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Abstract. From recent studies of locomoting fish kera- 
tocytes it was proposed that the dynamic turnover of 
actin filaments takes place by a nucleation-release 
mechanism, which predicts the existence of short (less 
than 0.5 Ixm) filaments throughout the lamellipodium 
(Theriot, J. A., and T. J. Mitchison. 1991. Nature 
(Lond.). 352:126-131). We have tested this model by 
investigating the structure of whole mount keratocyte 
cytoskeletons in the electron microscope and phalloi- 
din-labeled cells, after various fixations, in the light mi- 
croscope. 

Micrographs of negatively stained keratocyte cyto- 
skeletons produced by Triton extraction showed that 
the actin filaments of the lamellipodium are organized 
to a first approximation in a two-dimensional orthogo- 
nal network with the filaments subtending an angle of 
around 45 ° to the cell front. Actin filament fringes 
grown onto the front edge of keratocyte cytoskeletons 
by the addition of exogenous actin showed a uniform 
polarity when decorated with myosin subfragment-1, 
consistent with the fast growing ends of the actin fila- 
ments abutting the anterior edge. A steady drop in fila- 
ment density was observed from the mid-region of the 
lamellipodium to the perinuclear zone and in images of 
the more posterior regions of lower filament density 
many of the actin filaments could be seen to be at least 
several microns in length. 

Quantitative analysis of the intensity distribution of 
fluorescent phalloidin staining across the lamellipo- 
dium revealed that the gradient of filament density as 
well as the absolute content of F-actin was dependent 
on the fixation method. In cells first fixed and then ex- 
tracted with Triton, a steep gradient of phalloidin stain- 
ing was observed from the front to the rear of the 
lamellipodium. With the protocol required to obtain 
the electron microscope images, namely Triton extrac- 
tion followed by fixation, phalloidin staining was, sig- 
nificantly and preferentially reduced in the anterior 
part of the lamellipodium. This resulted in a lower gra- 
dient of filament density, consistent with that seen in 
the electron microscope, and indicated a loss of around 
45% of the filamentous actin during Triton extraction. 

We conclude, first that the filament organization and 
length distribution does not support a nucleation re- 
lease model, but is more consistent with a treadmilling- 
type mechanism of locomotion featuring actin fila- 
ments of graded length. Second, we suggest that two 
layers of filaments make up the lamellipodium; a lower, 
stabilized layer associated with the ventral membrane 
and an upper layer associated with the dorsal mem- 
brane that is composed of filaments of a shorter range 
of lengths than the lower layer and which is mainly lost 
in Triton. 

T 
o move over a natural or synthetic substrate, meta- 
zoan cells protrude a thin layer of cytoplasm, a lamel- 
lipodium, that establishes new anterior contacts re- 

quired for forward locomotion (see review by Heath and 
Holifield, 1991). The lamellipodium is thus the primary 
locomotory organelle (Abercrombie et al., 1970), but its 
gross movements are invariably irregular; in the light mi- 
croscope it commonly shows complex forward, backward, 
and folding motions, so that net progress may appear 
rather erratic. Various lines of evidence indicate that 
lamellipodial movements are governed by a continuous re- 
modeling of the cytoskeleton, specifically of actin fila- 
ments. Protrusion has been directly correlated with the 
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formation of a dense, laminar network of actin filaments 
(Rinnerthaler et al., 1991) that make up the core of the 
lamellipodium (Hrglund et al., 1980; Small, 1981, 1988) 
and experiments on fibroblasts injected with labeled actin 
probes, indicate that there is a dynamic tumover of actin 
filaments in the lamellipodium, involving polymerization 
at the front and depolymerization at the rear (Wang, 1985; 
Okabe and Hirokawa, 1989; Forscher and Smith, 1988; Sy- 
mons and Mitchison, 1991). 

Although the involvement of actin filaments in protru- 
sive activity is now more or less accepted, there are still 
many open questions and conflicting ideas about how 
movement occurs (see also reviews by Oster and Perelson, 
1987; Mitchison and Kirschner, 1988; Smith, 1989; Small, 
1988; Heath and Holifield, 1991; Lee et al., 1993; Condee- 
lis, 1993): can actin polymerization alone produce move- 
ment or are the myosin motors that are found in lamellipo- 
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dia (Fukui et al., 1989; Wagner et al., 1992) also required 
and, if so, what are the mechanisms involved? How is the 
assembly and disassembly of actin spatially regulated and 
does disassembly occur by endwise depolymerization or 
by severing? How are actin subunits transported to the 
front of the lamellipodium to support filament growth, 
against the direction of cytoskeletal flow? Further, what 
roles do actin-binding proteins play in regulating the dy- 
namic changes of cytoskeletal architecture in vivo (see 
e.g., Carlier and Pantoloni, 1994; Theriot, 1994; Zigmond, 
1993; St6ssel, 1993). These considerations prompt also the 
more general question of how the actin filaments are in 
fact organized in the lamellipodium: what is their length, 
polarity, and orientation? It is the latter problem that will 
form the focus of the present report. 

