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awareness that their structure is an ideal platform to store 
information [Winterburn and Phelps 1972; Gabius 2009, 
2015; please see also the introduction to this theme issue 
(Gabius and Roth 2017)], a survey of their characteristics 
is timely. In connection with the overview on glycolipids 
(Kopitz 2017, this issue), an introduction to protein glyco-
sylation is provided here. Present in archae- and eubacte-
ria and in Eukaryotes (Reuter and Gabius 1999; Patsos and 
Corfield 2009; Wilson et  al. 2009; Zuber and Roth 2009; 
Corfield 2015; Corfield and Berry 2015; Tan et al. 2015), 
protein glycosylation is shared by organisms of all three 
urkingdoms, associated with diseases when aberrant (Hen-
net 2009; Hennet and Cabalzar 2015). Starting with struc-
tural aspects, functional implications are then exemplarily 
discussed.

Glycosylation of proteins: general aspects

Most of the proteins are subject to glycosylation by a wide 
variety of enzymatic mechanisms. The length of the conju-
gated glycan ranges from a single sugar moiety to branched 
structures and the long glycosaminoglycan chains (Fig. 1; 
for information on proteoglycans, please see Buddecke 
2009).

This wide spectrum of structural modes of glycosyla-
tion requires access to detailed information available on the 
presence of glycans. Representative techniques are listed as 
follows:

•	 Detection of glycans as carbohydrates in glycoproteins 
using chemical assays. This can be applied for screen-
ing in standard fractionation techniques such as high-
performance liquid chromatography, size fractionation 
chromatography, ion-exchange chromatography, elec-
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Introduction

Histochemists and cell biologists are familiar with the 
ubiquitous presence of glycans. In view of the increasing 
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trophoretic methods and density gradient centrifuga-
tion (Brockhausen et al. 1988; Nakagawa 2009; Marino 
et al. 2010).

•	 Detection of glycans as carbohydrates in tissue sections 
using chemical assays to provide morphological data 
regarding the localization of the carbohydrate/glycopro-
tein (Filipe and Branfoot 1983; Buk and Filipe 1986; 
Warren 1993; Filipe and Ramachandra 1995; Corfield 
and Warren 1996) (for an example on the identification 

of O-acetylated sialic acids in human colon using the 
mild-PAS method, please see Fig. 2).

•	 Detection of glycan by probes with specificity to gly-
cans, i.e. monoclonal antibodies (such as the CD-based 
reagents specific for the T/Tn antigens; for an over-
view, please see Gabius et  al. 2015) or lectins (for an 
introduction to lectins and their application in cyto- and 
histochemistry, please see Kaltner et  al. 2017; Man-
ning et al. 2017, this issue). Working with cytological 

Fig. 1   Classes of vertebrate glycan structures. Membrane and 
secreted proteins have N-glycan, GlcNAc to asparagine as oligoman-
nose, complex or hybrid forms, or O-glycans linked through GalNAc 
to serine/threonine with eight core structures and extension. Glycosa-
minoglycans have a core linkage tetrasaccharide to protein, with sub-
sequent disaccharide repeats and characteristic sulphation patterns. 
They may be secreted, transmembrane or GPI-anchored. Hyaluronan 
is not linked to a protein. O-Mannosyl residues may be extended. 

O-Glucose and O-fucose are found in EGF domains of some proteins. 
C-Mannose is attached to protein tryptophan side chains. Single β-O-
GlcNAc is found on many cytosolic and nuclear proteins. The col-
lagen disaccharide is linked to hydroxylysine and through galactose. 
Glycogen is linked through glucose unit to a tyrosine in glycogenin. 
Glycosphingolipids contain glycans linked to a ceramide carrier; 
from Moremen et al. (2012), with permission
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specimen or tissue sections, glycophenotyping is read-
ily feasible with labelled lectins by various microscopi-
cal techniques (Roth 1993, 1996, 2011; Habermann 
et al. 2011). Using chemically prepared compounds as 
inhibitors (Murphy et al. 2013; Roy et al. 2016), struc-
tural and topological aspects of the specificity of lectin 
binding can be analysed (André et al. 2016; Roy et al. 
2017, this issue). In addition to their application, lec-
tins have found a broad range of applications for gly-
coprotein analysis (for compilation, please see Table 1 
in Solís et al. 2015). These versatile assays also shape 
the notion that such interplay will have physiological 
relevance (for information on tissue lectins, please see 
Gabius et al. 2016; Kaltner et al. 2017; Manning et al. 
2017; Mayer et  al. 2017; Roth and Zuber 2017, this 
issue).

Glycosylation: biological roles

Glycosylation is a flexible co- and posttranslational mod-
ification that has been adopted by Eukaryotes to create a 
dynamic strategy applicable in modern biology. As many 
options are possible, an overview of the biological rele-
vance of glycan chains in glycoproteins is shown in Fig. 3.

Backed by exemplary references, special aspects are 
highlighted:

•	 Impact on the physicochemical properties of the gly-
coprotein molecule. The secreted mucins are an exam-
ple, where viscoelasticity and gel formation establish 
a protective barrier on mucosal surfaces (Newton et al. 
2000; Pearson et al. 2000; Atuma et al. 2001; Allen and 
Flemström 2005; Gustafsson et al. 2012; Johansson and 
Hansson 2012; Verdugo 2012; Berry et al. 2013; Birch-
enough et al. 2015).

•	 Docking sites for tissue lectins, hereby serving a broad 
range of functions including adhesion, growth regu-
lation or routing (for further information, please see 
Gabius et al. 2011, 2016 and in this issue, Kaltner et al. 
2017; Manning et al. 2017; Mayer et al. 2017; Roth and 
Zuber 2017). The quality control and the specific deliv-
ery of glycoproteins in tissues and cells are illustrative 
examples. Specific functions of individual glycopro-
teins are related to their location and selective expres-
sion. The glycans serve as postal code for routing and 
delivery, for example for asialoglycoproteins, lysoso-
mal enzymes carrying mannose-6-phosphate or glyco-
proteins in galectin-dependent apical/axonal transport 
(Kornfeld et al. 1982; Stechly et al. 2009; Velasco et al. 
2013; Higuero et  al. 2017; Manning et  al. 2017, this 
issue).

In order to illustrate the importance and scope of protein 
glycosylation it is necessary to enumerate the range glycan 
structures that have been identified and which are carried 
by glycoproteins. Table  1 gives an overview of the broad 
scope of glycan structures found in Eukaryotes. The main 

Fig. 2   mPAS detection of sialic acids in human colon. Mucus stored 
in goblet cell thecae. Staining of the colonic mucosa with the mild 
periodic acid-Schiff reaction stains non-O-acetylated sialic acids and 
demonstrates the location of the mucus prior to secretion; from Cor-
field (2011), with permission

Fig. 3   Biological roles of glycans. A general classification of the 
biological roles of glycans is presented, emphasizing the roles of 
organism proteins in the recognition of glycans; from Varki and Lowe 
(2009), with permission
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types of glycosylation are N-linked and O-linked glycans, 
with a considerably smaller group of C-linked glycans.

