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Abstract

Motivation: Phylogenetic profiling is a powerful computational method for revealing the functions of function-
unknown genes. Although conventional similarity metrics in phylogenetic profiling achieved high prediction accur-
acy, they have two estimation biases: an evolutionary bias and a spurious correlation bias. While previous studies
reduced the evolutionary bias by considering a phylogenetic tree, few studies have analyzed the spurious correl-
ation bias.

Results: To reduce the spurious correlation bias, we developed metrics based on the inverse Potts model (IPM) for
phylogenetic profiling. We also developed a metric based on both the IPM and a phylogenetic tree. In an empirical
dataset analysis, we demonstrated that these IPM-based metrics improved the prediction performance of phylogen-
etic profiling. In addition, we found that the integration of several metrics, including the IPM-based metrics, had su-
perior performance to a single metric.

Availability and implementation: The source code is freely available at https://github.com/fukunagatsu/Ipm.

Contact: fukunaga@aoni.waseda.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome sequences of many species have been determined, and ac-
cordingly, many function-unknown genes have been discovered.
Revealing the functions of these function-unknown genes is an im-
portant research topic, but it is too time-consuming to experimental-
ly verify the functions of all the genes. Therefore, the computational
predictions of these gene functions are essential, and various meth-
ods have long been developed in bioinformatics. Phylogenetic profil-
ing is one such analysis method. In this method, when two ortholog
groups (OGs) have similar occurrence patterns among species in a
table of OGs, the two OGs are presumed to be functionally related
(Kensche et al., 2008; Moi et al., 2020; Niu et al., 2017; Pellegrini
et al., 1999; Stupp et al., 2021; Tremblay et al., 2021; Tsaban et al.,
2021). Although phylogenetic profiling was first proposed to detect
protein–protein interactions, this method in principle captures any
functional relationships between genes. Phylogenetic profiling has
been widely used to estimate the functions of function-unknown

genes in various phylogenetic groups from prokaryotes to eukar-
yotes (Kumagai et al., 2018; Sherill-Rofe et al., 2019).

In conventional phylogenetic profiling, similarities in occurrence
patterns between two OGs are directly calculated from a table of
OGs. This direct calculation implicitly assumes that the species
included in the table of OGs are independent of each other. This as-
sumption is, however, incorrect because the species have evolution-
ary relationships. In other words, the conventional calculation of
similarity introduces an evolutionary bias in the estimation.
Therefore, methods that consider a phylogenetic tree were proposed
and showed good performance (Barker et al., 2007; Cohen et al.,
2012; Moi et al., 2020; Ta et al., 2011; Vert, 2002).

Another possible estimation bias is the spurious correlation bias
between two OGs. In statistics, spurious correlation means that two
unrelated (or weakly related) variables appear to be strongly related
due to the influence of confounding factors. As a simple example,
suppose there are functional relationships between OGs A and B
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and OGs A and C, but no (or weak) functional relationship between
OGs B and C. In this case, OGs B and C can show similar occur-
rence patterns by bypassing OG A, which is a confounding factor. In
real cases, transitive correlations among many genes and evolution-
ary relationships between species result in complex patterns of spuri-
ous correlations. Ignoring the possibility of spurious correlations
should negatively influence the accuracy of the function predictions,
but few studies have analyzed the spurious correlation bias. Kim
and Price considered the spurious correlation bias in phylogenetic
profiling and showed that the bias could be reduced using partial
correlation based on a Gaussian graphical model (Kim and Price,
2011). However, they did not explicitly deal with the evolutionary
bias and implicitly assumed that tables of OGs follow the Gaussian
distribution, but this assumption does not hold true for categorical
data.

