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Abstract: Messenger RNA (mRNA) has generated great attention due to its broad potential therapeu-
tic applications, including vaccines, protein replacement therapy, and immunotherapy. Compared to
other nucleic acids (e.g., siRNA and pDNA), there are more opportunities to improve the delivery effi-
cacy of mRNA through systematic optimization. In this report, we studied a high-throughput library
of 1200 functional polyesters for systemic mRNA delivery. We focused on the chemical investigation
of hydrophobic optimization as a method to adjust mRNA polyplex stability, diameter, pKa, and
efficacy. Focusing on a region of the library heatmap (PE4K-A17), we further explored the delivery of
luciferase mRNA to IGROV1 ovarian cancer cells in vitro and to C57BL/6 mice in vivo following
intravenous administration. PE4K-A17-0.2C8 was identified as an efficacious carrier for delivering
mRNA to mouse lungs. The delivery selectivity between organs (lungs versus spleen) was found to
be tunable through chemical modification of polyesters (both alkyl chain length and molar ratio in
the formulation). Cre recombinase mRNA was delivered to the Lox-stop-lox tdTomato mouse model
to study potential application in gene editing. Overall, we identified a series of polymer-mRNA
polyplexes stabilized with Pluronic F-127 for safe and effective delivery to mouse lungs and spleens.
Structure–activity relationships between alkyl side chains and in vivo delivery were elucidated,
which may be informative for the continued development of polymer-based mRNA delivery.

Keywords: polyesters; nanoparticles; polyplex; mRNA delivery; luciferase mRNA; Cre recombi-
nase mRNA

1. Introduction

Messenger RNA (mRNA) holds great promise for continued therapeutic applications,
including vaccines, protein replacement therapy, and immunotherapy [1–14]. The recent
success of mRNA lipid nanoparticle (LNP) vaccines for SARS-CoV-2 has solidified the
significant impact of this life-saving approach [15,16]. Delivery of mRNA also provides a
reliable approach for emerging genome editing technologies, including the clustered regu-
larly interspaced short palindromic repeat (CRISPR)-associated protein (Cas) (CRISPR/Cas)
because of its effective and controllable expression of gene editing proteins, both in vitro
and in vivo [17–26]. Since mRNA does not integrate into the host’s genome and results
in transient protein expression, this approach may limit the risk of off target mutations
in cells. Due to the unique structure of mRNA (single-stranded; typically more than
1000 nucleotides) [27], stable carriers are required for protecting mRNA from degradation
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and facilitating intracellular delivery [28]. Katalin Karikó, Drew Weissman, and colleagues
discovered that incorporation of modified nucleobases can significantly reduce the im-
munogenicity of exogenously introduced mRNA [29–32]. This important discovery has
greatly influenced the development of mRNA therapeutics, most recently and significantly
through the incorporation of modified nucleosides in the COVID-19 mRNA vaccines that
have been administered to hundreds of millions of people worldwide. The great progress of
pDNA and siRNA delivery [33–40], coupled to progress in understanding the fundamental
science behind mRNA [41–43], has established a strong foundation to further expand the
development of improved mRNA carriers.

In addition to improving safety and efficacy, mRNA delivery to extrahepatic targets
remains challenging. We recently reported an approach called Selective ORgan Target-
ing (SORT) [22,26,44,45] that can engineer LNPs for delivery of a variety of RNAs, pro-
teins, and ribonucleoprotein complexes to specific organs by introducing an additional
SORT molecule that enables programmable delivery to specific tissues including the lung,
spleen, and liver. Additional exciting reports have demonstrated mRNA delivery to
the lungs, spleen, bone marrow, and T cells, although the mechanism of action remains
unclear [46–49]. These efforts have been limited to low-molecular weight lipids used to
form multi-component LNPs that do allow much flexibility for tuning the chemistry of
the ionizable amino lipid without reducing efficacy. In contrast, polymers offer a much
greater degree of chemical diversity of functional groups and physical properties. It is
much easier to tune the chemical structures and properties of polymers without affecting
activity for gene delivery. Polymers additionally have some potential further advantages
with respect to scalability and production in large batches. Although polymer-mediated
mRNA delivery to organs such as the lungs and spleen [50,51] has been demonstrated,
there remains significant opportunities for further chemical exploration and determination
of structure–activity relationships (SAR) to guide the development and understanding of
mRNA carriers.