N-Linked glycans are attached through an N-glycosidic 
bond between asparagine and β-N-acetyl-d-glucosamine 
(GlcNAc). The asparagine residues are associated with the 

Table 1   Main types of glycan structures

Glycan Group Glycan Structure
Proteoglycans

Hyaluronan

Glycoproteins
N-Glycans

Mannose 6-phosphate glycans
Glycoproteins 

O-Glycans

Table 1   continued

Glycoproteins 
O-GlcNAcylation

Glycoproteins  
Glycophosphatidylinositol 

(GPI) anchor

Glycoproteins 
C-Mannose

Glycosphingolipids 

Major groups of eukaryotic glycans. Examples of the general types of gly-
can, largely drawn from animal examples, are shown. Key: yellow circles, 
d-galactose; yellow squares, N-acetyl-d-galactosamine; blue circles, d-glu-
cose; blue squares, N-acetyl-d-glucosamine; blue/white squares, d-glucosa-
mine; green circles, d-mannose; red triangles, l-fucose; purple diamonds, 
N-acetyl-d-neuraminic acid; light blue diamonds, N-glycolyl-d-neuraminic 
acid; blue/white diamonds d-glucuronic acid; orange/white diamonds, 
l-iduronic acid; orange stars, d-xylose; white diamonds, myo-inositol. 
All glycosidic linkages are shown as α or β, with the corresponding posi-
tion; for example, β4, β1,4 linkage. 2S 2-O-sulphate, 3S 3-O-sulphate, 4S 
4-O-sulphate, 6S 6-O-sulphate, 2P 2-O-phosphate, 6P 6-O-phosphate, Asn 
asparagine, CH2CH2NH2 ethanol amine, FA fatty acid, predominantly pal-
mitate, Hyd hydroxylysine, Hyp hydroxyproline, NS N-sulphate, Tryp tryp-
tophan, R various glycan substitutions occur at the initial mannose in GPI 
anchors; from Corfield and Berry (2015), with permission
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recognition sequence Asn-X-Ser/Thr. This sequence and the 
associated synthetic pathway are conserved in evolution for 
all of the metazoan (Aebi 2013; Breitling and Aebi 2013). 
The N-glycans contain a common, branched core compris-
ing Manα1,6(Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAcβ1-
Asn-X-Ser/Thr and this is extended to yield three differ-
ent types, oligomannose, complex and hybrid (Zuber and 
Roth 1990). Common features occur in the extension of 
the N-glycan core, generation of two antennae from the 
Manα1,6(Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAcβ1Asn-
X-Ser/Thr core. Second, the core is extended to yield oli-
gomannose forms containing only mannose, formation of 
complex types having antennae terminated with a sialylated 
N-acetyllactosamine trisaccharide, plus a fucose on the 
internal GlcNAc linked to the asparagine and finally hybrid 
types containing both oligomannose linked to Manα1,6 
and complex units attached to the Manα1,3 residues (Aebi 
2013; Breitling and Aebi 2013).

The process of N-glycosylation, starting co-translation-
ally, is common across the Eukaryotes in accordance with 
their comprehensive range of biological functions. The 
enzymes responsible for the stepwise generation of the 
precursor glycan utilize a dolichol pyrophosphate lipid car-
rier and follow a series of trimming and processing steps 
that are conserved across the Eukaryotes. A series of three 
cytoplasmic glycosyltransferases, initially a GlcNAc trans-
ferase followed by mannosyltransferases, result in the for-
mation of the Man5GlcNAc2 pentasaccharide. Subsequent 
extension occurs in the lumen of the endoplasmatic reticu-
lum and the dolichol-oligosaccharide is translocated by a 
flippase. In the ER lumen a series of manipulations occur 
to generate the range of N-glycans required for the tis-
sue (Zuber and Roth 2009; Aebi 2013; Breitling and Aebi 
2013).

Oligosaccharyltransferase (OST) is the principal 
enzyme in the N-glycan pathway. It catalyses the transfer 
of the glycan from the dolichol phosphate-oligosaccharide 
to an asparagine in Asn-X-Ser/Thr motifs on acceptor poly-
peptides. OST is a hetero-oligomeric complex comprising 
8 subunits in most Eukaryotes. The transfer reaction cata-
lysed by OST is exclusive, showing strict substrate speci-
ficity applicable to wide range of protein acceptors (Zuber 
and Roth 2009; Aebi 2013; Breitling and Aebi 2013).

N-Glycosylation is closely linked with important gly-
coprotein regulatory events. Protein folding is mediated 
by the chaperones calnexin and calreticulin and ensures 
that glycoproteins that exit the ER are correctly folded 
(Roth 2002). Trimming of the terminal triglucosyl unit by 
α-glucosidases I and II is followed my monitoring of the 
glycoprotein. In the case that folding is incomplete a sin-
gle α-glucose residue is transferred to the α1,2mannose 
unit on the α1,3mannosyl antenna. Recycling ensues and 
the glycoprotein is reassessed in the same manner. Those 

glycoproteins that do not fold properly are eliminated by 
ER-associated degradation (Roth 2002; Aebi 2013; Brei-
tling and Aebi 2013; Roth and Zuber 2017).

The second most common type of glycosylation, the 
O-glycosidic linkage coupling serine or threonine to α-N-
acetyl-d-galactosamine (GalNAc), also known as mucin-
type glycosylation, as it is the major glycosylation found 
in this large group of heavily glycosylated proteins (Cor-
field 2015). Other non-mucin-type O-glycans have been 
detected, and these are described later. The O-glycans 
present in mucins are located in variable number tandem 
repeat domains, which vary in size and sequence between 
the different mucins (Hattrup and Gendler 2008; Thorn-
ton et al. 2008; Bafna et al. 2010; Kreda et al. 2012; Cor-
field 2015). O-Glycans do not have a peptide recognition 
sequon, as established for N-glycans, but are characterized 
by eight different core structures, as shown in Table 2. The 
most frequently observed are cores 1, 2, 3 and 4.

The initial transfer of a GalNAc to serine and threonine 
residues in proteins is catalysed by a family of GalNAc 
transferases (Patsos and Corfield 2009; Tabak 2010; Ger-
ken et  al. 2011; Bennett et  al. 2012; Gerken et  al. 2013; 
Revoredo et al. 2016), the site of action localized immuno-
histochemically by electron microscopy (Roth et al. 1994). 
The core structures are extended through N-acetyllactosa-
mine backbone repeat unit of type 1 (Galβ1,3GlcNAc-) 
or type 2 (Galβ1,4GlcNAc-) or the blood group antigens 
I (Galβ1,3GlcNAcβ1,3(GlcNAcβ1,6)Galβ1,4-) and I 
(Galβ1,4GlcNAcβ1,3Galβ1,4-R). Peripheral glycosyla-
tion of these structures is extensive and includes ABO and 
Lewis blood groups together with sialylated, fucosylated 
and sulphated glycans. The pathways responsible for the 
biosynthesis of these glycans are well studied (Schachter 
and Brockhausen 1992; Brockhausen and Schachter 
1997; Patsos and Corfield 2009; Corfield 2015; Corfield 
and Berry 2015). Unique for mucin glycosylation is the 
α-GlcNAc terminus of core 2 O-glycans in the gastrointes-
tinal tract, which is readily detectable with the plant lectin 
GSA-II (Nakayama et al. 1999; André et al. 2016).

A large group of cytosolic and nuclear proteins, which 
carry multiple additions of a single β-O-GlcNAc unit 
linked to serine and threonine hydroxyl residues, has been 
reported. The same serine and threonine residues are also 
sites for phosphorylation, prompting consideration of a 
mutual relationship between these two modifications (But-
kinaree et al. 2010; Ma and Hart 2014). The cycling of β-O-
GlcNAc and phosphate has functional roles and is mediated 
by an O-GlcNAc transferase (Zimmerman et al. 2000) and 
an N-acetyl-d-glucosaminidase (Zhu-Mauldin et al. 2012). 
O-GlcNacylation is common throughout the metazoans.

Further O-glycan families have been identified. O-Man-
nose α-linked to serine and threonine residues is commonly 
found in the metazoans, largely in skeletal muscle and 
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the brain and nervous system (Lommel and Strahl 2009; 
Vester-Christensen et al. 2013; Panin and Wells 2014; Neu-
bert and Strahl 2016). A tetrasaccharide, Neu5Acα2,3Galβ
1,4GlcNAcβ1,2ManαSer/Thr is found in the skeletal mus-
cle protein α-dystroglycan, and most O-mannose glycans 
are related to this structure despite additional modifications 
with fucose, glucuronic acid and sulphate (Panin and Wells 
2014).