Metrics commonly used for phylogenetic profiling are mutual in-
formation (MI), correlation coefficients and Jaccard coefficients.
These metrics are local metrics calculated from only two OG pro-
files, and the locality causes spurious correlations whose confound-
ing factors are the other OGs. Therefore, we can reduce spurious
correlation biases by using global metrics calculated from all OG
profiles. The inverse Potts model (IPM), also called direct coupling
analysis or evolutionary coupling (Cocco et al., 2018), is an analysis
method for categorical datasets to calculate global metrics. The IPM
has been applied to various biological data analyses, such as pro-
tein–protein interaction prediction (Cong et al., 2019; Weigt et al.,
2009), protein structure prediction (Marks et al., 2011; Muscat
et al., 2020), neural data analysis (Schneidman et al., 2006;
Watanabe et al., 2013) and genome-wide association studies
(Schubert et al., 2019; Skwark et al., 2017), and has improved pre-
diction performance. Recently, Croce et al. (2019) identified physic-
ally interacting protein domain pairs by applying the IPM to tabular
data whose rows and columns are species and protein domains.
They revealed that the IPM could detect interacting domain pairs
with higher accuracy than simple correlation coefficients. Their
study was similar to phylogenetic profiling, but their goal was to
predict domain-domain interactions and not to estimate gene func-
tional associations.

In this study, we applied the IPM to phylogenetic profiling to ac-
curately predict gene functions. We used direct information (DI) cal-
culated based on the IPM as the global metric. We also developed
DI that considers phylogenetic tree information to explicitly deal
with the evolutionary bias. We investigated the performance of sev-
eral metrics in phylogenetic profiling, and verified that the IPM-
based metrics improved the accuracy of predicting gene functions.
In addition, we found that the integration of several metrics, includ-
ing the IPM-based metrics, has superior performance to a single
metric.

2 Materials and methods

2.1 Input data
Two settings were assumed in our study: standard and evolutionary
settings. Under the standard setting, the input data for our method is
a table of OGs D, which consists of N species and L OGs. Di;j repre-
sents whether species i has OG j and takes either 0 or 1. Under the
evolutionary setting, the input data for our method is a table of OG
gain/losses D, which consists of N phylogenetic tree branches and L
OGs. Given a phylogenetic tree and a table of OGs, gene-content
evolutionary history is reconstructed to infer gene gain/losses on
each branch of the tree. Di;j represents whether the gain/loss events
of OG j occurred at edge i. The value takes 0, 1 or 2, indicating that
there are no gene gain/loss events, gene gain events or gene loss
events, respectively.

For the experiments in this study, we used three empirical data-
sets: archaea (domain), micrococcales (order) and fungi (kingdom)
(Fukunaga and Iwasaki, 2021). The tables of OGs were prepared by
preprocessing OG data in the STRING database (Szklarczyk et al.,
2019). We ignored gene copy number information and removed
OGs that were shared by <10% or more than 90% of the species to

reduce the computational time to prepare D. The proportions of
remaining OGs were 24.7%, 20.0% and 16.8% in archaea, micro-
coccales and fungi datasets, respectively, because the dataset con-
tained many OGs with few genes. The computational time of our
method is proportional to the square of the number of OGs, thus
this reduced the computational time by 95%. The removed OGs
were expected not to have significant impacts on the results because
of their low information content. The archaea, micrococcales and
fungi datasets consisted of 151 species and 2875 OGs, 111 species
and 1905 OGs, and 123 species and 5786 OGs, respectively. Under
the evolutionary setting, we prepared D by reconstructing the gene-
content evolutionary history for the three empirical datasets. We
used Mirage (Fukunaga and Iwasaki, 2021) with the BDARD model
(Kim and Hao, 2014) and the PM model (default parameters were
used for the others). Phylogenetic trees were supplied by the
Genome Taxonomy Database release 89 (Parks et al., 2018) for the
archaea and micrococcales datasets and the SILVA database release
111 (Yarza et al., 2017; Yilmaz et al., 2014) for the fungi dataset.