In earlier studies on fibroblast cytoskeletons (Small and 
Celis, 1978; Small et al., 1978, 1982; Small, 1981, 1988) pre- 
pared by the negative staining method, it was shown that 
the lamellipodium consists of a criss-cross network, or 
weave (H6glund et al., 1980) of actin filaments whose fast 
growing, barbed ends were directed towards the leading 
membrane. In flbroblasts as well as in other cells (Edds, 
1977; H6glund et al., 1980; Karlsson et al., 1984; Rinner- 
thaler et al., 1991) the angle of orientation of filaments rel- 
ative to the membrane was variable and, in addition, bun- 
dles of filaments (microspikes) were commonly found that 
traversed the lamellipodium from front to back and that 
appeared to arise from a lateral coalescence of the fila- 
ments in the networks. Owing to the high density of the fil- 
ament networks it was difficult to measure individual fila- 
ment lengths, but from the presence of filaments in small, 
parallel or splayed arrays and the observed interrelation- 
ship between the networks and the microspike bundles, it 
was apparent that many actin filaments were long, extend- 
ing from the front to the rear of the lamellipodium, (see 
also Small, 1994). In contrast, other studies, using alterna- 
tive methods, revealed only short filaments. Thus, using 
the quick-freeze deep-etch procedure, the length of fila- 
ments in macrophages was estimated to be in the range of 
0.5 txm (Yin and Hartwig, 1988) and using a kinetic ap- 
proach, Cano et al. (1991) deduced an average filament 
length in leukocyte lysates of 0.3 txm. Lewis and Bridgman 
(1992) using both negative staining and freeze-drying ob- 
served two populations of actin filaments in nerve growth 
cones, both long and short and of different polarities rela- 
tive to the cell front. 

A reconsideration of the problem of filament length was 
stimulated by the work of Theriot and Mitchison (1991) on 
fish keratocytes. The latter cells are particularly suitable 
for locomotion studies since they show rapid (rate around 
10 ~m/min) persistent forward movement that is driven by 
a broad and thin, fan-shaped lamellipodium (Goodrich, 
1924; Cooper and Schliwa, 1986). Using a caged fluores- 
cent derivative of actin, Theriot and Mitchison (1991) 
showed, significantly, that the actin filament cytoskeleton 
of the keratocyte lamellipodium is stationary relative to 
the substrate as the cell moves. Such a result is consistent 
with treadmilling of actin filaments, with growth at the 
front of the lamellipodium and depolymerization at the 
rear. However, Theriot and Mitchison made two further 
observations that, together could not be reconciled with a 
treadmilling model. They noted that there was an expo- 

nential decay of activated actin fluorescence intensity 
from the front to the rear of the lamellipodium in living 
cells that did not parallel the actin filament density as de- 
termined by phaUoidin staining of fixed cells which, in 
their preparations, was uniform across the lamellipodium. 
Accordingly, they proposed a nucleation-release model of 
cell locomotion (Theriot and Mitchison, 1991, 1992a) 
which predicts a non-oriented organization of short fila- 
ments, throughout the lamellipodium of <0.5 txm in 
length. We have now tested this model by investigating the 
structural organization of the keratocyte cytoskeleton. 
Our results indicate that there is a steep gradient of fila- 
ment density across the lamellipodium, that the filaments 
are graded in length and are organized in a more or less 
regular two-dimensional lattice. Taken together with The- 
riot and Mitchison's results on the decay of activated fluo- 
rescence (1991), the data supports a treadmilling-type 
mechanism of locomotion. At the same time, the existence 
of an extra filament component is highlighted that is 
readily lost during Triton extraction and that may derive 
from the dorsal side of the lameUipodium complex. 

Materials and Methods 

Cells 
Keratocytes were prepared from the scales of the golden trout (Salmo al- 
pinus) using modifications of the techniques described by others (Kolega, 
1986; Cooper and Schliwa, 1986). Scales removed from freshly slaughtered 
fish were transferred to DME and then to fish Ringer solution (112 mM 
NaC1, 2 mM KCI, 2.4 mM Nail  CO3,1 mM CaCI2, I mM Tris, pH 7.3) con- 
taining 0.5 mg/ml collagenase (type V; Sigma Chem. Co., St. Louis, MO) 
for 5 to 7 min at room temperature. After rinsing in DME, the scales were 
rinsed once and stored in a culture medium, "start medium", comprised of 
a mixture of fish Ringer (70%), DME (20%), and Steinberg medium 
(10%) supplemented with 10 mM Pipes, pH 7.5, and 2% chicken serum. 
The Steinberg medium contained 52 mM NaCl, 0.3 mM Ca (NOa)2/H20, 
0.6 mM KC1, and 0.8 mM MgSO4/6 H20. 