Proteins with epidermal growth factor domains carry 
glycans O-linked to peptide serine or threonine through 

α-fucose and β-glucose. Urokinase, factor XII, cripto fac-
tor IX, thrombospondin type 1 repeats, Notch, Delta and 
Serrate have been identified. The epidermal growth fac-
tor (EGF) domains of these proteins carry the O-fuco-
sylated glycans of the type Neu5Acα2,3/6Galβ1,4GlcNA
cβ1,3FucαSer/Thr, or smaller and a consensus sequence 
Cys2X4–5Ser/ThrCys3 has been identified (Takeuchi and 
Haltiwanger 2014). The most common O-glucosyl struc-
ture is (Xylα1,3Xylα1,3Glcβ-O-) and a peptide consensus 
domain Cys1XSerXProCys2 reported (Gebauer et al. 2008; 
Takeuchi et  al. 2012). The disaccharide, Glcα1,2Galβ-, 
found in collagen, is well known. The posttranslational 
modifications of the peptide to create the hydroxylysine and 
hydroxyproline generate the sites for β-O-galactosylation 
to form Glcα1,2Galβ-O-Hyl/Hyp (Schegg et al. 2009).

A peculiar type of protein glycosylation, without a typi-
cal glycosidic bond, is formation of C–C linkages between 
α-mannose and the indole unit of tryptophan residues. The 
motif WXXW carries the glycans and is found in the Cys-D 
domains of several mucins, including the mucins MUC2, 
MUC5AC and MUC5B. The number of Cys domains var-
ies between mucins, with 2 in MUC2, 7 in MUC5B and 
9 in MUC5AC (Hofsteenge et al. 1994, 2001; Perez-Vilar 
et  al. 2004; Ambort et  al. 2011). Cys domains function 
in protein folding and mediate subcellular localization 
and trafficking in the endoplasmatic reticulum and Golgi 
membranes (Perez-Vilar et  al. 2004; Ambort et  al. 2011). 
C-Mannosylation in the mucin Cys domains governs the 
normal development and secretion of the mucins and when 
faulty induces ER stress, with mucins remaining in the ER 
(Desseyn 2009). Strengthening of the mucus layer in the 
gut lumen could be achieved by delivery of a tandem repeat 
molecule containing 12 repetitive Cys domains (Gouyer 
et al. 2015; Desseyn et al. 2016).

Many proteins possess a glycosylphosphatidylinositol 
(GPI) membrane anchor, attached to their carboxyl termi-
nal. This ensures presentation of the protein on the external 
cellular surface where many important biological events 
occur (Ferguson et al. 2009; Shams-Eldin et al. 2009). As 
the anchor can be cleaved by phosphatidylinositol phos-
pholipase C, release of the protein can be mediated by the 
cell and correlated with function at the site of expression. 
The basic core structure of the GPI anchor is ethanolam-
ine-phosphate-6Manα1,2Manα1,6Manα1,4GlcNα1,6-myo-
inositol-1-phosphate-lipid. Proteins are attached to the 
amino group of the ethanolamine through their C-terminal 
carboxyl groups. A number of variations on this core are 
found, of particular interest is the addition of a palmityl 
group to the C2 group of myo-inositol as this blocks the 
action of phosphatidylinositol phospholipase C and regu-
lates the biological half-life of the GPI protein in the mem-
brane. GPI anchors are common across all Eukaryotes (Fer-
guson et al. 2009; Shams-Eldin et al. 2009).

Table 2   Mucin core structures

Core type Structure

1

Galβ1-3GalNAc

2

Galβ1-3(GlcNAcβ1-6)GalNAc

3

GlcNAcβ1-3GalNAc

4

GlcNAcβ1-3(GlcNAcβ1-6)GalNAc

5

GalNAcα1-3GalNAc

6

GlcNAcβ1-6GalNAc

7

GlcNAcα1-6GalNAc

8

Galα1-3GalNAc

O-Glycan core structures found in eukaryotic mucins. Key: yellow 
circles, d-galactose; yellow squares, N-acetyl-d-galactosamine; blue 
squares, N-acetyl-d-glucosamine; all glycosidic linkages are shown as 
α or β; from Corfield (2015), with permission
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In order to generate the spectrum of glycan structures 
found on proteins, and indeed other glycan carriers such as 
lipids [for an introduction to glycolipids, please see Kopitz 
(2017) in this issue], individual cells must synthesize the 
glycans, with the required sequence. The metabolic path-
ways that are responsible for this process include the gen-
eration of a series of precursors from monosaccharides, the 
nucleotide sugars; sugar transporters that ensure that the 
necessary intermediates are available in the cell to gener-
ate the precursors; glycosyltransferases, which transfer the 
sugars to the acceptor protein to form the desired glycan 
structure, plus a number of other proteins which contribute 
to the formation of the final glycoprotein structure designed 
for specific biological function (Schachter and Brock-
hausen 1992; Liu et al. 2010; Corfield 2015); insights into 
details of branch-end elaborations, typically by sialylation, 
are presented by Bhide and Colley (2017, in this issue). 
These pathways are integrated to allow additional manip-
ulation of the product glycoprotein. They also include 
catabolic manipulations, which may be linked to normal 
turnover and degradation, or specific modifications, which 
generate biologically active glycoforms and the salvage 
pathways feed back into the overall metabolism of glyco-
protein metabolism. Further detailed information regarding 
glycobiology in this context can be found on the CAZy and 
Consortium for Functional Glycomics websites, see http://
cazy.org and http://functionalglycomics.org.

It is clear that this is a complex system, with many 
options necessary to form required glycoproteins at specific 
cell sites. Much of this specificity is achieved through the 
selective expression of glycosyltransferases, such that the 
combination allows only certain structures to be formed. 
The omission of glycosyltransferases will preclude the 
formation of certain glycans. As the glycan sequence is 
generated on a non-template basis, in contrast to nucleic 
acids and proteins, this is the remaining metabolic option 
to achieve any kind of sequence specificity and is clearly 
open to error through metabolic fluctuation (Brockhausen 
2003; Breitling and Aebi 2013; Takeuchi and Haltiwanger 
2014; Corfield 2015; Corfield and Berry 2015; Neubert and 
Strahl 2016).

Glycosylation in organisms

The global presence of protein glycosylation in the living 
world implies important biological function and develop-
ment during evolution. It is to be expected that the struc-
tural features and physiological advantages will be car-
ried forward, passed across species and provide biological 
markers in organisms. This section draws on examples of 
glycan occurrence and details the development relevant to 
the Eukaryotes. Several reviews contain a broad overview 

of these aspects with regard to the Eukaryotes and should 
be used as a supplement to this paper, e.g. Wilson (2002), 
Gerken et al. (2008), Dell et al. (2010), Lauc et al. (2014), 
Corfield and Berry (2015), Xu and Ng (2015). Much of 
the background to established glycosylation patterns in 
the Eukaryotes is in parallel with that reported for bacte-
rial systems (Bäckhed et al. 2005; Moran et al. 2011; Tan 
et al. 2015) and it is certainly helpful to consider the bacte-
rial systems, as they have a range of evolutionary aspects of 
interest.

The glycocalyx is a major characteristic of Eukaryote 
cells (see section “Glycosylation in cells”). It is this surface 
location where major interactions between cells takes place 
and enables communication and recognition processes to 
take place. Knowledge of the structural features is essential 
if the communication and functional elements of Eukary-
ote physiology are to be understood. They enable design of 
experimentation to reveal the precise nature of these inter-
actions and provide a basis for the preparation of analogues 
and inhibitors to dissect the biological pathways involved.

As indicated in “Glycosylation of proteins” section, the 
chemical nature of glycans lends itself to the construction 
of structures with considerable variety and therefore excel-
lent possibilities to adopt a system, which codes for func-
tional roles in biology. It is significant that although a wide 
range of sugars are available in biological environments 
the glycan structures found in nature is limited, suggest-
ing that a selection has occurred during evolution. Many 
glycan structures are shared across Eukaryotes. The core 
structures identified for the main groups of glycans listed 
in Table  1 are found in all groups of Eukaryotes. This is 
true for N-glycans, O-glycans, C-mannose and glycosami-
noglycans, in addition to glycolipids (see Kopitz 2017, this 
issue). Further elaboration of the core elements is achieved 
through pathways that are also shared across the Eukary-
otes, but have been adapted to yield strain and phylum-spe-
cific glycans and provide a unique glycosylation pattern. 
The pathways necessary to achieve both core and periph-
eral glycans are also shared across the Eukaryotes and fur-
ther underline the utilization of selective processes acting 
in evolution (Bertozzi and Rabuka 2009; Springer and Gag-
neux 2016).