2.2 The IPM
We introduce MIab, which is the MI between OG a and OG b. The
formula is as follows:

MIab ¼
XQ

i¼0

XQ

j¼0

fabði; jÞln
fabði; jÞ

faðiÞfbðjÞ
;

where faðiÞ and fabði; jÞ are the relative frequencies of OG a taking i
and OG a and OG b taking i and j, respectively, in the dataset D. Q
is the maximum value that an OG can take (i.e. Q¼1 under the
standard setting and Q¼2 under the evolutionary setting). The
more OGs A and B depend on each other, the larger the MIab. If
MIab becomes 0, OGs A and B are completely independent. Note
that MIab can detect not only gene pairs with similar occurrence pat-
terns but also those with anti-correlated relationships (i.e. if a gen-
ome contains one of the genes, it unlikely contains the other).
Several previous studies showed that anti-correlation relationships
also provide clues to functions of function-unknown genes (Croce
et al., 2019; Kim and Price, 2011; Morett et al., 2003). We defined
standard MI (SMI) and EMI as MI calculated under the standard
and evolutionary settings, respectively.

MIab is a local metric calculated from only two OG profiles and
is vulnerable to spurious correlations. Therefore, we calculated a
global metric using all OG profiles based on the IPM. We first for-
mulate the joint probabilities of all OGs as follows (Cocco et al.,
2018):

Pðx1; . . . ;xLÞ

¼ 1

Z
exp

XL

a¼1

haðxaÞ þ
X
a< b

Jabðxa; xbÞ

8<
:

9=
;;

Z ¼
X
X

exp f
XL

a¼1

haðxaÞ þ
X
a<b

Jabðxa; xbÞg:

Pðx1; . . . ; xLÞ is the joint probability that OG a takes xa for any a.
haðxaÞ is a weight parameter when OG a is xa, and Jabðxa;xbÞ is also
a weight parameter when OG a is xa and OG b is xb. X is the set of
all possible combinations that all OGs can take, and Z is a normaliz-
ing constant, which is called the partition function. This probabilis-
tic model is obtained by deriving a model that maximizes entropy
under the following constraints: faðiÞ ¼ paðiÞ for all a and i and
fabði; jÞ ¼ pabði; jÞ for all a, b, i and j. paðiÞ and pabði; jÞ are the mar-
ginal probabilities of Pðx1; . . . ;xLÞ and represent the probabilities of
OG a taking i and OG a and OG b taking i and j, respectively. This
model is generally called the Potts model in statistical physics (when
Q¼1, this model is specifically called the Ising model). Note that
this model is also a particular form of the Boltzmann machine or
Markov random field.

In the derivation of the Potts model, the number of substantial
constraints is LQþ LðL�1Þ

2 Q2 because
P

i faðiÞ ¼ 1 and
P

ij fabði; jÞ ¼
1 must be satisfied. On the other hand, the number of parameters in
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the model is LðQþ 1Þ þ LðL�1Þ
2 ðQþ 1Þ2, which is larger than the

number of substantial constraints. This over-parameterization leads
to the non-identification of the model. Therefore, it is necessary to
introduce additional constraints on the parameters to reduce the
degrees of freedom of the model. In this study, we used the following
constraints, called lattice gas gauges, for ease of implementation
(Cocco et al., 2018):

hað0Þ ¼ Jabð0; iÞ ¼ Jabði; 0Þ ¼ 0 forall a;b; i:

To calculate the parameters haðiÞ and Jabði; jÞ analytically, we
need to count all the combinations in X. However, its computational
cost can become too large when L is large because the number of
combinations becomes large. Therefore, these parameters are learn-
ed from the dataset in an unsupervised manner (Section 2.3). Then,
using the estimated parameters, the dependence between OG a and
OG b is measured as DIab as follows (Weigt et al., 2009):

DIab ¼
XQ

i¼0

XQ

j¼0

Pdir
ab ði; jÞln

Pdir
ab ði; jÞ

Pdir
ajbðiÞPdir

bjaðjÞ
;

Pdir
ab ði; jÞ ¼

1

Zab
exp haðiÞ þ hbðjÞ þ Jabði; jÞ

� �
;

Zab ¼
X

i;j

exp fhaðiÞ þ hbðjÞ þ Jabði; jÞg;

Pdir
ajbðiÞ ¼

X
j

Pdir
ab ði; jÞ:

This definition is slightly different from the original definition
(Weigt et al., 2009). In the original DI calculation, faðiÞ was used in-
stead of Pdir

ajbðiÞ, and haðiÞ was re-calculated from faðiÞ ¼
P

b Pdir
ab ði; jÞ.