Cationic polymers have been extensively explored for pDNA delivery, which offers
guidance for use in mRNA delivery. For example, polyethylenimine (PEI)-based polymers
can deliver luciferase mRNA into cells [52]. However, in order to be used in clinical research,
polymer-based carriers should exhibit low toxicity and facile degradability to improve
safety. Poly(β-amino ester)s (PBAEs) [50,51,53] and charge-altering releasable transporters
(CARTs) [49,54,55] are additional classes of polymers capable of delivering mRNA both
in vitro and in vivo. Anderson and co-workers reported degradable polymer–lipid hybrid
nanoparticles for systemic mRNA delivery to the lungs. In 2019, the same research group
reported a different administration method though inhalation to the lungs using a hyper-
branched poly(β-amino esters) (hPABEs). In 2017, Wender and co-workers synthesized a
new type of oligo(carbonate-b-α-aminoester) termed charge-altering releasable transporters
(CARTs) [55–57] that enabled mRNA delivery to lymphocytes. Overall, it is evident that
the delivery efficacy, safety, and tissue targeting of polymer-mRNA delivery systems can
be further optimized.

Recently, our lab developed a facile and scalable method for the synthesis of polyesters
with functional -ene side chains via the condensation of diacyl chlorides and trimethylol-
propane in the presence of an organic base [58]. Previously, this platform showed activity
for siRNA and mRNA delivery in vitro and in vivo [38,39,41]. Some functional polyester
nanoparticles showed selectivity for certain non-small cell lung cancer (NSCLC) cells,
which fully relied on the physiochemical properties of the polyesters themselves to enable
selective cell uptake [38]. Cellular uptake studies have indicated that polyplex internaliza-
tion is dominated by clathrin-dependent endocytosis. This indicated that precise changes
in chemical composition can greatly alter cell (and potentially organ)-level targeting. These
efforts led to identification of multiple lead polymers, including PE8K-A17-0.2C6, PE4K-
A13-0.33C6, PE4K-A13-0.33C10, and PE4K-A17-0.33C12. The hydrophobic domains of
polymer backbones and side chains, as well as small molecule lipids [59], play a crucial
role in amphipathic nanoparticle self-assembly formation [43,60–62]. Therefore, the goal of
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this manuscript is to focus on further optimizing the hydrophobic motif of polymers for
delivery to the lungs and spleen.

In order to address the issues of low delivery efficacy and toxicity of cationic polymers,
various chemical modifications have been explored [63,64]. Extensive research [64] has
shown that hydrophobic modifications on polymers such as PEI, chitosan, poly(L-lysine)
and poly(2-N-(dimethylaminoethyl) methacrylate) (pDMAMA) can have a significant
effect on gene delivery by increasing the physical encapsulation of nucleic acids, enhancing
cellular uptake and improving serum stability. We hypothesized that the hydrophobic
domains of functional polyester backbones can also modulate mRNA delivery. In this
paper, we focus on the hydrophobic side chain modification of polyesters to optimize
polymer-based mRNA delivery and establish SAR. Via the high-throughput screening
of 1200 functional polyesters, we were able to identify superior polymeric carriers for
in vivo mRNA delivery. The delivery selectivity between organs (lungs versus spleen) was
found to be tunable through modifying the side chain alkyl chain length and formulation
conditions. Cre recombinase mRNA targeting the Lox-stop-lox tdTomato sequence in a
mouse model was delivered to establish proof-of-concept gene editing. We also elucidated
structure–activity relationships between alkyl side chains and in vivo delivery efficacy. We
further demonstrate that hydrophobic modifications of cationic polymers could be highly
beneficial for mRNA delivery. This work contributes to the overall body of literature on
mRNA delivery carriers and further validates that mRNA therapeutics are an important
area of research that may continue to yield next-generation vaccines and therapeutics.

