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Using somatic variant richness to mine signals from
rare variants in the cancer genome
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To date, the vast preponderance of somatic variants observed in the cancer genome have

been rare variants, and it is common in practice to encounter in a new tumor variants that

have not been observed previously. Here we focus on probability estimation for encountering

such hitherto unseen variants. We draw upon statistical methodology that has been devel-

oped in other fields of study, notably in species estimation in ecology, and word frequency

estimation in computational linguistics. Analysis of whole-exome and targeted panel

sequencing data sets reveal substantial variability in variant “richness” between genes that

could be harnessed for clinically relevant problems. We quantify the variant-tissue associa-

tion and show a strong gene-specific, lineage-dependent pattern of encountering new var-

iants. This variability is largely determined by the proportion of observed variants that are

rare. Our findings suggest that variants that occur at very low frequencies can harbor

important signals that are clinically consequential.
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Identifying somatic mutations in cancer genes is critical for
precision oncology. The Cancer Genome Atlas (TCGA) project
has cataloged somatic variants in over 10,000 tumor samples

across 33 cancer types using whole-exome sequencing strategies1.
With the advances in precision medicine programs driven by
genomic testing, there has been a rapid growth in the availability
of clinical sequencing data for cancer patients, including the MSK-
IMPACT assay which has tested over 10,000 metastatic tumor
samples2. These emerging datasets cataloging the distribution of
somatic mutations across genes in tumor samples have demon-
strated unequivocally a long-tailed distribution in which a rela-
tively small number of variants appear in tumors frequently, but
the vast majority of variants occur extremely infrequently.

Somatic variant analysis has been largely focused on known
cancer-associated genes with frequent occurrences. However, this
only utilizes <1% of the information from sequencing data sets
and the vast trove of rare variants are “hidden” and unexplored. It
is particularly striking that over 90% of variants in TCGA are
singletons, i.e. variants observed only once in the >10,000 sam-
ples. In this study, these extremely rare variants are precisely what
we focus on. We propose methods for mining the potential
hidden iceberg of information in these variants and in the larger
number of variants that have not yet been observed.

To address this issue quantitatively we focus on a novel pro-
blem of probability estimation for encountering new variants in a
future tumor sample given the information from existing
sequenced tumor cohorts. Analyzing data in this context is ana-
logous to text mining in natural language processing applications.
Consider, for example, the Google corpus which has more than 1
trillion words, with most words appearing infrequently. Statistical
and machine learning techniques that utilize such training data
for solving problems such as text prediction, machine translation,
and other natural language processing problems, require appro-
priate handling of words or word sequences that are not present
in the data. Accurate estimation of probabilities of encountering
such hitherto unseen words often critically affect the accuracy of
the final results. Drawing the analogy in cancer genomics, accu-
rate estimation of the probabilities of encountering previously
unseen variants could be valuable for improving the classification
of the site of origin for cancers of unknown primary, the iden-
tification of clonal origin of metastasis, or “liquid biopsy”
screening of circulating tumor DNA if these probabilities differ
markedly by tissue of origin. In these settings, classical likelihood-
based inference procedures for variant probability estimation is
unsuitable because unseen variants in the training data are
assigned zero probabilities. To overcome this challenge we draw
upon ideas that have been studied over many years in a variety of
scientific problems totally unrelated to tumor genomics, stem-
ming from work to estimate the number of unknown or unseen
species in an animal population3, in related work to identify
frequencies of individual words in linguistic studies4, and more
recently in estimating immune receptor diversity5, complexity of
genomic sequencing6, and human genetic variations7.

We apply a combination of these methods to the TCGA dataset
encompassing whole-exome sequencing of ~10,000 tumors and
validate the results on a clinical cohort of close to 10,000 tumors
sequenced by a targeted cancer gene panel. Our analysis sys-
tematically maps probabilities of mutations and co-mutations
across tissue types. The output provides a critical roadmap for
developing novel diagnostic tools in identifying tumor origin
from unknown primaries or in liquid biopsy settings.

Results
Data sources. Our study uses two publicly available data sets: the
somatic mutation data set from the TCGA 10,295 whole-exome

sequencing study1, and the Zehir et al2. MSK-IMPACT somatic
mutation data set from targeted sequencing of 9593 tumor
samples. MSK-IMPACT is a hybridization capture-based NGS
clinical assay that is capable of detecting mutations in all exons
and selected introns and promoter mutations in 410 (and, more
recently, 468) cancer-associated genes. The composition of tumor
types in each cohort and the sample sizes associated with each
tumor type are shown in Supplementary Tables 1 and 2 for
TCGA and MSK-IMPACT respectively.