For electron microscopy, tissue was removed from the scales with fine 
needles under a dissecting microscope and transferred to a carbon-form- 
var-coated gold or nickel electron microscope grid (150 mesh, hexagonal; 
Science Services, Munich, Germany) mounted in a drop of start medium 
on a 10-ram diam coverslip. The tissue piece was held against the grid by 
overlaying a second small coverslip (4 × 4 mm) and the resulting sandwich 
was transferred to a petri dish containing a layer of moist filter paper in 
the lid. The preparations were kept at room temperature and periodically 
replenished with a small drop of medium, as required. When cells had 
moved out from the explants (after 1 to 3 h) the coverslip sandwich was 
transferred to a "running" medium composed of 90% fish Ringer, 10% 
Steinberg medium, 10 mM Pipes, pH 7.0, and gently dismantled. Grids 
and coverslips carrying cells were kept in this medium, sometimes supple- 
mented with a few drops of start medium, ready for use. 

For video-microscopy of live cells, cells were grown on 20-mm diam 
glass coverslips using essentially the same procedure as above, with the 
tissue pieces sandwiched between the large coverslip and a 4 × 4 mm cov- 
erslip. 

Preparation of Cytoskeletons and Negative Staining 
For electron microscopy, ceils were extracted at room temperature in 
modified fish Ringer solution (MFRI: 112 mM NaC1, 2 mM KCI, 2.4 mM 
NaHCO3, 2 mM MgCl2, 5 mM EGTA, 10 mM MES, pH 6.1) containing 
0.5% Triton X-100 for 15 s. They were then fixed for 15 min in 1% glu- 
taraldehyde in the same buffer and subsequently incubated with phalloi- 
din (10 ixg/ml in MFR) for 10-15 min prior to negative staining with aque- 
ous 2% sodium silicotungstate (see Small, 1981) or a 1:1 mixture of 2% 
sodium silocotungstate and 2% phosphotungstic acid. In some cases, ex- 

1. Abbreviations used in this paper. MFR, modified fish Ringer; S-1, sub- 
fragrnent-1. 
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traction in Triton X-100 was followed by incubation with 0.5 mg/rnl 
smooth muscle tropomyosin in MFR (before the fixation step) to add sta- 
bility to the actin filaments. Electron microscopy was carried out using a 
ZEISS EM 10 A electron microscope. 

Actin Polymerization and S-1 Labeling 
Actin was purified from skeletal muscle acetone powder essentially ac- 
cording to Spudich and Watt (1970). Myosin subfragment-1 (S-l) was pre- 
pared from rabbit skeletal muscle myosin according to Okamoto and Se- 
kine (1985). To produce actin fringes on keratocyte cytoskeletons, for 
myosin S-1 decoration at the cell front, the following steps were used. Cy- 
toskeletons were prepared as above but were fixed only briefly for 2 mill 

in 0.1% glutaraldehyde in MFR. After rinsing, they were incubated in 
phalloidin (10 ~g/ml in MFR) for 3 rain, rinsed in cold actin polymeriza- 
tion buffer (APB: 112 mM KCI, 4 mM MgCI2, 3 mM EGTA, 10 mM Pipes, 
pH 6.8) and incubated on ice for 2 min with 0.8 ixM G-actin diluted from a 
100× stock into APB. They were then rinsed again (in APB), treated with 
phalloidin in MFR a second time, as above, rinsed in S-1 buffer (0.1 M 
KC1, 10 mM Tris/I-IC1, pH 7.0) and incubated with 0.5-1 mg/ml S-1 in the 
same buffer for 30--60 s at room temperature. Following a rinse in S-1 
buffer the grids were transferred to a mixture of 1% glutaraldehyde and 
0.05 mg/ml tannic acid (in MFR) for 5 min and then to MFR. After wash- 
ing with a few drops of a spreading solution (Moore et al., 1970) contain- 
ing 0.5 mg/mi cytochrome C, 0.1% amyl alcohol, the grids were negatively 
stained in 1% aqueous uranyl acetate. To reduce unwanted background at 

Figure 1. (a-c) Video-enhanced differential interference contrast images of a locomoting trout keratocyte taken at 3 time points: a, 0 s; 
b, 31 s; c, 55 s. Arrowheads point to stationary landmarks. Note constant fan-like shape and turning motion in c. (d) Electron micro- 
graph of negatively stained keratocyte cytoskeleton showing uniform fan-like shape. Note also differentially stained fringe at cell front. 
Bars, 10 ixm. 
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the periphery of the cell, the grids used for these experiments were floated 
on drops of 0.1% bovine serum albumin for one or more hours prior to 
the addition of tissue pieces. Cytoskeletons were also labeled with S-1 
without the addition of exogenous actin. In this case S-1 was added after 
the first treatment with phalloidin. 