2. Materials and Methods
2.1. Ethics Statement

All animal experiments were approved by the Institutional Animal Care and Use
Committee (IACUC) of the University of Texas Southwestern Medical Center and were
consistent with local, state, and federal regulations, as applicable.

2.2. Materials

All chemicals (amines, alkyl thiols, and solvents) for the synthesis of functional
polyesters were purchased from Sigma-Aldrich (Burlington, MA, USA), TCI America
(Portland, OR, USA), or Fisher Scientific (Hampton, NH, USA). Luciferase and Cre mRNA
were obtained from TriLink Biotechnologies (San Diego, CA, USA). RPMI-1640, fetal bovine
serum (FBS), phosphate buffered saline (PBS), and PEO101−PPO56−PEO101 (Pluronic
F-127, Mw = 12 600, PDI = 1.05) were purchased from Sigma-Aldrich. DMG-PEG lipid
(Sunbright GM-020) was purchased from NOF America (White Plains, NY, United States).
The Quant-iT RiboGreen RNA assay kit was obtained from Life Technologies (Carlsbad,
CA, USA). The ONE-Glo + Tox luciferase assay kit was obtained from Promega (Madison,
WI, USA).

2.3. Preparation and Characterization of mRNA Nanoparticles

The different molecular weights of ene-bearing polyesters were synthesized according
to previously reported protocols [38,39,41,58]. The library of 1200 functional polyesters
was synthesized through thiol–ene reaction under UV. For in vitro studies, mRNA NPs
were prepared by adding diluted functional polymers (3 g/L in DMSO) into mRNA buffer
solution (citric acid/trisodium citrate buffer, pH 4.2, 10 mM) at a polyester/mRNA ratio
of 30:1 (wt/wt) and a final mRNA concentration of 1.25 ng/µL. For in vivo studies, 5 wt%
Pluronic F-127 was added to the functional polyester DMSO solution, which was then di-
luted with EtOH (DMSO: EtOH = 1:2, v/v). An mRNA buffer solution (citric acid/trisodium
citrate buffer, pH 4.2, 10 mM) was added to the above solution (aqueous: organic = 3:1,
v/v) by hand-mixing to form the polyplex nanoparticles. The polyplex nanoparticles were
dialyzed against PBS (1X) for 2h before injection to mice by I.V. administration. The size,
polydispersity index (PDI), and zeta potential of the polyplex nanoparticles were measured
using a Zetasizer Nano ZS (Malvern, He−Ne, λ = 632 nm). mRNA binding was tested
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by utilizing the Quant-iT RiboGreen RNA assay kit. The global/apparent LNP pKa was
determined by the TNS assay [26,65].

2.4. In Vitro Delivery of mRNA Polyplex Nanoparticles

RPMI-1640 medium with 5% FBS and 1% Penicillin/Streptomycin (P/S) was used to
culture IGROV1 ovarian cancer cells. IGROV1 cells were seeded into opaque white 96-well
plates (with a density of 10,000 cells/well) and incubated for 24 h at 37 ◦C and 5% CO2 in a
humidified atmosphere. After 24 h, the old medium was replaced with fresh RPMI-1640
medium with 5% FBS and 1% Penicillin/Streptomycin (P/S) (200 µL/well) followed by the
addition of 20 µL of mRNA polyplex nanoparticles (25 ng mRNA/well). The final mixture
was incubated for 24 h before testing the cell viability and luciferase expression by using
ONE-Glo + Tox luciferase assay kits. All transfection assays were performed in triplicate,
and the average with standard deviation was reported.

2.5. In Vivo Delivery of mRNA Polyplex Nanoparticles

C57BL/6 mice were purchased from Charles-River. For Luc mRNA delivery, polyplex
nanoparticles with mRNA were prepared as described above. 200 µL of mRNA polyplex
NPs (10 µg of Luc mRNA, 0.5 mg/kg) were administered to C57BL/6 mice (18–24 g) by
tail vein injection. After 6 h, D-luciferin (150 mg/kg) was injected via I.P. administration.
After 5 min, whole body and ex vivo organs of mice were imaged by an IVIS Lumina
imaging system. For the tdTomato mice (Ai9) experiments, 200 µL of mRNA polyplex
NPs (10 µg of Cre mRNA, 0.5 mg/kg) was administered to tdTomato mice (18–24 g) by
tail vein. After 2 days, the mice were sacrificed, and ex vivo organs of mice were imaged
by an IVIS Lumina imaging system. For biodistribution, 200 µL of mRNA polyplex NPs
(10 µg of Cy5-mRNA, 0.5 mg/kg) was administered to C57BL/6 mice (18–24 g) by tail vein.
After 6 h, the mice were sacrificed, and the organs of mice were imaged ex vivo by an IVIS
Lumina imaging system.