Methods overview. We address the problem of estimating the
probability of encountering a new non-synonymous single
nucleotide variant (SNV) in a future tumor sample given the
information from an existing sequenced tumor cohort. To
accomplish this, we propose the use of the Good-Turing fre-
quency estimator adapted for this specific problem, originally
formulated by Turing and Good8,9. This approach recognizes that
in observing events from a set of possible outcomes, if some of the
outcomes are not observed then a proportion of the total prob-
ability needs to be reserved for these outcomes, a feature that is
not present, for example, in maximum likelihood estimation.
Good and Turing8 devised an elegant strategy for estimating this
missing probability. Briefly, the basic principle of the method is to
construct a variant frequency vector, as measured through the
pairs (r,Nr) with Nr denoting the number of variants appearing
exactly r times. For example, N1 is the number of variants
appearing only once (r= 1) in the given cohort (i.e. frequency of
singleton variants), N2 is the number of variants appearing twice
(r= 2) (i.e. frequency of doubleton variants), and so on. The
Good-Turing estimator of the probability of occurrence in a
randomly selected new tumor of a variant that has been observed
r times in m previous tumors takes the following form:

qGT ¼ r þ 1
mþ 1

S Nrþ1

� �

S Nrð Þ
where S denotes a smoothing function of Nr. We used a combi-
nation of different smoothing techniques in our analyses
(see Supplementary Methods). The Good-Turing approach
groups the variants with the same recurring frequency r, by
assuming they occur with the same probability, and enables more
effective estimation of the rare variant probabilities.

The preceding formula provides a straightforward solution for
variants observed at least once previously (r ≥ 1). However, use of
this formula for estimating the probability for a variant that has
not yet been observed requires knowledge of N0, the total number
of unseen non-synonymous SNV variants, an unknown quantity.
We circumvent this problem in two ways. First, we make use of
the fact that the probability of observing any one or more
previously unseen variants in a new tumor can be approximated

by the formula 1� exp � N1
mþ1

n o
, a formula that does not involve

the unknown N0 Second, we recognize that the task of predicting
the number of unseen variants is analogous to the species richness
estimation problem in ecology, where the aim is to estimate the
total number of unseen species present in a closed population.
The most popular statistical model used for this task is the
extrapolation approach first introduced in Fisher et al3. Here one
first observes the incidences of variants (“species”) in m tumors,
and then, based on the observed distribution of variants, one
considers the problem of estimating/predicting the number of
new variants (“species”), denoted Δ(t) that would be observed if
tm additional tumors outside the original sample were sequenced.
Note that in our genomics setting m represents the number of
tumors profiled (sampling units) and tm represents the number
of tumors to be observed in the future sample. We have elected to
use a smoothed version of the estimator proposed by Good and
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Toulmin4,10,11 for this purpose (defined in the Supplementary
Methods). Both of these methods, our estimate of the probability
that at least one new variant (in a gene) will be observed in a
future tumor and our estimate of the number of new variants that
will be observed in a specific number of future tumors, allow for
direct empirical validation. For both we use the TCGA data to
estimate these quantities and our validation dataset to evaluate
their accuracy.

Since the number of variants in a tumor can by influenced
strongly by hypermutation we stratified the tumors using a
mutational signature analysis12, and categorized each tumor into
one of six categories: non-hypermutated, APOBEC (apolipopro-
tein B mRNA editing enzyme catalytic polypeptide-like), Smok-
ing-associated, MMR (mismatch repair), UV (ultraviolet), and
POLE (DNA Polymerase Epsilon, Catalytic Subunit). The five
single base substitution (SBS) signatures were assigned according
to the Sanger COSMIC mutational signature annotation12.
(See Supplementary Methods for more details.) In the TCGA
data set, the non-hypermutated group was defined as the set of
tumors not in these five SBS signature categories, and with a total
mutation burden <500 each13. A total of 140 TCGA tumors with
mutation burden >500, but not in any of these six categories were
excluded from our analyses. For the MSK-IMPACT data set, a
hypermutation threshold of 38 was obtained by multiplying the
TCGA threshold (500) with the ratio of median total mutation
burden in MSK-IMPACT (4) to that in TCGA (54). The non-
hypermutated tumor group in MSK-IMPACT dataset thus
involved tumors not in one the aforementioned five SBS signature
categories, and with total mutation burden <38. A total of 130
MSK-IMPACT tumors not in any of these six categories were
excluded.