It is also evident that differences exist between the phy-
logenetic groups comprising the Eukaryotes. The fungi 
are unable to synthesize proteins containing sialic acids, 
complex N-glycans, O-glycans glycosaminoglycans or 
single β-linked GlcNAc. The green plants, Viridiplantae, 
do not synthesize sialic acids, phosphomannose units on 
high-mannose N-glycans, or β2-linked GlcNAc on periph-
eral mannoses in N-glycans and generate plant-specific 
N-glycans with fucosyl and xylosyl units (Etzler and 
Mohnen 2009). O-Glycans are formed but show consider-
able differences to the Deuterostomes with no mucin-type 

http://cazy.org
http://cazy.org
http://functionalglycomics.org
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proteins present and the main O-glycosylated products 
being hydroxyproline-rich glycoproteins (Wilson 2002). 
The nematodes also fail to synthesize sialic acids and do 
not form mucins. N-glycans are processed to yield pauci-
mannose forms, while O-glycans are based on the core 1 
disaccharide, but contain β-glucose, β-glucuronic acid 
and fucosylation patterns not seen in vertebrate glycosyla-
tion (Corfield and Berry 2015, supplemental material). 
Finally, the arthropoda synthesizes chitin as the major 
polymer found in the cuticular exoskeleton. Sialylation has 
been detected in N-glycans, but at low levels, in contrast 
to the vertebrates. O-glycans are also present, but appear 
to be limited to the core 1 disaccharide as no extended or 
branched glycans have been reported. In contrast, the Deu-
terostomes comprise the widest range of organisms sharing 
common glycan patterns (Corfield and Berry 2015, supple-
mental material).

Glycosylation in cells

“Introduction” and “Glycosylation of proteins” sections serve 
to demonstrate that there are many examples where cellular 
glycosylation is employed to generate species-specific glyco-
proteins across the Eukaryotes. The mammals are the main 
source of data and form the basis for examples here. Mucosal 
surfaces throughout the mammalian body are adapted to pro-
vide function and communication with their specific environ-
ment. There is clearly a range of mucosae that can be identi-
fied, but only some of these have been examined in any detail. 
The examples given here serve to illustrate the basic proper-
ties and provide a basis for the reader to compare with the 
following other Eukaryotes and individual tissues where less 
information is available, starting with the glycocalyx (Haber-
mann and Sinowatz 2009; Habermann et al. 2011; for details 
on the zona pellucida as an example for a glycocalyx, please 
see Manning et al. 2017).

As emphasized above, it is clear that glycosylation is 
present in the form of glycoconjugates throughout the 
cell. The cell surface has attracted most attention, as this 
is the interface where many crucial biological interactions 
occur. Glycosylation of proteins is the mechanism used by 
prokaryotes and Eukaryotes to form a base for recognition 
and other essential processes within the cell. These allow 
biological programming of proteins for selective functions. 
Examples include basic protein properties such as stability 
within defined biological environments (Lee et  al. 2006; 
Saludes et  al. 2010; Tran and Ten Hagen 2013), protein 
folding (Helenius et  al. 1997; Petrescu et  al. 2000; Aryal 
et al. 2010; Xu et al. 2013), intercellular trafficking (Lowe 
1997; Huet et  al. 2003), co-translational quality control 
(Helenius 2001; Xu and Ng 2015; Roth and Zuber 2017), 
protein maturation and half-life, also tested with synthetic 

glycans as signal to infer structure–activity relationships 
(Morell et  al. 1971; Ashwell and Morell 1974; Jee et  al. 
2007; André et al. 1997, 2007; Unverzagt et al. 2002; Chen 
et al. 2012; Mi et al. 2014), mediation of cell interactions 
in the extracellular matrix (Bassaganas et  al. 2014), host-
microorganism recognition (Alemka et al. 2012; Hajishen-
gallis et  al. 2012) and cell–cell binding processes such 
as sperm–egg adhesion (Mengerink and Vacquier 2001; 
Velásquez et al. 2007; Pang et al. 2011).

All cells have an apical glycocalyx, which provides a 
dynamic barrier to allow communication with the external 
environment of each epithelial cell. This is a common fea-
ture across the Eukaryotes. This is a structural feature of the 
surface membranes and consists of an arrangement of gly-
coproteins and glycolipids as an array (see, e.g., Kesimer 
et  al. 2013; Tecle and Gagneux 2015; Woods et  al. 2015; 
Huang and Godula 2016). The glycans serve as recognition 
components for proteins that bind them, mediating many 
biological events, e.g. fertilization (Mourao 2007; Tecle 
and Gagneux 2015), embryogenesis (Baskin et  al. 2010), 
tissue development and conservation (Hart and Copeland 
2010; Wells et  al. 2013), and including immune interac-
tion at both the innate and adaptive levels (Paulsen 2008; 
Johansson and Hansson 2016) and disease progression. 
Individual glycan binding potencies are known to be weak; 
however, multivalent presentation, as a glycoside cluster in 
the glycocalyx, greatly reinforces the overall binding affin-
ity and enhances discrimination. In addition, the levels of 
glycans present in the glycocalyx elicit responses in sig-
nalling pathways. Thus, specific densities of glycans in the 
glycocalyx can trigger cellular action through different sig-
nalling pathways.

Established histochemical and electron microscopic 
methods used to visualize the glycocalyx cause destruction 
of the mucus layer and disrupt the organization of the gly-
cocalyx (Stonebraker et al. 2004; Ebong et al. 2011; Kes-
imer et  al. 2013). Several improved techniques have been 
utilized to visualize the true thickness of the mucus layer, 
including the glycocalyx, in several mucosal systems (Pul-
lan et  al. 1994; Atuma et  al. 2001; Strugala et  al. 2003), 
see Fig.  4, and more recently under conditions where the 
dynamics of glycocalyx synthesis, mucus secretion and 
modulation of mucus thickness can be studied (Gustafs-
son et  al. 2012). The glycocalyx is characterized by an 
abundance of membrane-associated mucins (MUC), such 
as MUC1, MUC4, MUC12, MUC16 and MUC20. These 
are expressed on a tissue-specific basis, although MUC1 
appears to be common to most mucosal surfaces (Argüeso 
et al. 2003; Hattrup and Gendler 2008; Linden et al. 2008; 
Govindarajan and Gipson 2010; McGuckin et  al. 2011; 
Corfield 2015).

It is important to emphasize that the mucosal surface 
epithelium throughout the mammalian body is comprised 
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of a range of different cell types, each of which plays a 
role in general terms to provide a dynamic mucosal pro-
tective barrier (Gipson 2005, 2007; Johansson and Hans-
son 2013, 2016; Johansson et al. 2013; Birchenough et al. 
2015). Mucus-producing cells have been identified in tis-
sues where the secreted mucus layer is an essential fea-
ture of mucosal protection. The gastrointestinal epithelial 
cells that secrete mucus are the goblet cells, Tuft cells and 
Paneth cells. Other cells include the intestinal enterocytes 
and enteroendocrine cells, which are non-mucus-secreting 
cells. All of these cells are continuously renovated from 
stem cells located at the base of the crypt to maintain the 
proportions of these cells found under normal conditions. 
The intestinal enterocytes are the principal cells found in 
the intestinal mucosa and express many membrane-associ-
ated mucins on their glycocalyx. They are not concerned 
with significant secretion of mucus-type glycoproteins into 
the adherent mucus layer, but due to their abundance in 
the mucosal cell layer throughout the gastrointestinal tract 
their apical surface membrane domain makes a significant 
contribution to biological activity. Cell surface interactions 
are mediated through the glycan-rich zones of the mucins, 
which extend into the gastrointestinal lumen for a distance 
of up to 1 µm (Johansson and Hansson 2016). The mucins 
found have a typical pattern of expression throughout the 
whole intestine and may relate to general and specific 
biological roles. The precise pattern of glycans presented 
by these mucins throughout the intestinal tract is not well 
understood, but clearly links with function and remains an 
ongoing target for future research (Pelaseyed et  al. 2014; 
Reunanen et al. 2015).