2.6. Statistical Analysis

All data are presented as the mean ± SD unless otherwise indicated. Statistical
analyses were performed using GraphPad Prism version 9 (GraphPad Software). One-
tailed unpaired Student’s t-test was used to determine the significance of the indicated
comparisons. p-values < 0.05 (*), p < 0.01 (**), p < 0.001 (***) and p < 0.0001 (****) were
considered to be statistically significant.

3. Results and Discussion

High-throughput synthesis and screening is an established approach for the discovery
of effective carriers for delivery of nucleic acids [33]. Hydrophobic modification plays a
key role in improving the efficacy and reducing the toxicity of polymers for nucleic acid
delivery. Due to the amphiphilic lipid composition of plasma and endosome membranes,
increasing the hydrophobicity of polymer carriers could increase polyplex cellular uptake
and endosomal escape [64,66]. For example, the Forrest group reported that acetylated PEI
can increase transfection efficiency by up to 58-fold compared to unmodified PEI [67,68].
Few studies have shown that hydrophobic modification can improve mRNA delivery. Here,
we built a library of 1200 functional polyesters with different functional groups (alkyl- and
amino-) utilizing our previous polycondensation method [58], and used in vitro/in vivo
screening to identify vehicles for mRNA delivery. The library design is depicted in Figure 1.
As hydrophobic modification can change the delivery efficacy [64,66–68], here, we aimed
to expand the chemical diversity of the hydrophobic motif. We used different categories of
alkyl thiols, such as linear (SC2 to SC18), branched (SC4-1, SC5-1, and SC8-1), aromatic
(SC8-Ph), and hydroxyl group containing (SO6 and SO11), to maximize the diversity.
Whitehead et al. [43]. reported that the branched-tail ionizable cationic lipid can enhance
the delivery efficacy of mRNA compared to the related linear lipid due to enhanced
ionization at endosomal pH. With respect to the ionizable amine-containing side chains,
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we chose four different amines (A3, A5, A6, and A17), which have been proven effective
in the delivery of either siRNA or mRNA [38,39,41]. Based on the chemical structures
of these previously identified lead domains, we included a new amine, A21, due to its
similarity to A17 and the fact that it is an amino acid (cysteine) derivative, as the amine
component. Three different molecular weights of polyesters were chosen as the backbone
for the thiol–ene reaction under UV conditions in order to study MW effects.
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Figure 1. A combinatorial library of functional polyester NPs was screened in IGROV1 cells to opti-
mize mRNA delivery materials. A library of 1200 functional polyesters was chemically synthesized
for the screening of mRNA delivery. Polyesters were modified with amino thiols (R1SH) and alkyl
thiols (R2SH) to generate a combinatorial polymer library. Amino thiols are named A followed by a
number; alkyl thiols are named SC or SO followed by the number of carbons. Functional polyesters
with Mw 4200 g/mol (PE4K), 8300 g/mol (PE8K), and 17,000 g/mol (PE17K) were modified with
five amino thiols (A3, A5, A6, A17, and A21) and all 20 alkyl thiols at SC:A molar feed ratios of 1:4,
1:2, 1:1, and 2:1. Functionalized polymers are named by the polyester Mw, amino modification, and
the mole fraction of alkyl modification. All functional polyesters were examined for in vitro mRNA
delivery efficacy. Selected functional polyesters (0.2C4 to 0.2C11; 0.3C5 to 0.3C9) were examined for
in vivo mRNA delivery efficacy.