We use the Normalized Mutual Information (NMI) to quantify
variant-tissue dependencies. NMI is a term that measures the
extent to which the estimated probabilities of observing
previously unseen mutations varies by tissue type. A value of
zero indicates that the occurrence of the variant is lineage
independent (equally likely to occur in any tissue type). By
contrast, a large NMI value indicates that the variant occurs in a
strongly lineage-dependent manner. For evaluating the strength
of the association between estimated probabilities of observing
previously unseen variants or the numbers of unseen variants and
their observed frequencies in the validation dataset we used Lin’s
concordance correlation coefficient14.

A detailed description of these methods (including some
derivations) is included in Supplementary Methods. An R
package containing datasets and software implementation of the
methods used in this study has been released in the public
domain (https://github.com/c7rishi/variantprobs).

Predicting the number of unseen variants in a future sample.
The TCGA somatic mutation data set was derived from whole-
exome sequencing of 10,295 tumor samples (across 33 cancer
types), of which 10,275 have at least one non-synonymous SNV1.
The tumor type composition is shown in Fig. 1a, further orga-
nized into broader categories of anatomic locations. A total of
1,788,153 unique somatic variants (here we focus on non-
synonymous mutations) were detected, ~92% of them singletons
(appearing only once in the cohort). In contrast four variants
(BRAF V600E, IDH1 132H, PIK3CA E545K, and PIK3CA
H1047R) appeared more than 200 times each (Fig. 1b). As dis-
cussed in Methods, the smoothed Good-Toulmin method can be
used to estimate Δ(t), the expected number of new variants in a
future sequencing cohort of size ~104t for various values of
multiplying factor t > 0.

The distinctiveness of the mutational subgroups with respect to
the numbers of new variants likely to be observed in a future
sequencing cohort is displayed in Fig. 1c. The bar graph displays
the total number of new variants expected throughout the exome
in a single new tumor estimated using the Good-Toulmin
formula. Due to the wide variations observed we have performed
parallel analyses on each of these six tumor categories. We
primarily focus on the results obtained from the non-
hypermutated group, with results of relevant analyses for the
other sub-groups presented in the supplement.

The MSK-IMPACT data set was derived from an FDA-
approved targeted sequencing panel of 410 cancer-associated
genes applied to prospectively sequenced tumors from close to
10,000 cancer patients2. The tumor type composition is shown in
Fig. 1d depicting a relatively comparable composition with the
TCGA cohort (Fig. 1a), with a few exceptions including
pancreatic cancer (m= 463 MSK-IMPACT vs. m= 176 in
TCGA), lung adenocarcinoma (m= 1194 MSK-IMPACT vs.
m= 568 TCGA), and colorectal cancer (m=969 MSK-IMPACT
vs. m=559 TCGA) (Supplementary Tables 1 and 2). The larger
numbers of the three cancer types in the MSK-IMPACT cohort
are consistent with a higher number of KRAS G12D, G12V, and
G12C variants observed in the MSK-IMPACT cohort (Fig. 1e). A
total of 46,806 unique somatic variants (non-synonymous) are
detected, 90% of which are singletons. Figure 1f displays the
classification of these tumors into the subgroups defined by
mutational signatures, showing a broadly similar breakdown to
the TCGA data. Of note, the horizontal axis in this figure displays
the expected number of previously unseen variants in a new
tumor in the 410 genes in the MSK-IMPACT panel versus the
total in the exome displayed in Fig. 1c. We note that mutation
burden among the 410 genes by tumor type is largely similar in
the two cohorts (Supplementary Fig. 1).