Video-enhanced Interference Microscopy 
Video microscopy with Nomarski interference optics was performed as 
described in Rinnerthaler et al. (1991) but at room temperature and using 
a simplified observation chamber comprised of a thin (0.7 ram), ring- 
shaped stainless steel spacer (inner diameter, 10 mm) sandwiched be- 
tween a slide and a 20-ram diam coverslip carrying the celts. The sandwich 
was assembled with a thin layer of vacuum grease on the joining surfaces. 

Fluorescence Microscopy and Intensity Scanning 
Keratocytes were labeled with rhodamine-conjugated phalloidin (a gift 
from Prof. H. Faulstich, Max-Planck Institute, Heidelberg, Germany) af- 
ter fixation at room temperature in one of the following three ways: (a) 
extraction with 0.5% Triton X-100 in MFR for 15 s, followed by 30-s fixa- 
tion in 1% glutaraldehyde in MFR, and then a 30-rain fixation in 3% para- 
formaldehyde in Tris-buffered saline (TBS: 20 mM Tris, 0.154 M NaCI, 2 
mM MgC12, 2 mM EGTA, pH 7.5); (b) fixation in a mixture of 0.3% Tri- 
ton X-100 and 3% paraformaldehyde in TBS or MFR for 30 min; and (c) 
fixation in 3% paraformaldehyde in TBS for 30 min followed by extrac- 
tion in 0.5% Triton X-100 in MFR for 30 s. Phalloidin staining was per- 
formed by placing coverslips in 15-mm flat-bottomed wells containing 0.5 
ml of 0.1 ixg/ml rhodamine phalloidin in TBS. After staining overnight the 
coverslips were rinsed in TBS and mounted in Gelvatol containing 5 mg/ 
ml n-propyl-gallate (Sigma, Munich, Germany). 

Video images were acquired from a Zeiss Photomicroscope III (63x 
planapo objective, 4x TV tube, optovar 2 x)  using a Hamamatsu C-2400- 
87 image intensifier system and Argus 10 processor, operating in a 16- 
frame averaging mode, and transferred to a Macintosh Quadra 640 com- 
puter equipped with a Scion LG-3 frame grabbing card. All images were 
obtained under identical conditions, using a fixed gain on the intensifier, 
and a 3% neutral density filter on the microscope to reduce bleaching to 
negligible levels. The linearity of camera response over the range of grey 
scales measured was confirmed by measuring the attenuation produced by 
a supplementary set of neutral density filters. Digital images were scanned 
across a 10 x 20-1zm box positioned near the middle of the lamellipodium, 
as normal as possible to both the edge of the cell and the edge of the peri- 
nuclear region using the public domain NIH Image program (written by 
Wayne Reasband at the U.S. National Institutes of Health and available 
from the Internet by anonymous ftp from zippy.nimh.nih.gov or on floppy 
disk from NTIS, Springfield, VA, part number PB93-504868). Plot values 
represent the average pixel value across the box versus distance from the 
box front. Final screen magnification was 6,700×, as determined using a 
Graticules (Tonbridge, England) stage micrometer slide with a 2-1~m grat- 
ing, projected onto the screen. 

Results 
Keratocyte Locomotion 

Goodrich (1924) first described the characteristic shape 
and movements of fish keratocytes and this was re-empha- 
sized in more recent work (Cooper and Schliwa, 1986; 
Kolega, 1986; Kucik et al., 1990; Theriot and Mitchison, 

Figure 3. Average  values for the  f luorescence intensi ty of  the  
front  and rear  o f  the  lamel l ipodium (respectively,  FL and RL) 
and for  the  per inuclear  bo rde r  (PN)  in cells s ta ined with fluores- 
cent  phal loidin and scanned  as for Fig. 2. E m p t y  bars  are values 
for cells ext rac ted  with Tr i ton  and then  fixed (Triton-fix) and 
shaded  bars  for cells f ixed first and then  ext rac ted  with Tr i ton  
(fix-Triton). The  data  were  der ived f rom a total  o f  20 cells f rom 
each fixation and two separa te  exper iments .  S tandard  deviat ions 
are indicated by the  e r ror  bars. 

1991). For the present discussion we shall note that the re- 
markable feature of this cell type is not simply that it 
moves very fast but that it can do so without any signifi- 
cant change in shape. This is illustrated in the video series 
shown in Fig. 1 (a-c). Moving at speeds of around 10-1xm/ 
min these cells typically show a canoe-like shape (Goodrich, 
1924), or appear as a cap, embracing the nuclear region, 
with a peak, corresponding to the lamellipodium. Good- 
rich used the general term "fan cells" to describe these 
cells and we shall adopt this term in the following. As can 
be seen in the video series there is effectively no change in 
shape of the fan cell during unobstructed movement. The 
changes that one does see include modulations in activity 
of the lateral edges of the lamellipodium, that lead to 
slight skewing movements of the cell. Thus, the cell steers 
itself by increasing the protrusive activity of one of its lat- 
eral edges at the expense of the other; this automatically 
leads to a shift in orientation of the lamellipodium as a whole 
and to a change in the direction of migration (Fig. 1 c). 