In the gastrointestinal tract, the interactions of the host 
with the resident microflora are regulated through immune 

system by presenting a range of antigens to allow matura-
tion of lymphoid tissues. Peyer’s patches and the lamina 
propria are the sites where this occurs. Peyer’s patches have 
a characteristic dome shape and the M cells located in these 
regions phagocytose antigens to enable this process (Krae-
henbuhl and Neutra 2000; Ermund et  al. 2013a, b). The 
mucus layer at the surface of the Peyer’s patches is thought 
to be modulated, in order to allow easier sampling of bac-
teria. This may be due to the down-regulation of synthesis 
and secretion in those mucus-secreting cells bordering the 
Peyer’s patches, absence of mucus-secreting cells directly 
over the Peyer’s patches, or perhaps due to mucinolytic 
activities secreted by cells in the Peyer’s patches. How-
ever, this remains a controversial issue as dynamic mucus 
spreading and continuity along the surface lumen of the 
gastrointestinal tract is believed to occur. In addition, fur-
ther experimentation is necessary to define the role of 
glycosylation in the recognition process, which mediates 
transfer of luminal material during sampling events.

Tuft cells, also known as brush cells, present as a frac-
tion of small intestinal and respiratory tract epithelial cells 
and are responsible for sensing the microflora (Bezencon 
et al. 2008; Howitt et al. 2016). The location of Tuft cells 
as intestinal epithelial and respiratory tract, tracheal cells 
means that they will have direct contact with the parasites 
and microflora in the lumen of the gut and in respired 
air and therefore may contribute to homeostasis (Parfrey 
et al. 2014). These cells mediate type 2 immunity and are 
thought to recognize parasites. Some aspects of the gly-
cobiology of Tuft cells have been examined (Gebhard and 
Gebert 1999), but there are no recent studies using mod-
ern methods. Furthermore, examination across the differ-
ent phylogenetic groups comprising the Eukaryotes is only 
partly complete. These remain important aims to improve 
our understanding of cellular biology at all mucosal 
surfaces.

The gastrointestinal mucosal cells responsible for the 
synthesis and secretion of the mucus barrier are the goblet 
and Paneth cells. These two cell types form part of the sin-
gle layer of epithelial cells found at mucosal surfaces. The 
Paneth cells are largely found in the small intestine and are 
closely linked with the synthesis and secretion of a range 
of inhibitors of bacterial growth, including the defensins 
(Bevins and Salzman 2011; Ouellette 2011; Clevers and 
Bevins 2013; Salzman and Bevins 2013). Paneth cells have 
been reported to secrete MUC2 (Johansson and Hansson 
2016); however, there are no glycobiological data and the 
contribution to the mucus layer on the mucosal surface has 
not been assessed.

The goblet cells, named because of their shape, are 
typically identified due to the copious granules containing 
mucins, present in their apical region are abundant through-
out the body. These cells have been identified in the salivary 

Fig. 4   Intestinal mucus barrier. Mucosal sample stained histochemi-
cally with Alcian Blue and Van Gieson counterstain after stabilizing 
the mucus gel layer by cryostat and molten agar. The image shows 
the secreted gel layer, glycocalyx, goblet cells and lamina propria 
from human colon; from Pullan et al. (1994), with permission
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glands (Nieuw Amerongen et al. 1995; Tabak 2006; Rous-
seau et al. 2008; Kozak et al. 2016); the ocular surface in 
the conjunctiva (Gipson and Inatomi 1998; Gipson 2007); 
the oesophagus (Flejou 2005); the stomach (Reis et  al. 
1999); the duodenum (Buisine et al. 2000); the small intes-
tine (Ermund et al. 2013a, b); the colorectum (Agawa and 
Jass 1990); the upper and lower airways (Rose and Voynow 
2006; Thornton et al. 2008; Davies et al. 2012; Kreda et al. 
2012); the male (D’Cruz et  al. 1996) and female (Gipson 
2001) reproductive tracts; the pancreas (Buisine et al. 2000) 
and the hepatobiliary system (Buisine et al. 2000).

The secreted mucus barrier is necessary to withstand 
the mechanical and physiological forces encountered in 
the intestine during peristalsis, to provide lubrication. It 
also provides innate and adaptive immunological protec-
tion (Johansson and Hansson 2016) and, furthermore, 
is designed to filter luminal material and nutrients and to 
interact with the microflora, including pathogens and para-
sites present in the gastrointestinal lumen (Hasnain et  al. 
2013; Johansson and Hansson 2016).

The mucus layer secreted by the goblet cells has a char-
acteristic thickness and structure depending on the location 
of the mucosal surface. For example, in the gastrointesti-
nal tract the thickness is greatest in the stomach and large 
intestine, typically around 700  µm, while the small intes-
tine ranges between 150 and 300 µm (Atuma et  al. 2001; 
McGuckin et  al. 2011; Gustafsson et  al. 2012). In the 
human colon a two-layer system is formed, the inner adher-
ent layer composed of a network of MUC2 sheets, which 
is in contact with the mucosal cells and is resistant to pen-
etration by the bacterial microflora (Johansson et al. 2008; 
Ambort et al. 2012). The outer layer is less organized and 
accommodates bacteria (Ambort et al. 2012).

Recent evidence has been presented that the goblet cells 
in the human colonic crypts are not equivalent (Birch-
enough et al. 2015, 2016). A sentinel goblet cell has been 
identified which is located at the entrance to the colonic 
crypt. The cell endocytoses TLR, which activates the 
Nlrp6 inflammasome, generates calcium-dependent MUC2 
release from the sentinel cell itself and an intercellular gap 
junction signal. The signal leads to MUC2 secretion in 
neighbouring goblet cells in the upper crypt (Birchenough 
et al. 2015, 2016). This pattern of regulation ensures effi-
cient protection against bacteria at the entrance to the crypt 
(Fig. 5).

Whether there are differences in the glycosylation of the 
MUC2 secreted at the surfaces of the crypts, from either 
the sentinel cell or those neighbouring goblet cells, has not 
yet been examined. The pattern of MUC2 glycosylation 
in goblet cells further down the crypt, which are not influ-
enced by the sentinel cell, should also be considered. The 
picture that emerges is of a sophisticated defensive barrier 
system and not simply a MUC2 blanket.

Goblet cells produce a number of factors, which play a 
significant role in the regulation of mucus metabolism and in 
mucosal protection. These factors are linked to the synthesis 
of glycoproteins and have a role in glycobiological manage-
ment (Rodríguez-Piñeiro et  al. 2013; Pelaseyed et  al. 2014; 
Johansson and Hansson 2016). The maturation of goblet cells 
is mediated by the action of the transcription factor SAM 
pointed domain-containing Ets transcription factor. Two 
goblet cell-specific ER proteins, anterior gradient protein 2 
homologue (AGR2) and ER-to-nucleus signalling (ERN2 or 
IRE1β), are necessary for normal goblet cell MUC2 produc-
tion (Johansson and Hansson 2016). The lectin-like protein 
ZG16 has been identified as an abundant goblet cell protein. 
It binds to the cell wall peptidoglycan of Gram-positive bac-
teria and leads to aggregation. These bacteria have reduced 
penetration of the mucus barrier at the colorectal surface, and 
ZG16 thus plays a role in keeping bacteria away from the 
mucosal surface (Bergström et al. 2016).

The trefoil factor family peptides are biosynthesized in 
the goblet cells and are closely linked to optimal organi-
zation of mucins and other glycoproteins in the secreted 
mucus barrier (Wright 2001; Hoffmann 2004; Albert et al. 
2010). Resistin-like molecule is a cysteine-rich protein spe-
cifically produced by intestinal goblet cells and is thought 
to function in the mucosal barrier through regulation of 
inflammation (He et al. 2003; Artis et al. 2004; Wang et al. 
2005). It has been shown to lead to colitis by depleting pro-
tective bacterial strains in the gut microflora (Morampudi 
et al. 2016).