The results of in vitro studies are shown in Figure 2 (also see Table S1, Supporting
Information). mRNA polyplexes with lower molecular weight (PE4k) functional polyesters
were able to deliver luciferase (Luc) mRNA into IGROV1 cells more efficiently than the
corresponding functional polyesters prepared from higher MW precursor polymers in
general. These mRNA delivery results are in agreement with previous studies using related
functional polyesters for siRNA delivery, suggesting that a balance between the polymer
MW and hydrophobicity relating to physical chain entanglement and intermolecular forces
may be important for delivery efficacy [38,69–71]. When further analyzing the results, the
A17 (cysteamine)-modified polyesters again emerged as the most active region, which
confirmed our earlier results in siRNA and mRNA delivery studies. As the current paper
focuses on hydrophobic modifications, it was interesting to identify more effective materials
(SC6, SC7, SC8, and SC8-1 modified polyesters) than those that have been previously
identified. Notably, one of the high-molecular weight polyesters (PE17K-A17-0.2C8-1)
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also possessed great in vitro delivery efficacy. These results confirmed that hydrophobic
optimization can improve mRNA delivery efficacy of polyplex carriers. With further
respect to the hydrophobic domains, the linear alkyl-modified polyesters were slightly
superior over branched alkyl-modified polyesters (SC4-1 versus SC4; SC5-1 versus SC5),
with the exception of the eight-carbon alkyl-modified ones. These results are in contrast to
recent observations of branching in small molecule lipid designs [43]. Alkyl lengths that
were too short (SC2) or too long (SC18) did not show in vitro delivery efficacy, which has
been previously observed in lipid designs [40,43]. The terminal hydroxyl alkyl-modified
polyesters (SO6 and SO11) did not show great delivery efficacy in vitro, which could
potentially be due to the increasing hydrophilicity of the extra hydroxyl group destabilizing
the mRNA-polyplex self-assembly.
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cells enabled identification of efficacious mRNA carriers. Each sub-column of corresponding amino thiols represent the
SC:A molar feed ratios of 1:4, 1:2, 1:1, and 2:1. The Luc mRNA dose was 25 ng mRNA/well (181 pM). (B) Selected functional
polyesters for Luc mRNA delivery efficacy and toxicity with dose response (mean ± s.d., n = 3; triangle symbol means over
the range; all polyesters in B are A17-modified).

Based on the in vitro results, we chose the PE4K-A17 sub-group materials to further
test the delivery efficacy in vivo. Previously, we identified that the addition of 5 weight%
of Pluronic F127 was a crucial surface coating component to stabilize the polyplex nanopar-
ticles for intravenous administration [41]. The in vivo results (Figure 3) demonstrated
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that luciferase expression changed between organs (lungs and spleen) with the different
alkyl chains lengths and molar ratios. When the SC:A molar feed ratio equaled 1:4 (0.2C),
eight carbon alkyl chains (SC8) yielded the best performance. Interestingly, when the
SC:A molar feed ratio was increased to 1:2 (0.33C), a shorter alkyl chain (six carbon, SC6)
showed the highest in vivo efficacy. Overall, PE4K-A17-0.2C8 produced the best mRNA
delivery efficacy. Interestingly, the delivery efficacy of linear (SC8) functional polyester
was much better than branched (SC8-1) functional polyesters in the lungs, and the organ
selectivity was reversed. We concluded that both the alkyl chain length and molar ratio
used in the formulation played roles in delivery efficiency and organ selectivity. Short alkyl
chains (SC4, SC5) and higher molar feed ratio of alkyl chains (0.33C7 and 0.33C8) favored
the spleen, but the overall delivery efficacy was sensitive to these parameters. 0.5C7 and
0.67C7-modified polyesters (PE4K-A17) were unable to successfully deliver mRNA in vivo.
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Figure 3. In vivo screening of Luc mRNA delivery. Top functionalized polyesters were examined for their ability to deliver
Luc mRNA in vivo. C57BL/6 mice were randomly grouped and intravenously injected with 0.5 mg/kg Luc mRNA (n = 2).
Luminescence was quantified 6 h after injection. (A) Ex vivo bioluminescence images of selected polyesters. The yellow
triangle denotes detector saturation of signals. (B,C) The average luminescence for the spleen and lungs was plotted. The
parent polyester was PE4K-A17 for all the above selected functionalized polyesters (mean ± s.d., n = 2, p < 0.05 (*)).