Fixation Dependence of Phalloidin Staining and 
Actin Filament Density 

In line with previous studies of other cells (Small, 1981; 
Small et al., 1982) we tested the suitability of glutaralde- 
hyde-Triton mixtures for producing keratocyte cytoskele- 

Figure 2. (a-d) Video  images  of  r h o d a m i n e  phal loidin  labeled  kera tocytes  cap tured  on  a low light v ideo camera,  a and b are typical ex- 
amples  of  cells that  were  first f ixed and then  ext rac ted  with Tr i ton  and c and d are cor responding  examples  of  cells first ex t rac ted  with 
Tr i ton  and  then  fixed (for exact  condi t ions  see Mater ia ls  and Methods) .  The  traces shown be low each  pair  are  the  aligned scans of  fluo- 
rescence  intensi ty m a d e  across the  boxed  areas in the  cor responding  video images (a-d). Scans were  pa i red  f rom cells having lamell ipo- 
din of  similar width which a l lowed a compar i son  of  the total  in tegra ted  intensity across the  lamel l ipodium f rom the  f ront  (FL) to the  
rear  (RL). Taking the  in tegra ted  value for lamell ipodia  of  cells that  were  first f ixed as 100%, the  two percen tage  values indicate  the  rel- 
ative p ropor t ions  of  total  stain remaining  in the  lamell ipodia of  Tr i ton cytoskele tons  (b and d, unshaded region b e t w e e n  F L  and  RL)  
and, correspondingly ,  the  p ropor t ion  lost in Tr i ton (shaded region), that  is re ta ined  in the  pre-f ixed cells (a and c). FL, f ront  o f  lamelli- 
podium;  RL, rear  of  lamell ipodium; PN, per inuclear  border .  Bar,  10 ixm. 
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tons. The lamellipodium was however too dense in the elec- 
tron microscope after such fixations for filaments to be 
easily visualized. The best visibility of filaments was achieved 
in keratocytes that were briefly extracted with Triton 
X-100 (0.5%, 15 s) and then fixed in glutaraldehyde. The 
question then arose as to whether the entire complement 
of actin filaments was preserved in the Triton cytoskele- 
tons (see also Lewis and Bridgman, 1992). Before discuss- 
ing the ultrastructural data it is pertinent to consider this 
problem first since it bears directly on the final conclusions 
drawn. 

To establish the effects of the extraction procedure we 
measured the fluorescence intensity across lamellipodia of 
cells that were fixed according to different routines and 
then labeled with fluorescent phalloidin (Fig. 2). Intensity 
scans were made on images acquired directly from a low 
light video camera for which there was a linear response to 
intensity changes in the range of operation used (see Ma- 
terials and Methods). Fig. 2 shows typical examples of cells 
prepared according to two procedures; one mimicking that 
used for electron microscopy (Triton followed by alde- 
hyde: c and d) and the other for which we would expect no 
loss of actin filaments (aldehyde followed by Triton: a and 
b). In the latter case Triton treatment was necessary to fa- 
cilitate the penetration of phalloidin. Scans of the fluores- 
cence intensity made across lamellipodia of cells that were 
first fixed and then extracted, showed typically a high peak 
of intensity at the front followed by a steep fall-off to the 
rear (Fig. 2, traces a and b). In contrast, cells first extracted 
with Triton and then fixed showed much shallower pro- 
files, with a relatively small or negligible decline in fluores- 
cence intensity from the front to the rear of the lamellipo- 
dium (Fig. 2, traces c and d). The average values for the 
intensities at the front (FL) and rear (RL) of the lamelli- 
podium and for the perinuclear region (PN) for 20 cells 
from each fixation are given in Fig. 3. As is seen in the fig- 
ure, the major difference between the two preparations 
was in the peak intensity at the front of the lamellipodium 
which was on average 76% higher in the prefixed cells 
(shaded bars in Fig. 3). 

A comparison of representative scan pairs (Fig. 2) of 
cells of similar size indicated that primary Triton extrac- 
tion produced lamellipodia that retained roughly 55% of 
the total complement of filamentous actin, when com- 
pared to cells that were fixed before extraction. The scan 
profiles further showed that the major loss of actin fila- 
ments occurred progressively more towards the front of 
the lamellipodium. For cells fixed with a mixture of form- 
aldehyde and Triton (see Materials and Methods) the in- 
tensity profile compared closely to that of pre-fixed cells 
(not shown). 

LameUipodium Ultrastructure in 
Triton Cystoskeletons 

From the data in the previous section we conclude that the 
cytoskeletons of keratocytes obtained by brief Triton 

treatment retain somewhere around half or marginally 
more of the total complement of filamentous actin in the 
lamellipodium. In this section we will describe the ultra- 
structure of the keratocyte Triton cytoskeleton as ob- 
served after negative staining. A consideration of the miss- 
ing complement of actin filaments will be reserved for the 
discussion. 