Focusing on the non-hypermutated cases and using TCGA as
the training data set and MSK-IMPACT as a “prospective”
validation data set, we show that encountering new variants in a
prospective cohort (e.g., MSK-IMPACT) that have not been
observed in the training cohort (TCGA) is an extremely common
event. Figure 2a shows the average number of variants detected in
a tumor by tissue sites (blue) and the average number of new
variants in a tumor (orange) in the MSK-IMPACT cohort, i.e.
variants observed in MSK-IMPACT but not in TCGA, alongside
the number of new variants predicted using the TCGA training
data (maroon) for the most frequent cancer types. It is striking
that for most tumor types, over 60% of the variants detected in a
tumor are new ones that have not been observed in the TCGA
cohort. A raincloud plot15 in Fig. 2b displays the distribution of
the new to total variant ratio in the “prospective” cohort at the
individual tumor sample level. This suggests that future efforts of
sequencing a larger number of tumors will inevitably lead to the
identification of new variants. In the next section, we further
show that many new variants in specific genes emerge in a tissue-
dependent manner.

Probability estimation reveals a specific tissue-type pattern. In
this section, we focus on the 6696 non-hypermutated tumors in
TCGA and turn our attention to the estimation of the prob-
abilities of individual mutations occurring in a gene, with major
emphasis on rare and hitherto unobserved mutations. Supple-
mentary Figure 2 displays the frequency vectors for three cancer
genes with contrasting patterns: PTEN, FAT1, and KRAS. We see
for example that KRAS has 24 singletons, 3 doubletons, and a few
hot-spot variants that occur at very high frequencies including the
G12D (appearing r= 142 times), G12V (r= 120 times), and G12C
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(r= 44 times) variants. By contrast FAT1 has no hotspots while
PTEN has an intermediate number.

Figure 3a displays our probability estimates by tumor site for a
few selected common variants in KRAS and PIK3CA. These
examples show that the probabilities of these variants can be
highly tissue-type specific. Among all the observed variants in the
585 cancer genes annotated in OncoKB16, a repository of curated
cancer genes, IDH1 R132H and BRAF V600E are the two most
tissue-specific variants with NMIs of 0.18 and 0.13, respectively,
followed by GTF21 L424H with an NMI of 0.08 (Supplementary
Fig. 3). There are 15 variants with an NMI >0.03 (Supplementary
Fig. 3). Figure 3a shows the common variants in KRAS with
G12D and G12V being the two most lineage-dependent variants
with highest probability of occurring in pancreatic cancer
adenocarcinomas (PAAD), followed by colorectal cancer
(COADREAD) and lung adenocarcinoma (LUAD). G12C is
primarily associated with LUAD, whereas G12R occurs more
exclusively in PAAD. In PIK3CA, the H1047R hot-spot has the
highest probability of occurring in breast cancer (BRCA), whereas
E545K has the highest occurrence in cervical cancer (CESC) and
R88Q is more exclusive to endometrial cancer (UCEC).

Mapping these common variants in this way is relatively
straightforward. The novelty in our strategy is to apply these ideas
to previously unobserved variants. Figure 3b displays the
corresponding probabilities of observing at least one previously

unobserved variant in a new tumor in selected genes by tumor
site. [Note that in this and other figures oncogenes are in orange
and tumor suppressor genes are in blue.] When encountering a
new variant in PTEN, the three most likely tissue sources would
be endometrial, uterine cancer, and glioblastoma. A total of 210
genes show substantial tissue specificity with an NMI greater than
0.01 (Fig. 3c). To put these numbers in perspective the orange
histogram displays the null distribution of NMI values for the 585
cancer genes in OncoKB, assuming random assortment of
variants to tissue types (see Supplementary Methods for details).
This is contrasted with the observed histogram of NMI values in
blue. Supplementary Figure 4 displays the genes that possess the
largest degrees of tissue specificity. Our methods thus allow a
systematic mapping of unseen variant probabilities that can be
used toward understanding tissue type specificity and potentially
for diagnosing the tissue of origin of cancers of unknown
primary. It is of note that the tissue dependency of the common
variants in KRAS and PIK3CA highlighted in Fig. 3a is widely
recognized as clinically important, and so values of NMI > 0.02 in
other genes are of credible clinical relevance also.

