components may penetrate the lipopolysac-
charide layer of the outer membrane, and citric acid enhances this effect by regulating
the pH value and disrupting the extracellular polymers [41]. In addition, the diameter of
the antibacterial zone of the Z/CA/GSEE film against Staphylococcus aureus was smaller
than that against Escherichia coli, indicating that the GSEE exhibited a more significant
inhibitory effect on Gram-negative bacteria (Escherichia coli) than on Gram-positive bacteria
(Staphylococcus aureus). Liu et al. [58] prepared a composite antibacterial film (CAR film)
using carvacrol and SPI as the primary raw materials. The results demonstrated that, with
an increment in the amount of carvacrol added, the diameter of the antibacterial zone grew
larger. In a study on preparing food packaging films by combining the bioactive extract of
RRT with chitosan/zein, it was found that the coating film of the extract of RRT had good
antibacterial activity [59].
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Table 2. Antimicrobial activities of the composite films against S. aureus and E. coli.

Composite Film Staphylococcus aureus (mm) Escherichia coli (mm)

Z/CA/GSEE−0% 1.26 ± 0.12 e
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The degradation process of the film may be affected by environmental factors such as
soil humidity, temperature, and the composition of the microbial community [60]. Table 3
presents the appearance changes in the zein-based composite film containing GSEE after
28 days of degradation in the soil. In the initial stage of degradation, that is, on the first day,
the film shows a uniform light-yellow color, with a smooth surface and no apparent signs
of degradation, indicating that the film’s structure is relatively stable at this time. When the
degradation reaches the 7th day, some subtle texture changes begin to appear on the film’s
surface, and the color becomes slightly darker, suggesting that the microorganisms and
environmental factors in the soil have started to act on the film. By the 14th day, noticeable
patchy changes appear on the film’s surface, and the color of some areas becomes darker,
showing irregular erosion marks. When the degradation time reaches the 21st day, the
degradation rate accelerates. By the 28th day, most of the areas of the film have presented a
dark and fragmented state, and its structure has been severely damaged. In the research
conducted by Medina Jaramillo et al. [61], a biodegradable and edible film of tapioca
starch-glycerol was prepared, and the extract of Catharanthus roseus was added to the
matrix as an antioxidant. With the passage of time, the film’s surface gradually changed
from smooth to rough and fragmented, which is consistent with the degradation trend
of the film in this study. This indicates that the addition of plant extracts may affect the
interaction between the film and the microorganisms and other components in the soil
environment, thus promoting the occurrence of the degradation process.
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3.11. Measurement of the Peroxide Value (POV) in Lard

POV is one of the key parameters for evaluating the degree of oil oxidation and is
often used to determine the freshness and stability of oils. The increase in the POV reflects
the increase in the oxygen transmission rate [20].

The changes in the POV of different treatment groups at various time points are shown
in Figure 8. The control groups include the exposed group and the aluminum foil bag group,
and the experimental group is the zein-based composite film group containing different
concentrations of GSEE. As time progresses, the POV of all groups show an upward trend,
which means that the oil gradually oxidizes during the storage process. At the same time
point, the POV of the exposed group is markedly higher compared to those of other groups.
This suggests that the rate of oil oxidation is rapid when the oil is left exposed without
packaging. The POV of the aluminum foil bag group is significantly lower than that of
the exposed group, which shows that the excellent barrier properties of the aluminum foil
bag play a positive role in delaying oil oxidation. For the composite film group, when the
GSEE concentration increases from 0 wt% to 6 wt%, the POV at each time point generally
shows a downward trend, indicating that the Z/CA/GSEE-6% film has the best antioxidant
effect. Nevertheless, during the latter part of the storage period (such as the 20th day), the
POV of the Z/CA/GSEE-8% group is notably greater than that of other Z/CA/GSEE films.
The results show that adding GSEE to the zein composite film can successfully inhibit oil
oxidation. The GSEE is rich in antioxidant components such as polyphenols and flavonoids.
These components can capture free radicals, interrupt the oxidation chain reaction, and thus
reduce the POV [62]. This result is consistent with previous studies. Lv et al. [53] prepared
a biodegradable active packaging film using sodium alginate and gelatin as the matrix and
rose polyphenol extract (RPE) as the carrier. When the 0.3 RPE film was utilized for the
packaging of edible oil, it substantially decreased the POV of the edible oil. Therefore, the
Z/CA/GSEE composite film can be considered as a packaging material for foods with a
high fat content, such as meat.
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Through a comprehensive evaluation of the films’ multiple properties, a series of valuable
research results were obtained. When considering the physical and chemical properties,
with the rise in the concentration of GSEE, there were significant increases in the thickness,
WCA, and TPC of the composite films. The foregoing shows that adding GSEE effectively
changed the physical and chemical nature of the composite film. Meanwhile, regarding
antioxidant properties, it was fully demonstrated that GSEE significantly enhanced the
antioxidant capacity of the composite films. The images obtained from SEM intuitively
verified that, as the amount of GSEE increased, the surface and cross-sectional structures of
the films gradually became rougher. When it comes to antibacterial characteristics, GSEE
exhibited a more pronounced inhibitory effect on Gram-negative bacteria (Escherichia coli)
compared to Gram-positive bacteria (Staphylococcus aureus), reflecting its potential broad-
spectrum nature in antibacterial applications. Moreover, the lipid oxidation experiment
demonstrated that the composite film with 6 wt% GSEE exerted a remarkable inhibitory
impact on the oxidation of lard, which further supports the application potential of this
composite film in food preservation. The results of the soil degradation experiment clearly
showed that the composite film could achieve apparent degradation within a certain
period in the natural environment, meeting the environmental protection requirements
of biodegradable materials. In conclusion, the excellent performance of the Z/CA/GSEE
composite film in terms of antioxidant properties, antibacterial properties, lipid oxidation
inhibition ability, and soil degradability makes it show good application prospects in the
field of biodegradable food packaging.
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ity in Cell Culture Medium: Challenges, Limitations and Future Directions. Int. J. Biol. Macromol. 2024, 279, 135232. [CrossRef]
[PubMed]