At low magnification in the electron microscope the 
keratocyte lamellipodium appeared more or less homoge- 
neous in density (Fig. 1 d); no microspike bundles were 
observed, but radial folds at the lateral flanks could some- 
times be seen (Fig. 1 d). These folds corresponded to the 
radially oriented ruffles or pleats observed in the same po- 
sition in some locomoting, living cells (see also Lee et al., 
1992). In some cells we noted a fringe of different stain in- 
tensity at the front of the lamellipodium (e.g., Fig. 1 d) that 
ranged in width from 0.5-1.5 txm. At higher magnification, 
the striking feature of the lamellipodium was the close-to- 
regular, two dimensional order of actin filaments. To a 
rough approximation, the filaments were arranged in two 
orthogonal arrays that subtended an angle of around 45 ° 
with the cell front (Fig. 4). This arrangement was not as 
dramatic in small regions of the leading edge, necessarily 
depicted in selected figures (Fig. 4), as it was from general 
surveys in the electron microscope, or in micrograph mon- 
tages too large to publish. The two sets of filaments in Fig. 
4 can be best observed by tilting the micrograph at a glanc- 
ing angle. Towards and around the curved ends of the 
lamellipodium the filament density at the cell edge de- 
creased to 60-80% of that in the mid region and there was 
a noticeable increase in the range of angles subtended by 
actin filaments, relative to the local cell front (from around 
20 ° to 160°). At the far, trailing borders of the lamellipodia 
fans, the cell edge was delimited by one or more bundles 
of actin filaments (seen at low magnification in Fig. 1 d). 
The radial folds sometimes observed in the lateral regions 
did not contain such bundles but consisted of folded actin 
meshworks (not shown). 

An additional marked feature of the keratocyte cyto- 
skeleton was the drop in filament density towards the rear 
of the lamellipodium. This is illustrated in Fig. 5, (a-d) 
which depicts selected images of a typical lamellipodium 
taken at progressively greater distances from the cell front 
(in this case at 0, 3, 6, and 9 txm, respectively). In the pos- 
terior, less dense regions of lamellipodia the filaments 
could be followed for considerable distances along their 
length (e.g., Fig. 6) and their orthogonal arrangement was 
still approximately preserved. In images such as Fig. 6 
many filaments could be traced for up to 2.0 txm (average 
1.58 ___ 0.35 ~m standard deviation for 20 filaments) be- 
fore they became lost in the filament net. And in favorable 
instances we were able to trace single filaments over dis- 
tances of up to 4 ~m. 

Fan cell lamellipodia varied considerably in width, from 
around 3-15 txm along a mid line in the cell parallel to the 
direction of movement. Nevertheless, there was always a 
consistent pattern of filament density change from front to 

Figure 4. High magnification view of front of keratocyte lamellipodium. Note the predominant arrangement of filaments in two orthog- 
onal arrays, each oriented at around 45 ° to the cell edge. The continuity of the filaments is best appreciated by viewing at a glancing an- 
gle. Negatively stained with a mixture of 1% sodium silicotungstate and 1% phosphotungstic acid. Bar, 0.25 ~m. 

Small et al. Structure ofKeratocyte Cytoskeleton 1281 



back. This is shown in Fig. 7 which presents the results of 
filament counts made at progressively posterior regions in 
three representative cells with lamellipodia of different 
width. Counts were made by recording the number of fila- 
ments crossing a line of 1 p,m in length drawn parallel to and 
at a given distance from the cell front. The data showed 
that there was a more or less constant number of filaments 
in the anterior half of the lamellipodium of Triton cyto- 
skeletons and a steady drop in filament density from the 
mid region to the perinuclear zone. We interpret this re- 
sult as indicating a minimum filament length, spanning the 
first half of the lamellipodium, a maximum length span- 
ning the distance from the cell front to the perinuclear re- 
gion and intermediate lengths between these values. Since 
the filaments subtend an angle of around 45 ° to the cell 
front the longest will be in the range of 1.4 times the width 
of the lamellipodium in length. Free ends of filaments 
pointing in the direction of the front edge of the lamellipo- 
dium were not found, neither were short filaments de- 
tected in the more open regions of the actin networks. 

Actin Filament Polarity 

Decoration of lamellipodia cytoskeletons with myosin S-1 
followed by negative staining, resulted in the deposition of 
too much electron-dense stain for the arrowhead pattern 
on the meshwork filaments to be distinguished. Attempts 
were made to visualize the arrowhead polarity using quick 
freeze deep-etching (see Lewis and Bridgman, 1992) but in 
the dense actin networks of the keratocyte we were unable 
to determine the arrowhead direction, even though the 
filaments were clearly decorated (Small J. V., M. H~iner, 
and U. Aebi, unpublished observations). We therefore 
adopted another approach. Thus, exogenously added actin 
was polymerized onto lightly fixed keratocyte cytoskele- 
tons to produce an actin fringe, which was then decorated 
with S-1. In this way we could show that all filaments 
seeded onto the anterior edge of the lamellipodium had 
their fast-growing, plus ends directed outwards (Fig. 8). 