More generally, rare variant frequency profiles are observed to
vary greatly across genes in the TCGA data. For cancer genes
mutated in at least 3% of the TCGA cohort Fig. 4a displays the
estimated probability of observing at least one new variant in a new
tumor against the percentage singleton incidences. It is apparent
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Fig. 1 The TCGA and MSK-IMPACT data. a, d Tissue type compositions for TCGA data (a) and MSK-IMPACT data (d) show differences in the respective
tissue-specific cohort sizes. b, e Variant frequencies (r) plotted against the associated number (Nr) of variants with that frequency in TCGA (b) and MSK-
IMPACT (e) data. More than 90% of the variants in either dataset are singletons, i.e., appear only once. c, f The smoothed Good-Toulmin estimated
average numbers of new variants (whole-exome variants for TCGA, and variants of the 410 paneled genes in MSK-IMPACT) in a new tumor together with
its standard error obtained separately for each tumor subgroup in TCGA (c) and MSK-IMPACT (f) are displayed. The numbers inside the boxes are the
respective estimates (outside parentheses) and their estimated standard errors (inside the parentheses), and the error bars correspond to ±2 standard
error bounds. The numbers within parentheses in the vertical axes labels indicate the SBS numbers belonging to each dominant signature group (e.g.,
APOBEC corresponds to SBS numbers 2 and 3) and the numbers inside the square brackets denote the cohort sizes of the associated group in the TCGA
and MSK-IMPACT data sets.
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from the figure that unseen variant probabilities are not in general
related to the overall mutation frequency (characterized by sizes of
the dots): a frequently mutated gene does not necessarily have a
higher probability of producing a new or hitherto unseen variant,
or vice versa. The probability of observing a new variant, however,
is more strongly related to the proportion of the observed
incidences caused by infrequent variants, in particular, percent
singleton incidences. Figure 4a, b show, respectively, that the
estimated probability of observing new variants and the predicted
total number of new variants in a future cohort increase as a
function of the percentage of singleton incidences in the gene.
These figures also show that tumor suppressor genes (blue)
harboring inactivating mutations tend to cluster toward the high
end of singleton proportion scale (Fig. 4a, b). By contrast, for
oncogenes (orange) with variants highly concentrated at hotspots,
particularly KRAS, BRAF, IDH1, the probability of encountering
new variants in future tumor samples tends to be low. While some
genes are mutated primarily at a few hot-spots, other genes are
mutated mostly at infrequent variants. As an illustration, the three
genes shown in Supplementary Fig. 2 have similar mutation
frequencies in the cohort (3–7%), but very different distributions of
rare variants. For example, in KRAS only 5% (41 out of 477) of the
variants have been observed once. In contrast, in FAT1, the
preponderance (94%) of the variants are singletons while PTEN has
an intermediate frequency. Consequently, our methods predict
substantially fewer unseen variants in KRAS than in FAT1 (see
Fig. 4b), while the corresponding estimate of the probability of
observing at least one new variant in a new tumor is noticeably
higher for FAT1 as compared to KRAS (Fig. 4a).

Validation. In order to validate our results, we used the TCGA
data to obtain predictions of the gene-specific incidences of new
variants in the MSK-IMPACT dataset. Specifically, for each gene

in the MSK-IMPACT panel, the Good-Turing estimated prob-
ability of observing at least one unseen variant (in a new tumor)
based on TCGA data was compared with the observed relative
frequency of tumors with at least one new variant in the MSK-
IMPACT data (Fig. 4c), and the TCGA based predicted number
of unseen variants was compared with the actual number of new
variants observed in the MSK-IMPACT cohort (i.e. variants
observed in MSK-IMPACT but not in TCGA, Fig. 4d). These
figures show that the estimates are remarkably accurate, with
Lin’s concordance correlation coefficient reproducibility index
being 0.93 and 0.92 respectively for the data in Fig. 4c, d
respectively. This provides high confidence in the validity of our
proposed variant probability estimation strategy. These analyses
were repeated for each of the subgroups defined by the muta-
tional signatures and the results are displayed in Supplementary
Figs. 5 and 6. In general the predictions are highly accurate for
APOBEC, MMR, UV, and smoking, with the exception being the
POLE sub-group in which mutation frequency is over-predicted,
though the sample sizes for this sub-group are small (69 in TCGA
and 78 in MSK-IMPACT).

Patterns of co-mutations across cancer types. In order to study
co-occurrence and mutual exclusivity of cancer genes, we applied
the Good-Turing probability estimation strategy to gene pair
frequencies. This analysis is restricted to the non-hypermutated
tumors and is gene specific, not variant specific, as our data
exploration shows that co-mutation analysis is feasible only at the
gene level.