Similar to MIab, the more OGs A and B depend on each other, the
larger DIab. Note that DIab can also detect anti-correlated relation-
ships. We defined standard DI (SDI) and EDI as the DI calculated
under the standard and evolutionary settings, respectively.

In addition to DI, Frobenius norm (FN) and average product cor-
rection (APC) are widely used metrics to quantify dependencies be-
tween two elements in the IPM. These metrics are gauge-dependent
quantities, and the best gauge is the zero-sum gauge (Ekeberg et al.,
2013). On the other hand, DI has gauge-independent characteristics
(Ekeberg et al., 2013). Because we used lattice-gas gauges in this
study, we used DI instead of FN and APC for the metrics.

2.3 Parameter estimation method
To date, various algorithms have been developed to estimate the
parameters of the Potts model, for example, mean-field approxima-
tion (Morcos et al., 2011), pseudo-likelihood maximization
(Ekeberg et al., 2013), adaptive cluster expansion (Barton et al.,
2016) and Markov chain Monte Carlo (MCMC) methods (Figliuzzi
et al., 2018). There is an approximate trade-off between the compu-
tational speed and estimation accuracy in these methods, that is,
more accurate methods require longer run times. In this study, we
focused on the estimation accuracy, and used the persistent contrast-
ive divergence (PCD) method (Hinton, 2002; Tieleman, 2008),
which is a variant of the MCMC method. We maximized the likeli-
hood with the L2-regularization term to avoid overfitting the data in
the PCD method.

The algorithm for the PCD method is as follows. We first ran-
domly sample K samples with replacement from the dataset D, and
let the initial sampled dataset be D0. In this study, we set K to 200.
In addition, we set all the initial parameters to 0. Next, we obtained
the dataset D1 from D0 and the initial parameters based on the fol-
lowing Gibbs sampler:

D1
i;j � PðxjjD1

i;1; . . . ;D1
i;j�1;D

0
i;jþ1; . . . ;D0

i;LÞ:

This sampling was performed LK times to obtain D1. Then, we
calculated f̂ aðiÞ and f̂ abði; jÞ, which are the relative frequencies of
OG a taking i and OG a and OG b taking i and j in the dataset D1,
respectively. Subsequently, the model parameters were updated
using the following formula:

haðiÞ  haðiÞ þ �ðfaðiÞ � f̂ aðiÞÞ � 2khaðiÞ
Jabði; jÞ  Jabði; jÞ þ �ðfabði; jÞ � f̂ abði; jÞÞ � 2kJabði; jÞ:

2khaðiÞ and 2kJabði; jÞ are the L2-regularization terms, and we
used any 0, 0.01, 0.05, 0.1, 0.5, 1.0 or 5.0 as k. Note that k¼0 indi-
cates simple likelihood maximization without the regularization
terms. � represents a learning rate, and we set either 0.01 or 0.001 as
�. After parameter estimation, we sampled dataset D2 from D1 using
the estimated parameters. We finally adopted parameters after
repeating the Gibbs sampling and the parameter update 3000 times.

2.4 Evaluation method
We assessed the prediction performance of each metric using associ-
ation scores between two OGs provided in the STRING database
(Szklarczyk et al., 2019). The association scores in the STRING
database were calculated by considering gene neighborhood conser-
vation, gene fusion, co-expression, protein interaction experiments,
other databases, text mining and occurrence patterns. Because oc-
currence patterns should not be used in the assessment, we recalcu-
lated the association scores by ignoring the occurrence pattern
similarities. If the recalculated association score of an OG pair was
larger than the threshold th, we regarded the OG pair as positive
data; otherwise, we regarded it as negative data. We used the thresh-
old th from 0.5 to 0.9 in 0.1 increments. The sizes of each dataset
are listed in Supplementary Table S1. Note that the association
scores of 0.7 and 0.9 are the lower limits of high and highest confi-
dences, respectively, in the STRING database.