Discussion 

To develop their nucleation release model for the kerato- 
cyte Theriot and Mitchison (1991) took as a key piece of 
data the distribution of phalloidin label across the lamelli- 
podium, which they found to be homogeneous. As we 
show, the staining of the lamellipodium with phalloidin 
varies considerably according to the method of fixation. 
Theriot and Mitchison (1991) do not state precisely how 
they fixed their keratocytes but only in cells pre-extracted 
with Triton did we find a flattened distribution of phalloi- 
din stain approaching that which they describe. We con- 
clude that these authors had lost, in their phalloidin- 
labeled cells, the extra component of actin seen in pre- 

Figure 5. Images of the actin meshwork in a wide keratocyte 
lamellipodium taken at progressively greater distances from the 
front edge: a, 0 0,m; b, 3 ixm; c, 6 ~m; d, 9 Ixm. Note drop in fila- 
ment density towards the rear of the lamellipodium. Negatively 
stained with 1% sodium silocotungstate. Bar, 0.25 p,m. 
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Figure 6. Actin meshwork in inner lamellipodium region in which the length of the filaments (extending beyond the borders of the mi- 
crograph) can be better appreciated. Note also approximately orthogonal arrangement. Negatively stained with 1% sodium silocotung- 
state. Bar, 0.5 I~m. 
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Figure 7. Change in filament density from the front to the rear of 
three typical lamellipodia of different width, expressed in terms 
of filament counts. Each point represents the number of fila- 
ments transected by a 1-~m long line drawn on enlarged micro- 
graphs parallel to and at the distance from the front edge indi- 
cated. 

fixed preparations, and thus failed to detect the steep gra- 
dient of filament density that exists across the lamellipo- 
dium. Had they observed this gradient they would not 
have found their data on activated fluorescence at vari- 
ance with a treadmilling type mechanism (see also below). 

Turning now to the ultrastructural data, we observed in 
Triton cytoskeletons a semi-ordered criss-cross organiza- 
tion of long actin filaments, oriented in the middle front 
part of the lamellipodium at around 45 ° to the cell edge. 
Indeed, a criss-cross arrangement of actin filaments in the 
keratocyte was suggested by earlier fluorescence micro- 
graphs of these cells labeled with phalloidin (Cooper and 
Schliwa, 1986; Heath and Holifield, 1991b). The same 
criss-cross arrangement can be observed in fibroblasts 
(Small, 1981; Small et al., 1982) and is characteristic of 
lamellipodia that are actively protruding (Small, J. V., un- 
published observations). Although we could not trace sin- 
gle filaments from the front to the back of the lamellipo- 
dium we could follow them over many microns, in particular 
in the more posterior regions of the cytoskeleton. Taking 
the more or less ordered orthogonal arrangement of fila- 
ments and the steady drop in filament density in the latter 
half of the lamellipodium, we conclude that the filaments 
in Triton cytoskeletons have graded lengths ranging from 
around 4-15 Ixm or more, the range depending on the 
width of the lamellipodium. 

It may be noted that the drop in filament number de- 
duced from the electron micrographs was somewhat 
steeper than the drop in intensity of phalloidin label in the 
Triton cytoskeletons. The source of this difference is not 
clear but it could derive from a collapse of the perinuclear 
region after Triton extraction that causes a spread of phal- 
loidin label into the base of the lamellipodium. An equiva- 
lent phenomenon may not occur in the electron micro- 
scope preparations due to a shrinkage of the perinuclear 
region on drying. 

The phalloidin-labeling data demonstrates that Triton 

cytoskeletons prepared in the way described retain only 
marginally more than half of the total complement of 
F-actin in the lamellipodium. In trying to determine the 
organization of the component lost in Triton we analyzed 
cells that were pre-fixed in glutaraldehyde and then ex- 
tracted with Triton and negatively stained. The increased 
density of material observed in the lamellipodium was 
consistent with the retention of an extra complement of 
actin, but structural details were difficult to resolve. 

However, in preparations incubated for long periods in 
the negative stain solution prior to drying, we could dis- 
cern a criss-cross arrangement of filaments at the front of 
the lamellipodium similar to that seen in Triton cytoskele- 
tons (not shown). A possible explanation of these findings 
is that the lamellipodium has a stratified organization, fea- 
turing two sets of actin filaments, one associated with the 
ventral and the other with the dorsal membrane. Since the 
ventral set is probably bound indirectly to the substrate it 
would be more resistant against extraction by Triton, 
whereas a dorsal set could be readily removed. The dorsal 
set need not differ significantly in organization from that 
on the ventral side (and that we have observed in the elec- 
tron microscope), but according to the phalloidin labeling 
data would probably feature filaments with a smaller 
range of lengths. This would not be unexpected since the 
upper set would probably terminate before the lamellipo- 
dium curves upwards at the rear into the perinuclear re- 
gion (Bereiter-Hahn et al., 1981) while the ventral set may 
extend into the space beneath the perinuclear border 
where the membrane remains flat. Some of our future at- 
tention must focus on clarifying the interrelationships and 
functions of the extractable and stable components of ac- 
tin filaments in the lamellipodium. 