We ranked gene-pair co-mutations according their NMI with
tissue type, and noticed that there are 390 gene-pairs (0.2%) with
NMI >0.01. Figure 5a shows the top gene pairs are co-mutated in
a highly lineage-dependent manner. Co-occurrences of APC with
KRAS and TP53 are notable in colorectal cancers as evidenced by
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along the horizontal axis, separately for each tissue type (on the vertical axis). The percentages inside the boxes represent the ratios of the average
observed number of variants to the average observed number of new variants per MSK-IMPACT tumor, and the numbers inside the parentheses in the
vertical axis labels denote the respective cohort sizes (M: MSK-IMPACT, T: TCGA). b Distributions of the actual ratios of the number of new variants to the
total number of variants per individual in the MSK-IMPACT cohort are plotted (along the horizontal axis) against tissue types (on the vertical axis) as
grouped raincloud plots. The dots (“rain drops”) represent the actual ratios, and the “rainclouds” and the box-plots summarize distributions of these ratios.
All numbers shown in this figure correspond to tumors belonging to the non-hypermutated subgroups of the respective data sets.
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the high frequencies (large circles) and consistent with the role of
APC in early development of colorectal cancer17,18. We then
searched for lineage-dependent co-mutation pairs for each
individual cancer type. Here our NMI measure was adapted to
identify the extent to which a co-mutation is elevated in an index
cancer type compared with the average of all other cancer types
(see Supplementary Methods). Supplementary Figure 7a shows
the top five gene pairs having the largest NMI values associated
with each cancer type, further highlighting the co-occurrences of
IDH1 with TP53, ATRX, and CIC in low grade glioma, and co-
occurrences of CTNNB1 with PTEN and PIK3CA in endometrial
cancer. Similar analyses were performed to search for lineage-
dependent mutually exclusive gene pairs. We computed Good-
Turing probability estimates for these pairs based on their mutual
exclusive frequencies, and top gene pairs with high NMIs are
shown in Fig. 5b, confirming some of the known clinically
relevant mutual exclusive patterns including RAS and RAF
mutations19–21. Supplementary Figure 7b displays the top
mutually exclusive gene pairs having the largest mutual informa-
tion associated with each cancer type, further highlighting IDH1/
2 mutations in glioma, GNA11 and GNAQ in uveal melanoma.
Overall, these results suggest that co-occurring and mutually
exclusive gene pairings may further define our ability to predict
tissue type.

Discussion
Our results shed light on the potential information content in the
vast trove of mutations that occur at genetic loci with very low

probability of occurrence. Fully 92% of the 1,788,153 distinct
non-synonymous variants that have been observed in TCGA have
only been observed once and most new tumors harbor mutations
that have never been observed before, even when using restricted
sequencing panels. Are the preponderance of these mutational
events irrelevant consequences of genetic instability, or do they
contain important signals that could be harnessed for clinically
relevant purposes? While we have not addressed this question
definitively, our results do suggest that there could be consider-
able information content in this submerged portion of this
genomic iceberg. We have shown that when we use established
statistical methods to estimate the frequencies of unseen variants
and their related probabilities of occurrence and mutual exclu-
sivity on a gene-specific level we observe substantial variation
among genes and among the anatomical sites from which the
tumors emerged, suggesting that these variants have the potential
to be clinically informative.

How could this information be used in a clinical context? The
results are potentially valuable for the task of identifying the
primary site of tumors of unknown origin, or when evidence of a
tumor is identified in, say, circulating tumor DNA. In this context
the congruence of the pattern of mutations observed with dif-
ferent tumor types provides the crucial information, but this
depends on knowledge of the mutation probabilities expected in
the candidate tumor types. Since the preponderance of somatic
mutations observed in any given tumor are either rare or pre-
viously unobserved the methods presented in this article are
essential for investigating this tissue-type congruence. Another
context in which the results are useful is in the task of testing
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Fig. 3 Estimating gene and tissue-type specific variant probabilities. a, b Gene and tissue-type specific probabilities of encountering a previously seen
variant (a) and at least one hitherto unseen variant (b) in a new tumor differ substantially across genes and tissue-types. The dependencies between the
tissue type and the occurrences of gene specific variants, both previously observed (a), and hitherto unobserved (b), as quantified by Mutual Information,
vary substantially across genes. Oncogenes are shown in orange, tumor-suppressor genes are in blue, and non-annotated (in OncoKB list) genes are shown
in gray. c The tissue specificity for observing at least one new variant in a gene in TCGA data, as quantified by NMI values (blue histogram), shows a
distinct right shift as compared to the null reference NMI values obtained from random variant-tissue allocations (orange histogram). The dotted vertical
line corresponds to the 95th percentile of the null reference NMIs.
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pairs of tumors in the same patient for clonal relatedness, i.e.
testing whether one tumor is a metastasis of the other or whether
the tumors arose independently, a diagnosis that can have clinical
implications22. The key information supporting a diagnosis of
clonal relatedness is the presence of identical mutations in the
two tumors, but the significance of such an observation depends
strongly on how common or rare is the mutational event23.
Furthermore, it is common in clonality studies to encounter a
new variant that has not been previously seen, yet shared by a

pair of tumors, that could provide essential evidence for clonality.
Therefore, a strategy for estimating the new variant probability is
essential.