22. Saroha, V.; Khan, H.; Raghuvanshi, S.; Dutt, D. Development of polyvinyl alcohol-based antioxidant nanocomposite films with
nanokaolin impregnated with polyphenols from pomegranate peel extract. Food Packag. Shelf Life 2022, 32, 100848. [CrossRef]

23. Wang, C.; An, X.; Lu, Y.; Li, Z.; Gao, Z.; Tian, S. Biodegradable Active Packaging Material Containing Grape Seed Ethanol Extract
and Corn Starch/κ-Carrageenan Composite Film. Polymers 2022, 14, 4857. [CrossRef]

24. Qin, Y.; Liu, Y.; Yuan, L.; Yong, H.; Liu, J. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films
based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll. 2019, 96, 102–111. [CrossRef]

25. Wang, C.; Lu, Y.; An, X.; Wang, Y.; Wang, N.; Song, Y.; Hu, N.; Ren, M. Preparation, characterization, and application of
pH-responsive biodegradable intelligent indicator film based on rose anthocyanins. LWT 2024, 200, 116156. [CrossRef]

26. Chen, M.; Yan, T.; Huang, J.; Zhou, Y.; Hu, Y. Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins
into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. Int. J. Biol.
Macromol. 2021, 179, 90–100. [CrossRef]

27. Gao, Z.; Wang, C.; Li, Z. Effect of ethanol extract of black soybean coat on physicochemical properties and biological activities of
chitosan packaging film. Food Sci. Biotechnol. 2021, 30, 1369–1381. [CrossRef]

28. Sukhija, S.; Singh, S.; Riar, C.S. Analyzing the effect of whey protein concentrate and psyllium husk on various characteristics of
biodegradable film from lotus (Nelumbo nucifera) rhizome starch. Food Hydrocoll. 2016, 60, 128–137. [CrossRef]

29. Huang, J.; Chen, M.; Zhou, Y.; Li, Y.; Hu, Y. Functional characteristics improvement by structural modification of hydroxypropyl
methylcellulose modified polyvinyl alcohol films incorporating roselle anthocyanins for shrimp freshness monitoring. Int. J. Biol.
Macromol. 2020, 162, 1250–1261. [CrossRef]

https://doi.org/10.1016/j.foodchem.2024.141895
https://www.ncbi.nlm.nih.gov/pubmed/39515172
https://doi.org/10.1016/j.foodcont.2024.110811
https://doi.org/10.1007/s13197-023-05802-3
https://doi.org/10.1016/j.fpsl.2022.100869
https://doi.org/10.1016/j.lwt.2020.110053
https://doi.org/10.3390/foods13223561
https://www.ncbi.nlm.nih.gov/pubmed/39593976
https://doi.org/10.3390/microorganisms11020395
https://www.ncbi.nlm.nih.gov/pubmed/36838361
https://doi.org/10.1016/j.animal.2021.100194
https://doi.org/10.1111/jfs.12500
https://doi.org/10.3390/polym14152986
https://doi.org/10.1016/j.ijbiomac.2024.130358
https://doi.org/10.1007/s11947-021-02665-4
https://doi.org/10.1016/j.ijbiomac.2022.12.210
https://doi.org/10.1016/j.ijbiomac.2025.142115
https://doi.org/10.1177/08927057241244693
https://doi.org/10.1016/j.ijbiomac.2024.135232
https://www.ncbi.nlm.nih.gov/pubmed/39218177
https://doi.org/10.1016/j.fpsl.2022.100848
https://doi.org/10.3390/polym14224857
https://doi.org/10.1016/j.foodhyd.2019.05.017
https://doi.org/10.1016/j.lwt.2024.116156
https://doi.org/10.1016/j.ijbiomac.2021.02.170
https://doi.org/10.1007/s10068-021-00968-y
https://doi.org/10.1016/j.foodhyd.2016.03.023
https://doi.org/10.1016/j.ijbiomac.2020.06.156