In the latter context it is interesting to note that Lewis 
and Bridgman (1992) concluded, in an electron micro- 
scope study of neuronal growth cone cytoskeletons, that a 
cortical layer of filaments may be lost on Triton treatment, 
consistent with the present findings on keratocytes. But 
the same authors draw two further conclusions that are 
not in line with our own interpretations. First, they claim 
to detect two populations of actin filaments in growth 
cones, longer filaments that are sometimes bundled and, 
between these, shorter filaments that are randomly ar- 
ranged. Given the difficulties of tracking single filaments 
along their entire length in deep negative stain the "short" 
filaments they observe could just as well be long filaments 
that over or underlap other filaments and bundles in the 
lamellipodium. As we note elsewhere (Small et al., 1994) 
neither negative staining nor freeze drying and shadowing 
offers the ideal solution for determining filament length. 
However, the presence of two dimensional order in the 
keratocyte cytoskeleton provides, in our view, a more 
compelling argument for a single population of filaments. 
A second issue concerns the polarity of actin filaments in 
the lamellipodium. For the neuronal growth cone, Lewis 
and Bridgman (1992) show actin filaments with their 
barbed ends pointing both towards and away from the cell 
front. But, as these authors note, like others previously, 
the rear edge of the lamellipodium is marked by the rear 
ends of the larger filament bundles that span the lamelli- 
podium and that are commonly found in cultured tissue 
cells. By this criterion, Lewis and Bridgman (1992) show 

The Journal of Cell Biology, Volume 129, 1995 1284 



decorated filaments that are not in the true lamellipodium, 
but behind it where the actin filaments are arranged in 
more open and random networks (Rinnerthaler et al,, 
1992). The claim (Lewis and Bridgman, 1992) that fila- 
ments in the lamellipodium have variable polarity cannot 
therefore be made from these findings. 

From the present structural data on keratocytes we con- 
clude that actin filaments abut the anterior edge of the 
lamellipodium with their fast growing plus ends, and ex- 
tend rearwards to different extents, up to 15 Izm or more 
towards the perinuclear zone. Since we were unable to 
map the polarity of filaments in the body of the lamellipo- 
dium we cannot rigorously exclude the possibility that free 
plus ends of actin filaments exist also behind the anterior 
edge, although we consider this unlikely. Our conclusion 

that the plus end are exclusively at the front and the minus 
ends distributed over the lamellipodium according to the 
fall off in filament density will require confirmation by 
other techniques. The use of probes that specifically mark 
plus and minus filament ends may help resolve this issue. 
For the time being we will only draw attention to the fact 
that all of the data so far available on the keratocyte is 
consistent with a mechanism of locomotion of the tread- 
milling type (Wang, 1985), with growth of fast actin fila- 
ment ends at the anterior edge of the lamellipodium and 
breakdown or depolymerization of filaments across most 
of the lameUipodium width, giving rise to filaments of 
graded length. The data of Theriot and Mitchison (1991) 
would be fully consistent with the same type of mechanism 
if the decay in activated fluorescence matches the decay in 

Figure 8. Polarity of actin filaments at the cell front. Micrograph shows keratocyte cytoskeleton that was incubated with actin mono- 
mers to induce growth of actin filaments beyond the front edge and then decorated with myosin S-1. Inset shows actin fringe at low mag- 
nification. Note uniform polarity of arrowheads with the barbed ends directed outwards. Bar, 0.25 Ixm; inset, 10 ixm. 
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filament density, as deduced by phalloidin staining. From 
a visual inspection of Theriot and Mitchison's images we 
would predict that this would be the case, but parallel 
measurements of activated fluorescence and phalloidin la- 
beling should ideally be made on the same cell. 

What actually produces the force to protrude the ad- 
vancing membrane is still a matter of some debate (Bray, 
1992; Adams and Pollard, 1989; Smith, 1988; Mitchison 
and Kirschner, 1988; Peskin et al., 1993; Stossel, 1993; 
Small, 1993; Sheetz, 1994) but whatever it is, actin would 
appear to form an indispensible space filling role by un- 
dergoing vectorial polymerization to match the membrane 
advance. Gel-swelling models are rendered unlikely from 
the density of the filament network, which is high at the 
front (where it should be swelling; Condeelis, 1993) and 
lower at the rear. More plausible are models involving my- 
osin I, since members of this motor family have been 
found in the lamellipodia of amoeba (Fukui et al., 1989) 
and vertebrate cells (Wagner et al., 1991). And directed 
motility with such motors would require an ordered and 
polarized framework of actin filaments, which we indeed 
find in lamellipodia. 
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