We first investigated the overall discrimination performance of
each metric using the area under the receiver operating characteristic
curve (AUC) scores. The AUC scores were calculated using the
pROC R package (Robin et al., 2011). We also assessed the predic-
tion accuracy of the OG pairs that were highly ranked by each met-
ric. Specifically, we defined the highly ranked OG pairs as the top M
OG pairs in each metric, and calculated the positive predictive val-
ues (PPVs) of these pairs (at th¼0.7). We used 100, 500, 1000,
5000 or 10 000 as M. In addition, we evaluated AUPR scores using
the PRROC package for the analysis of highly ranked OG pairs
(Grau et al., 2015).

3 Results

3.1 Performances of single metrics
We first assessed the overall discrimination performance of the four
metrics (SMI, EMI, SDI and EDI) based on the AUC scores. We
investigated 14 combinations of seven k values and two � values as
IPM hyperparameters for calculating the SDI and EDI. In the fol-
lowing analyses, we used the hyperparameters showing the best
AUC score for each dataset and each th value. The AUC scores are
listed in Supplementary Tables S2–S7. Both hyperparameters had a
large impact on the prediction performance. In addition, the optimal
hyperparameters differed depending on the dataset and the th value.
We also found that the optimal hyperparameter k was not 0.0 in
many cases. This result means that L2-regularization was effective
for achieving high discrimination performance.

We checked the distribution of each metric after normalizing the
maximum value to 1.0, and calculated the skewness (Supplementary
Figs S1 and S2). We found that the distribution was skewed to the
right in all cases, that is, only a portion of OG pairs obtained high
scores in each metric. In addition, we discovered that the consider-
ation of both gene-content evolutionary history and usage of the
IPM increases the skewness of the distribution. These results suggest
that the biases in SMI were reduced by the reconstruction of the
gene content history and the IPM method.

Figure 1A–C shows the results of the AUC analyses. We found
that EMI outperformed SMI in all cases, which suggests that gene
content history reconstruction is highly effective in phylogenetic
profiling, which is consistent with previous studies (Barker et al.,
2007; Moi et al., 2020; Ta et al., 2011). SDI was always better than
SMI, except for one case where similar performances were obtained
(th¼0.9 in the micrococcales dataset). These results also suggest
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that the IPM is valuable for reducing biases containing spurious cor-
relation and evolutionary biases. EDI showed the best performance
in the archaea and micrococcales datasets, except for the same case
where EMI and EDI showed comparable performances. On the
other hand, SDI showed the best performance in the fungi dataset. A
cause of the worse performance of EDI in the fungi dataset may be
insufficient gene annotation. Although the recalculated STRING
scores used gene neighborhood conservation and gene fusion, they
are not effective in estimating eukaryotic protein functional relation-
ships. We found that the proportion of positive data was much
lower for the fungi dataset than for the other datasets
(Supplementary Table S1). This suggests that many functionally
related OG pairs were not annotated with high association scores in
the fungi dataset.

We next investigated the prediction accuracies of highly ranked
(top M) OG pairs for each metric (Fig. 1D–F). In almost all cases,
SMI exhibited the worst or near-worst performance. On the other
hand, the best-performing metrics depended on the datasets and M.
For example, when M was 1000, SDI, EMI and EDI showed the
highest PPVs for the archaea, micrococcales and fungi datasets, re-
spectively. We confirmed that AUPR scores, where the top-scored
prediction has large effects, showed the similar tendency with the
PPV scores (Supplementary Fig. S3). Thus, the reconstruction of
gene content history and the IPM method generally increase per-
formances, although whether EMI, SDI or EDI performs the best
depends on the case.

3.2 Performances of integrated metrics
Because highly ranked OG pairs estimated by EMI, SDI and EDI
showed the best performance depending on the conditions, we next
investigated whether their integration showed better performance.
There are four combination types for the integration: EMI and SDI,
EMI and EDI, SDI and EDI, and all three metrics. For the integra-
tion, we first ordered the OG pairs in descending order by their
scores for EMI, SDI and EDI. Then, for each combination, we sorted
the OG pairs by any of the integration types that are the maximum,
average or minimum values of their ranks in all metrics under
consideration.