Fig. 5   Sentinel goblet cells in the human colon. Goblet cells respon-
sive to Toll-like receptor ligands (TLR ligands) are located in the 
upper crypt. Cryosections in colonic explants treated with TLR 
ligands and visualized by confocal microscopy. Red MUC2; blue 
DNA. Upper crypt (yellow boxes) or lower crypt (green boxes). A 
dashed grey line shows the epithelial surface. Scale bars 20 mm From 
Birchenough et  al. Science 352:1535–1542 (2016). Reprinted with 
permission from the American Association for the Advancement of 
Science (AAAS)
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The oral cavity and salivary glands are the initial link 
with the oesophagus and gastrointestinal system. The 
salivary glands have been well studied, and information 
regarding the range of mucins and salivary proteins with 
their glycobiology is extensive (Veerman et al. 2003; Tabak 
2006; Nieuw Amerongen et al. 2007; Tian and Hagen 2007; 
Rousseau et al. 2008; Kozak et al. 2016).

In the respiratory tract, the pseudostratified, ciliated 
and columnar tracheal and bronchiolar epithelial lining 
includes basal cells, secretory cells and ciliated cells. Cili-
ated cells are the most abundant, while goblet cells show 
a regional distribution being more numerous in the trachea 
than the bronchioles. The cells that secrete mucus are the 
goblet cells and mucus-small granule cells. In addition, the 
submucosal glands contribute a major part of secreted tra-
cheobronchial mucus. They are abundant in the larger bron-
chi and have typical morphology with mucous and serous 
acini, a collecting duct and tubules and a ciliated duct. The 

major glycoproteins synthesized in the respiratory tract 
are the mucins (Andrianifahanana et al. 2006). In man the 
main secreted mucins are MUC5AC, found exclusively in 
the epithelial goblet cells and MUC5B synthesized in the 
submucosal glands and associated ducts (Buisine et  al. 
1999; Kirkham et  al. 2002; Sheehan et  al. 2004; Voynow 
et  al. 2006; Rousseau et  al. 2007; Thornton et  al. 2008). 
Low levels of MUC2 are produced in some goblet cells and 
the basal cells, while MUC7 is produced in the serous cells 
(Buisine et al. 1999; Copin et al. 2000; Vinall et al. 2000). 
The membrane-associated mucins MUC1 and MUC4 are 
detected in the tracheal epithelium (Hattrup and Gendler 
2008), and expression of MUC3 (Apostolopoulos et  al. 
1995), MUC13 (Williams et al. 2001), MUC19 (Chen et al. 
2004) and MUC20 (Higuchi et  al. 2004) has been found. 
The molecular and physiological significance of this array 
of mucins remains to be clarified and the glycobiologi-
cal data are limited, although characteristic glycosylation 

Fig. 6   Major glycan and glycoconjugate classes of human sperm 
glycocalyx. Monosaccharides are coded by coloured symbols shown 
in the figure. Proteins and lipids are grey, except cholesterol, and the 
lipids of glycosphingolipids. Mammals synthesize most glycans with 

a dozen different monosaccharide-building blocks; some of these 
monosaccharides can be further modified by sulphation and/or acety-
lation; from Tecle and Gagneux (2015), with permission
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patterns for the respiratory tract are expected (Thornton 
et al. 1997, 1999, 2000; Holmén et al. 2004; Kesimer et al. 
2013).

The human reproductive tract in both men and women 
has been a focus of attention, especially with regard to fer-
tilization. However, it also provides a specific epithelial 
environment enabling the fertilization process and simul-
taneously supporting mucosal protection. As major glyco-
protein components at animal mucosal surfaces, the mucins 
and sialoglycoproteins are prominent in male and female 
reproductive tracts (Audié et al. 1993; DeSouza et al. 1998; 
Lewis and Lewis 2012). There is ample evidence that the 
glycosylation of these molecules is an important factor for 
these molecules and plays a functional role in a number of 
different ways. This underlines, again, the flexibility of gly-
cosylation as a dynamic and expansive mechanism adapted 
to specific physiological requirements. The physicochemi-
cal properties of the mucins are generated through the high 
proportion of glycans in these molecules (Lewis and Lewis 
2012). A protective role for the mucins in the oviduct has 
been demonstrated with regard to both the migration of 
spermatozoa and the movement of fertilized ova to the 
uterus (Jansen 1995). Furthermore, manipulation of glycan 
chains through the action of mucinases and glycosidases 
such as sialidases plays both general and specific roles in 
man (Wiggins et  al. 2001) and other Eukaryotes, includ-
ing monotremes (Oftedal et al. 2014) and fish (Hunt et al. 
2005).

The main partners in Eukaryote fertilization, the sperm 
and the egg have been studied extensively and functions for 
glycosylation clearly identified (Tecle and Gagneux 2015). 
Spermatozoa have been investigated across the spectrum of 
Eukaryotes and possess an abundance of glycoconjugates 
on their surface membranes, the glycocalyx, which extends 
for 60 nm from the membrane (Fig. 6). Among the glyco-
conjugates in the sperm glycocalyx are typical membrane 
glycoproteins with membrane anchor peptide domains 
together with glycoproteins anchored by a glycophos-
phatidylinositol unit (Franke et  al. 2001; Mengerink and 
Vacquier 2001; Koistinen et  al. 2003; Klisch et  al. 2011; 
Tecle and Gagneux 2015). The glycobiology of these gly-
coconjugates has been defined (McCauley et  al. 2002; 
Diekman 2003; Parry et  al. 2007; Velásquez et  al. 2007; 
Tecle and Gagneux 2015), and sialic acids play important 
roles (Yudin et  al. 2008; Tollner et  al. 2012; Silva et  al. 
2014). Important events in sperm–egg binding are medi-
ated through the glycans on these molecules. Sialyl-Lex has 
been identified as a partner in sperm–egg binding (Pang 
et al. 2011).

Maturation of the sperm glycocalyx is necessary for pen-
etration of the mucus barrier in the cervix and also provides 
protection against uterine immune defences. Both sialyla-
tion (Mengerink and Vacquier 2001; Miyata et  al. 2004, 

2006; Velásquez et al. 2007; Ma et al. 2012; Simon et al. 
2013; Hänsch et al. 2014) and fucosylation (Mengerink and 
Vacquier 2001; Pang et al. 2007; Tecle and Gagneux 2015) 
play roles in the development, maturation and functional 
aspects of spermatozoa. The range of sialic acids has been 
shown to act as self-associated molecular patterns and are 
binding partners for proteins synchronizing the immune 
response such as the siglecs (Gabius 1997; Crocker 2005; 
Varki 2011). The migration of spermatozoa to the oviduct 
involves glycocalyx interactions with the follicular fluid 
and epithelial barrier of the uterus, leading to the forma-
tion of the oviductal sperm reservoir (Tecle and Gagneux 
2015) and ultimately binding to the zona pellucida of the 
oocyte. Sperm capacitation occurs before fertilization and 
is necessary to allow the normal fertilization process to 
occur. This entails a substantial reorganization of the gly-
cocalyx. Membrane-anchored glycoproteins are discarded, 
and specific desialylation occurs (Ma et  al. 2012; Tollner 
et al. 2012; Tecle and Gagneux 2015).

The female reproductive tract mucosal cells have a typi-
cal glycocalyx and secrete a variety of glycoproteins in a 
hormonally mediated fashion. This leads to variation in 
thickness and porosity of the surface mucus gel, which cor-
relate with sperm penetration and fertilization of the ova. 
Mucins and glycodelins are important and have glycoforms 
that vary throughout the menstrual cycle and accommodate 
the processes occurring during fertilization. Mucins iden-
tified include the secreted forms MUC5AC, MUC5B and 
MUC6, together with membrane-associated MUC1 and 
MUC16 (Gipson et  al. 2001; Argüeso et  al. 2002; Andri-
anifahanana et  al. 2006; Andersch-Bjorkman et  al. 2007; 
Gipson et al. 2008; Pluta et al. 2012; Corfield 2015). Over 
50 O-glycans were detected including neural and acidic 
with both sialylated and sulphated forms. Ovulation was 
characterized by decreased sialylation and an increase 
in core 2 structures, while Neu5Acα2,6GalNAc- and 
Neu5Acα2,3Gal-glycans were common in the non-ovu-
latory phases (Yurewicz et  al. 1987; Andersch-Bjorkman 
et al. 2007).