In our previous report, the chemical properties of functional polyesters could enable
selective delivery to patient-matched cancer cells over normal cells [38]. Other reports
have further correlated physical properties to in vivo delivery efficacy [43]. Next, we mea-
sured the physical properties of nanoparticles to determine SARs (Figures 4 and 5). Most
selected polymers were able to bind to mRNA tightly (>80%) and form controlled polyplex
nanoparticles with diameters < 150 nm, except for SC4- and SC5-modified polyesters. The
short alkyl chains (SC4 and SC5) have less hydrophobicity, causing the nanoparticles to be
less stable (large size and large PDI). These poor physical properties may explain the low
in vivo delivery efficacy of SC4- and SC5-modified functional polyesters. In Figure 5, the
correlations between ex vivo luminescence intensity and the physicochemical properties of
mRNA polyplex nanoparticles (0.2C4 to 0.2C11) are plotted. The surface charge of mRNA
polyplex nanoparticles showed positive correlations to ex vivo luminescence intensity for
both organs (lungs and spleen). PE4K-A17-0.2C6, 0.2C7 and 0.2C8 have a surface charge
close to neutral, which may benefit in vivo delivery by improving stability and reducing
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MPS clearance. Consistent with our own and other studies on polymer-mediated mRNA
delivery [41,50,53,55], mRNA translation to protein was mainly observed in the lungs
and spleen. However, the biodistribution results tracking Cy5-mRNA showed that most
polyplex nanoparticles accumulate in the liver (Figure S1). This has also been observed
for other polymeric mRNA carriers [72]. Therefore, it will be useful in future studies to
determine the probable complex mechanism of this behavior, wherein the organ accumula-
tion of mRNA delivery systems including lipid- and polymer-based carriers do not always
lead to successful mRNA translation to protein. These observations also offer the opportu-
nity to design liver-targeted mRNA polyplexes in the future, which are currently lacking
for polymer-based systems. Although the mechanism remains unclear, PE4K-A17-0.2C8
accumulated in the lungs, which verifies the lung activity and potential superiority of
PE4K-A17-0.2C8 polyplex nanoparticles over other tested polymers.
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To assess additional applications of this carrier, we utilized a tdTomato mouse model,
which contains a Lox-Stop-Lox tdTomato cassette in all cells, to test its gene editing capa-
bility via the deployment of Cre recombinase mRNA (Cre mRNA). Following translation
of Cre mRNA to Cre protein and deletion the of stop codons, cells will express red fluo-
rescent tdTomato protein and be readily detectable [73–75]. We formulated Cre mRNA
into nanoparticles and then injected NPs into mice via I.V. administration at a dosage of
0.5 mg/kg (Figure 6). Clear tdTomato signal throughout the lungs was observed by ex
vivo lung imaging. It will be valuable in the future to understand which cell type(s) are
transfected in order to match capabilities with therapeutic applications [41,50]. The results
indicate that this carrier has potential applications in the deployment of proteins for gene
editing for targets in the lungs due to the successful activation of tdTomato [76–78].
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4. Conclusions

In this paper, we synthesized a combinatorial library of functional polyesters with a
focus on hydrophobic optimization to identify efficacious materials for mRNA delivery
by high-throughput screening. Following in vitro screening, we further examined a sub-
portion of the library (PE4K-A17), which exhibited high delivery efficacy of Luc mRNA
NPs in IGROV1 ovarian cancer cells. The delivery efficacy in vivo was examined by IV
injection of formulated mRNA polyplex nanoparticles with 5% (wt/wt) of Pluronic F-127
into mice. PE4K-A17-0.2C8 was identified as the optimal polymeric carrier for the delivery
of mRNA into mouse lungs. The delivery selectivity between organs (lungs versus spleen)
was found to be tunable through chemical modification of polyesters (both alkyl chain
length and molar ratio in formulation). Finally, we employed a tdTomato mouse model to
demonstrate that this efficient mRNA delivery system could potentially be used to treat
genetic lung diseases.
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