We investigated the AUC, PPV and AUPR performances of 12
integrated metrics comprising four combination types and three in-
tegration types (Supplementary Tables S8–S16). We found that the
best condition for the integrated metrics depends on the dataset and
the threshold (th or M). As a general trend, while the integration by
the minimum values showed the highest scores in the AUC analyses,
the integration by the average values achieved the highest scores in
the PPV and AUPR analyses. In addition, we found that the highest
integrated metrics performed better than the highest single metrics
in many cases (Fig. 2 and Supplementary Fig. S4). These results
strongly suggest that while EMI, SDI and EDI are good metrics, they
also lose useful information in functional estimation in its own way,
which could be salvaged by their integration.

3.3 Examples of the detected OG pairs
Finally, as examples of the highly ranked OG pairs, we show lists of
the top five ranked OG pairs by the integration of all three metrics
(Table 1). We used the average value as the integration type and
regarded the value as the prediction score. Except for two cases,
these OG pairs had recalculated STRING association scores above
0.9, which means that functional associations had the highest confi-
dence. Most of these gene pairs had known functional relationships.
For example, the first rank in the archaea dataset was a pair of
ZnuA and ZnuB, which are components of the ABC-type zinc up-
take system. As another example, the fifth rank in the micrococcales
dataset was a pair of DnaC, which is involved in DNA replication,
and COG4584, a transposase.

The first exceptional pair with the recalculated STRING score of
0.0 was KOG4501 and NOG13474, which was ranked second in
the fungi dataset. We further investigated the relationship between
these two genes and found that they showed an anti-correlated rela-
tionship. An anti-correlated relationship is also a clue for gene-
function estimation as explained earlier, and it should be noted that
the recalculated STRING scores based on gene neighborhood con-
servation, gene fusion, co-expression, protein-interaction experi-
ments, other databases, and text mining cannot detect signals of
anti-correlated relationships. While the human gene belonging to
KOG4501 has a known function that is involved in DNA damage

Fig. 1. (A–C) Overall discrimination performances of each metric using the AUC scores. The x-axis represents the th value, which defines positive dataset. The y-axis represents

the AUROC score. (A), (B) and (C) panels represent results for the archaea, micrococcales and fungi datasets, respectively. (D–F) Prediction performances for highly ranked

OG pairs of each metric (th¼ 0.7). The x-axis represents the M value. The y-axis represents the PPV. (D), (E) and (F) panels represent results for the archaea, micrococcales

and fungi datasets, respectively. The yellow, blue, green and red colors represent SMI, EMI, SDI and EDI, respectively
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repair (Brickner et al., 2017), NOG13474 is a function-unknown
gene. We argue that NOG13474 may have a DNA damage repair
function as a complement of KOG4501. In addition, the second ex-
ceptional pair was COG2051 and KOG3504, which was ranked
fifth in the fungi dataset. Because both these OGs are ribosomal pro-
teins, the recalculated STRING score may suggest the insufficient
annotation.

4 Discussion

In this study, we evaluated the effectiveness of IPM in the phylogen-
etic profiling analysis. We constructed four metrics, SMI, EMI, SDI
and EDI, based on whether a phylogenetic tree and the IPM were
used. We then investigated the performance of the four metrics using
the STRING datasets. We showed that SDI and EDI had the best
performances in many cases. In addition, we revealed that predic-
tions based on the combinations of EMI, SDI and EDI showed

higher performance than predictions based on a single metric. These
results demonstrated that the IPM is a powerful approach in phylo-
genetic profiling.

Although even simple combinations of the metrics yielded good
prediction results, more sophisticated methods of combining the
metrics may provide better prediction results, for example, machine
learning methods. A similar concept was proposed in studies on pro-
tein structure prediction based on IPM (Jones et al., 2015; Wang
et al., 2017). These studies integrated various scores, such as co-
evolutionary information using IPM, and predicted solvent accessi-
bility information using supervised machine learning methods, such
as deep learning.