A report on the action of hormones and bacterial flora on 
the female genital tract glycome during the menstrual cycle 
has recently appeared (Moncla et  al. 2016) and identified 
MUC1, MUC4, MUC5AC and MUC7 with distinct gly-
cosylation patterns identified using lectins (Moncla et  al.  
2016). This study demonstrates organized expression 
of both mucins and glycosylation during the menstrual 
cycle. The glycodelins are glycoproteins also found in the 
female reproductive tract. They are small, 28- to 30-kDa  
glycoproteins of the lipocalin family and occur as three iso-
forms, each with two N-glycan chains (Seppala et al. 2002; 
Jayachandran et al. 2006; Yeung et al. 2006). Complex-type  
glycans were detected: Galβ1,4GlcNAc, GalNAcβ1, 
4GlcNAc, NeuAcα2,6Galβ1,4GlcNAc, NeuAcα2,6Galβ1, 
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4GlcNAc, Galβ1,4(Fucα1,3)GlcNAc and GalNAcβ1,4 
(Fucα1,3)GlcNAc (Dell et al. 1995). There is evidence that 
glycans with sialyl-LacNAc or LacdiNAc antennae play a 
role in immunosuppression, through CD22 and selectins 
(Dell et al. 1995). Sperm–zona pellucida binding is blocked 
by glycodelin and further emphasizes the importance of 
glycobiology in immune and gamete recognition processes 
(Dell et al. 1995).

In addition to the secretions associated with the mucosal 
surface, the cervical canal contains a mucus plug during 
pregnancy. Although this is a well-known mucus feature, it 
has received little interest compared to the other mucosal 
surfaces in the body (Becher et al. 2009). Most interest has 
focused on the rheological (Becher et  al. 2009; Bastholm 
et al. 2016), microbial (Hansen et al. 2014), immunologi-
cal (Hein et al. 2005; Lee et al. 2011) and protein degrada-
tive (Becher et al. 2010) properties. Protein profiling stud-
ies showed MUC1, MUC2, MUC5AC and MUC5B (Habte 
et al. 2008), but did not identify glycodelins (Habte et al. 
2008; Lee et  al. 2011). No glycan analysis of the mucus 
plug glycoproteins has been reported.

The jelly coat or extracellular matrix surrounding Deu-
terosome eggs is species-specific and linked to the process 
of sperm–egg fusion to achieve fertilization. While the 
echinoderms have a jelly layer and vitelline coat, mammals 
have a more complex arrangement with an external cumu-
lus matrix overlying a zona pellucida (Mengerink and Vac-
quier 2001; Habermann and Sinowatz 2009; Habermann 
et al. 2011).

The ocular surface and tear film is a specially adapted 
mucosal surface which has properties and structures not 
seen at other mucosal locations. The conjunctiva is the 
mucosal surface where products composing the tear film 
are synthesized and secreted and together with the underly-
ing stroma provides ocular defence and protection (Fig. 7). 
The conjunctival epithelium is composed of squamous and 
goblet cells which both secrete electrolytes. The mucins 
constitute the major molecules contributing to the struc-
ture and properties of the tear film (Berry et  al. 1996; 
Pflugfelder et al. 2000; Gipson 2004, 2007; Paulsen 2008; 
Argüeso and Gipson 2012; Hodges and Dartt 2013). They 
address several biological requirements of the ocular sur-
face. Physicochemical properties enable lubrication during 
blinking and spreading across the corneal and conjunctival 
surfaces, allow removal of debris accumulated on the eye 
surface and retain hydration to avoid dessication. These 
physicochemical properties are also designed to allow light 
through the barrier to give optimal vision. Mucins generate 
a stable gel layer where anti-microbial molecules, includ-
ing lysozyme, transferrin, secretory IgA and other immu-
noglobulins, defensins and trefoil factor family peptides, 
can be maintained to achieve protection against infection 

(Gipson and Argüeso 2003; Argüeso et  al. 2009; Govin-
darajan and Gipson 2010).

The tear film is composed of three layers, an apical 
surface lipid layer, secreted by the Meibomian glands, 
an aqueous layer lying above the mucus layer, which has 
direct contact with the glycocalyx at the apical surface of 
cornea. The tear film is a dynamic entity, and each layer is 
constantly renewed.

The ocular mucins show a selective expression pat-
tern, again emphasizing the adaptation of mucosal sur-
faces to environmental needs (Young and Clement 2000). 
MUC5AC is the major secreted mucin present, while 
MUC2, MUC5B, MUC7 and MUC19 have been detected 
at lower levels (Berry et  al. 1996; Gipson 2004; Mantelli 
and Argüeso 2008). The glycocalyx of the stratified epi-
thelium is rich in membrane-associated mucins, MUC1, 
MUC4 and MUC16 are most abundant (Argüeso et  al. 
2003; Paulsen and Berry 2006; Govindarajan and Gipson 
2010; Hodges and Dartt 2013), and MUC15 and MUC20 
have also been detected (Mantelli and Argüeso 2008). The 
lacrimal glands also contribute to the composition of tear 
film and MUC1, MUC2, MUC4, MUC5AC, MUC5B, 
MUC6 and MUC7 have been detected in the glands and the 

Fig. 7   Mucin expression in the human cornea and conjunctiva. 
Schematic of the location of mucins in the corneal and conjunctival 
epithelium. The membrane-associated mucins MUC1, MUC4 and 
MUC16 at the apical cell membrane glycocalyx, and the secreted 
mucin MUC5AC in goblet cell vesicles; from Gipson (2004), with 
permission
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secreted mucins MUC5AC, MUC5B, MUC6 and MUC7 
probably reach the tear film through the tear duct passage 
(Paulsen and Berry 2006).

The glycobiology of the ocular surface and tear film has 
been probed in several studies, where the significance of 
sialic acids is a common characteristic (Pflugfelder et  al. 
2000; Corfield et  al. 2005; Argüeso and Sumiyoshi 2006; 
Argüeso 2008; Royle et al. 2008; Argüeso et al. 2009; Baos 
et al. 2012). Examination of the O-linked glycans released 
from the mucins in human, rabbit and canine ocular surface 
secretions revealed 12 different glycans, 6 of which were 
sialylated (Royle et al. 2008). Further chemical, lectin and 
antibody studies demonstrated that the 9-O-acetylated form 
of sialic acid was a characteristic feature of the ocular sys-
tem (Corfield et  al. 2005; Argüeso and Sumiyoshi 2006). 
Thus, a tissue-specific glycosylation programme operates 
at the ocular surface and emphasizes the versatility of the 
sugar code as a means to achieve biological specificity. 
Imaging of ocular mucins using atomic force microscopy 
has enabled mapping of the height of glycans on MUC5AC 
through binding of an anti-glycan antibody (Round et  al. 
2007). These data support proposals regarding the arrange-
ment of mucin molecules in aqueous solution under physi-
ological conditions.

The urinary tract is another example of a tissue where 
the mucosal surfaces have been adapted to allow specific 
function. Filtration of urine requires barrier properties not 
found at other mucosal sites. The renal mucins and kidney-
specific glycoproteins are well known (Serafini-Cessi et al. 
2005; Aubert et  al. 2009; Tringali et  al. 2012; Weinhold 
et  al. 2012). Especially with respect to sialic acid metab-
olism in glomerulus podocytes (Wagner and Roth 1985; 
Charest and Roth 1988).

The nervous system has attracted considerable atten-
tion and exhibits a characteristic pattern of molecular 
morphology having an array of tissue-specific molecules 
with characteristic glycosylation, as further described by 
Ledeen and Wu (2009) and by Higuero et  al. (2017, this 
issue). A short overview is given here. Neural cell adhe-
sion molecule (Zhou and Zhou 1996) is a member of the 
immunoglobulin superfamily of adhesion molecules and 
carries polysialic acid chains of varying size. These poly-
sialic acid chains are α2–8 linked and have biological role 
in nervous tissue and especially the brain (Hildebrandt 
et  al. 2007; Rutishauser 2008; Bonfanti and Theodosis 
2009; Mühlenhoff et al. 2009; Zuber and Roth 2009; Sch-
naar et al. 2014). Neural stem cells express CD15 (Yu and 
Yanagisawa) coding Galβ1,4(Fucα1,3)GlcNAcβ1- (Yu and 
Yanagisawa 2006), while O-mannosylation is also a sig-
nificant feature of α-dystroglycan in the nervous system, 
where it mediates cell-extracellular matrix contact (Hennet 
2009; Panin and Wells 2014; Praissman and Wells 2014; 
Yaji et al. 2015).