Our analyses have notable limitations. First, the product
binomial model considered for the individual variant probabilities
assumes that different variants occur independently. This
assumption is simplistic and is known to be violated in practice,
as some variants can be preferentially co-mutated and/or
mutually exclusive24. However, as our validation experiment in
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Fig. 4 The estimated numbers and probabilities associated with unseen variants are remarkably accurate. a TCGA data based estimated probability of
observing at least one new variant in a new tumor, plotted against the percent singleton incidences (in TCGA data) for each frequent (mutation rate in
TCGA data ≥0.03) gene that is also in the MSK-IMPACT panel. b TCGA data based predicted number of new variants in a future sequencing cohort of size
7254 (the number of non-hypermutated tumors in MSK-IMPACT cohort), plotted against the percent singleton incidences (in TCGA data) for each
frequent gene in MSK-IMPACT panel. c The TCGA estimated probability (the quantity along the vertical axis of panel a), plotted against the observed
relative frequency of at least one new variant in a new tumor in MSK-IMPACT data for all MSK-IMPACT genes. d The TCGA predicted number of new
variants in a future study with 7,254 tumors (the quantity along the vertical axis of panel b), plotted against the observed number of new variants in MSK-
IMPACT data, for allMSK-IMPACT genes. Oncogenes are shown in orange, tumor-suppressor genes are in blue, and non-annotated (in OncoKB list) genes
are shown in gray. All estimates in this figure correspond to tumors in the non-hypermutated subgroups of the respective datasets.
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the MSK-IMPACT data demonstrates (see Fig. 4c, d), the model
provides remarkably accurate results regardless of this limitation.
We also showed that accurate predictions are possible when
tumors are classified into distinctive tumor categories defined by
hypermutation, except for the ultra-hypermutated POLE sig-
nature. Given the highly specific mutational signature of POLE, a
different modeling approach is needed as future work. Also, we
were able to easily adapt the methods to analyze co-mutations in
gene pairs, and these data also show interesting and informative
discrimination by tissue type. Second, our analysis focuses on
non-synonymous single-nucleotide variants. Other types of
alterations such as small insertions/deletions, and gene fusions
were not considered. These alterations only account for a small
fraction of the total pool, and thus are not likely to impact our
conclusions significantly. Third, the validation studies are based
solely on the 410 genes in the MSK-IMPACT cohort. These are
primarily cancer genes and cannot be considered representative
of the complete genome.

In summary, we believe that there is strong potential for using
statistical methods to harness information content in the vast
preponderance of mutations that occur at “rare” mutational loci.
We have shown how to estimate the numbers of unseen variants
and their corresponding probabilities of occurrence and have
identified genes where these probabilities vary substantially by
tumor site, offering evidence of their potential for classifying
cancers of unknown primary or tumors detected in ctDNA. We
believe that more intense investigation of the properties of this
“submerged” portion of the iceberg has potential to yield con-
sequential information of clinical relevance for cancer.

Data availability
The two data sets used in this study are publicly available. The TCGA data set is available
at https://portal.gdc.cancer.gov/, and the MSK-IMPACT data set is available at http://
cbioportal.org/msk-impact. An R package containing these data sets and software

implementation of the methods used in this study has been released in the public domain
(https://github.com/c7rishi/variantprobs). There is no restriction to the availability of the
data used in this study.

Code availability
A software implementation of the methods used in this study has been released in the
public domain in the form of an R package entitled variantprobs25. The package contains
functions for performing Good-Turing probability estimation and smooth Good-
Toulmin expected number of unseen variants Δ(t) estimation for any t>0. The exact
datasets used in this study, obtained by filtering (i.e., keeping only the non-synonymous
single nucleotide variants) the TCGA data and the MSK-IMPACT data, are also stored in
the R package.
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