Theoretically, phylogenetic profiling methods detect any func-
tional relationships regardless of whether they are physical or func-
tional interactions. Thus, to discriminate types of identified
relationships, other bioinformatic approaches need to be additional-
ly employed. For example, by taking advantage of the recent break-
throughs of the AlphaFold2 (Jumper et al., 2021) and AlphaFold-

Fig. 2. (A–C) Overall discrimination performances of integrated metrics using the AUC scores. The x-axis represents the th value, which defines positive dataset. The y-axis rep-

resents the AUROC score. (A), (B) and (C) panels represent results for the archaea, micrococcales and fungi datasets, respectively. (D–F) Prediction performances for highly

ranked OG pairs of integrated metrics (th¼0.7). The x-axis represents the M value. The y-axis represents the PPV. (D), (E) and (F) panels represent results for the archaea,

micrococcales and fungi datasets, respectively. The gray and black colors represent the highest single metric and integrated metric, respectively

Table 1. The lists of the top five OG pairs detected by the combination of all three metrics

Taxonomy Rank OG1 OG2 Prediction score STRING score

1 COG0803 (ZnuA) COG1108 (ZnuB) 10.0 0.992

2 COG1203 (Cas3) COG1688 (Cas5) 14.7 0.996

Archaea 3 COG1108 (ZnuB) COG1121 (ZnuC) 17.3 0.994

4 COG2998 (TupA) COG4662 (TupA) 21.3 0.999

5 COG1336 (Cmr4) COG1604 (Cmr6) 24.0 0.999

1 COG3181 (TctC) COG3333 (TctA) 1.7 0.989

2 COG1135 (AbcC) COG2011 (MetP) 7.0 0.995

Micrococcales 3 COG1464 (NlpA) COG2011 COG2011 (MetP) 10.7 0.996

4 COG1135 (AbcC) COG1464 (NlpA) 12.3 0.987

5 COG1484 (DnaC) COG4584 12.7 0.986

1 COG0043 (UbiD) COG0163 (UbiX) 34.3 0.998

2 KOG4501 NOG13474 143.3 0.0

Fungi 3 COG5441 COG5564 620.3 0.988

4 COG0843 (CyoB) COG1290 (QcrB) 682.3 0.969

5 COG2051 (RPS27A) KOG3504 774.7 0.0
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Multimer tools (Evans et al., 2021), phylogenetic profiling will be
used to specifically identify physically interacting protein pairs. We
envision combining our method with the accurate protein structure
prediction methods in the near future.

We assumed that the input phylogenetic tree and gene content
evolutionary history were correct when calculating EMI and EDI.
However, they were estimations and intrinsically subject to uncer-
tainty. Such uncertainty should decrease the accuracy of phylogenet-
ic profiling analysis in general (Hamada, 2014). One solution is to
consider the distribution of the estimates by calculating the expected
values (instead of counts) of gene gains and losses for each phylogen-
etic branch. Cohen et al. (2012, 2013) adopted this approach, but a
comparison with other methods has not been conducted and further
studies are required. Because this extension requires the use of con-
tinuous data, the Gaussian graphical model will need to be used for
considering spurious correlations, instead of the Potts model for cat-
egorical data (Stein et al., 2015).

In this study, we analyzed only the relationships between two
OGs; however, many OGs have higher-order functional relation-
ships among three or more OGs (such as multi-protein complexes).
Several studies have focused on the logic relationships of three OGs
in phylogenetic profiling (Bowers et al., 2004; Fukunaga and
Iwasaki, 2020; Zhang et al., 2006). An example of a logic relation-
ship is C ¼ A ^ B for OGs A, B and C, which means that OG C
needs both OGs A and B for its function. To date, logic relationship
analysis in phylogenetic profiling used local metrics, thus the detec-
tion of such higher-order functional relationships based on global
metrics is an essential future task. Technically, it is not difficult to
extend the Potts model to include (more than) ternary relationships
(Schmidt and Hamacher, 2017), but efficient parameter estimation
and construction of large-scale datasets for precise parameter esti-
mation will be difficult.
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