Foods 2025, 14, 1698 17 of 18

30. Lei, Y.L.; Wu, H.J.; Jiao, C.; Jiang, Y.; Liu, R.; Xiao, D.; Lu, J.Y.; Zhang, Z.Q.; Shen, G.H.; Li, S.S. Investigation of the structural and
physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated
with tea polyphenol. Food Hydrocoll. 2019, 94, 128–135. [CrossRef]

31. Xie, C.; Wang, F.; He, Z.; Tang, H.; Li, H.; Hou, J.; Liu, Y.; Jiang, L. Development and characterization of active packaging based
on chitosan/chitin nanofibers incorporated with scallion flower extract and its preservation in fresh-cut bananas. Int. J. Biol.
Macromol. 2023, 242, 125045. [CrossRef] [PubMed]

32. Meng, L.; Zhu, J.; Ma, Y.; Sun, X.; Li, D.; Li, L.; Bai, H.; Xin, G.; Meng, X. Composition and antioxidant activity of anthocyanins
from Aronia melanocarpa cultivated in Haicheng, Liaoning, China. Food Biosci. 2019, 30, 100413. [CrossRef]

33. Su, W.; Xiao, L. Manganese-doped ferrihydrite/cellulose/polyvinyl alcohol composite membrane: Easily recyclable adsorbent for
simultaneous removal of arsenic and cadmium from soil. Sci. Total Environ. 2022, 815, 152748. [CrossRef] [PubMed]

34. Li, X.; He, J.; Zhang, W.; Khan, M.R.; Ahmad, N.; Tian, W. Pectin film fortified with zein nanoparticles and Fe3+-Encapsulated
propolis extract for enhanced fruit preservation. Food Hydrocoll. 2024, 157, 110405. [CrossRef]

35. Huang, X.; Ge, X.; Zhou, L.; Wang, Y. Eugenol embedded zein and poly(lactic acid) film as active food packaging: Formation,
characterization, and antimicrobial effects. Food Chem. 2022, 384, 132482. [CrossRef] [PubMed]

36. Tao, R.; Zheng, X.; Fan, B.; He, X.; Sun, J.; Sun, Y.; Wang, F. Enhancement of the Physical and Functional Properties of Chitosan
Films by Incorporating Galla chinensis Extract. Antioxidants 2024, 13, 69. [CrossRef]

37. Zhang, Z.; Meng, Y.; Wang, J.; Qiu, C.; Miao, W.; Lin, Q.; Li, X.; Sang, S.; McClements, D.J.; Jiao, A.; et al. Preparation and
Characterization of Zein-Based Core-Shell Nanoparticles for Encapsulation and Delivery of Hydrophobic Nutrient Molecules:
Enhancing Environmental Stress Resistance and Antioxidant Activity. Food Hydrocoll. 2024, 148, 109524. [CrossRef]

38. Zhang, X.; Liu, Y.M.; Yong, H.M.; Qin, Y.; Liu, J.; Liu, J. Development of multifunctional food packaging films based on chitosan,
TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll. 2019, 94, 80–92. [CrossRef]

39. Adilah, N.A.; Jamilah, B.; Noranizan, M.A.; Nur Hanani, Z.A. Utilization of mango peel extracts on the biodegradable films for
active packaging. Food Packag. Shelf Life 2018, 16, 1–7. [CrossRef]

40. Kong, R.; Wang, J.; Cheng, M.; Lu, W.; Chen, M.; Zhang, R.; Wang, X. Development and characterization of corn starch/PVA
active films incorporated with carvacrol nanoemulsions. Int. J. Biol. Macromol. 2020, 164, 1631–1639. [CrossRef]

41. You, P.; Wang, L.; Zhou, N.; Yang, Y.; Pang, J. A pH-intelligent response fish packaging film: Konjac glucomannan/carboxymethyl
cellulose/blackcurrant anthocyanin antibacterial composite film. Int. J. Biol. Macromol. 2022, 204, 386–396. [CrossRef] [PubMed]

42. Kahya, N.; Kestir, S.M.; Öztürk, S.; Yolaç, A.; Torlak, E.; Kalaycıoğlu, Z.; Akın-Evingür, G.; Erim, F.B. Antioxidant and antimicrobial
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