The innate and adaptive immune systems have been 
extensively scrutinized regarding their glycobiology (Bäck-
hed et al. 2001; Royle et al. 2003; Bevins 2004; Rudd et al. 
2004; Brockhausen 2006; Crocker et  al. 2007; Marth and 
Grewal 2008; Hooper et  al. 2012; Kolarich et  al. 2012; 
Rabinovich et  al. 2012; Bull et  al. 2014; Gerbe and Jay 
2016; Johansson and Hansson 2016).

Glycosylation and disease

There are many examples of aberrant glycosylation playing 
a role in disease processes. This part uses a few examples 
to highlight the relationship between incorrect glycosyla-
tion, biological recognition and the resulting changes that 
lead to abnormal function and pathology. The techniques 
employed to detect changes in protein glycosylation are 
those outlined in “Glycosylation of proteins” section.

The development of cancer in the human gastrointestinal 
tract has been closely studied as it falls into the category of 
a Western disease, linked with lifestyle and diet. Much work 
has focused on the mucosal changes associated with the 
development of the tumours, and inflammatory bowel dis-
ease (IBD) has proved to be instructive due to the number 
of patients who go on to develop cancer. From early days 
there have been indications that the changes in glycobiology 
are related to the process of malignant transformation. The 
routine histological screening of the gastrointestinal tract for 
early changes in disease remains an essential part of clini-
cal assessment. Early detection is associated with positive 
prognosis, and regular screening during disease provides 
assessment of disease progression and gives indications for 
therapy including surgical intervention. The focus of this 
section is the lower bowel, the colorectum and the patterns 
associated with progression to cancer. Important chemical 
and biochemical information has been gathered regarding 
the pattern of glycosylation in mucins at different regions 
of the human colorectum (Robbe et  al. 2003, 2004, 2005; 
Larsson et al. 2009; Holmén Larsson et al. 2013) and simi-
larities that exist compared to the foetal mucins (Robbe-
Masselot et al. 2009). However, differences between MUC2 
from human and murine colorectum have been shown and 
underline the need to take account of species-specific gly-
cosylation when studying disease mechanisms (Thomsson 
et al. 2012). These data are important as it provides a chemi-
cal basis to consider the lectins and antibodies, which are 
valuable in screening tissue sections from patients.

The inflammatory bowel diseases, ulcerative colitis (UC) 
and Crohn’s disease (CD), show characteristic morphologi-
cal changes at the sites of disease, and colorectal tumours 
are also found at these sites. Endoscopic screening is used 
to locate regional mucosal disease along the colorectum, 
and both UC and CD have characteristic patterns of disease 
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mucosa flanked by normal mucosa. Colonic biopsies taken 
at sites of disease together with resected tumours and pol-
yps have been used for histological assessment.

Because the mucins expressed throughout the colorec-
tum present the main glycan repertoire, tissue samples have 
been examined for both MUC gene expression and glyco-
sylation patterns (Bartman et al. 1999; Kyo et al. 2001; Syl-
vester et al. 2001; Shaoul et al. 2004; Longman et al. 2006; 
Png et  al. 2010; Corfield et  al. 2011; Croix et  al. 2011; 
Larsson et al. 2011; Sheng et al. 2012; Leone et al. 2013; 
Theodoratou et al. 2014).

The screening of mucins in the colorectum has identi-
fied MUC2 as the major product (Tytgat et  al. 1994; van 
Klinken et  al. 1997). Confirmation of the relevance of 
this gene to colorectal disease has come from Muc2−/− 
mice where the gene is deleted and increased susceptibil-
ity to spontaneous tumour formation occurs (Velcich et al. 
2002). Other mucin changes in colorectal cancer have 
been reported for de novo expression of MUC5AC (Bui-
sine et al. 1996, 2001; Myerscough et al. 2001; Kocer et al. 
2002; Warson et  al. 2002) and MUC 20 overexpression 
(Xiao et al. 2013). A number of studies have addressed the 
glycosylation of mucins in both IBD and colorectal cancer 
and the progression through different stages from adenoma 
to carcinoma (Fig.  8). The importance of the attachment 
of the O-glycans to mucin proteins was demonstrated with 
studies on the core 1 disaccharide Galβ1,3GalNAc-, also 
called TF antigen (Campbell et  al. 2001; Bergström et al. 
2016), and the core 3 GlcNAcβ1,3GalNAc structures (Iwai 
et  al. 2005). Loss of genes coding for the formation of 
these cores led to development of colitis and cancer. Malig-
nant change leads to a reduction in the size of the glycans 
on mucins and an enrichment of the truncated glycans, Tn 
(GalNAc-α-Ser/Thr), sialyl-Tn (Neu5Acα2,6GalNAc-α-
Ser/Thr) (Itzkowitz et al. 1990; King et al. 1994; Jass et al. 
1995; Brockhausen et al. 1998; Marcos et al. 2011) and the 
TF antigen Galβ1,3GalNAc-αSer/Thr (Baldus et  al. 2000; 
Campbell et al. 2001). Interestingly, these epitopes are tar-
gets of diverse tissue lectins such as C-type lectins as the 
macrophage receptor, with different impact on the fate of 
the tumour cells ranging from defence to growth stimula-
tion (Marcelo et  al. 2014; Rodriguez et  al. 2015; Beatson 
et  al. 2016). Changes in mucin sialylation are also evi-
dent with an increase of sialyl-Lex (Hanski et  al. 1995; 
Grabowski et  al. 2000; Robbe-Masselot et  al. 2009) and 
the loss of the Sda antigen, GalNAcβ1,4(Neu5Acα2,3)
Galβ1,3/4GlcNAcβ1,3GalNAc- (Malagolini et  al. 2007). 
Variation of sialytransferases in colorectal cancer accounts 
for these alterations (Dall’Olio et  al. 1989, 2014). High 
levels of O-acetylated sialic acids are normally present in 
colonic mucins and are depleted in IBD and colorectal can-
cer (Corfield et  al. 1992a, 1999; Mann et  al. 1997; Shen 

et  al. 2004). Changes in the O-glycan pattern for MUC2 
have been reported in UC (Larsson et al. 2011).

Glycosulphation is a major feature of colonic mucins 
and is reduced in IBD and cancer. This has been shown 
using histochemical staining by the high iron diamine 
method and metabolic labelling with 35S-sulphate (Cor-
field et  al. 1992b, 1996; Campbell et  al. 2001). Immuno-
histochemistry showed a reduction in sulpho-Lea, SO4-
3Galβ1,3(Fucα1,4)GlcNAcβ1,3Gal-staining (Longman 
et al. 2006).

Strong evidence supports a role for the microflora in the 
pathology of IBD and colorectal cancer (Knight et al. 2008; 
Png et  al. 2010; Arthur and Jobin 2011; Candela et  al. 
2011; Fava and Danese 2011; Gentschew and Ferguson 
2012; Natividad et al. 2012; Dalal and Chang 2014; Probert 
et  al. 2014), and therapeutic faecal transplant is currently 
being used (Shanahan and Collins 2010; Damman et  al. 
2012). These aspects also link with the influence of the 
diet on disease (Albenberg et al. 2012; Neuman and Nanau 
2012). Thus, interactions of the microflora in the gut with 
the host mucosa impact on the metabolic pathways regu-
lating mucins and their glycosylation. Ethnicity has been 
found to be a factor in the nature of IBD and colorectal 
cancer. The lower rate of IBD in Indian populations com-
pared with Caucasians could be confirmed using histologi-
cal and metabolic labelling methods (Probert et  al. 1993, 
1995). This remains an underdeveloped aspect of gastroin-
testinal disease worldwide.

Necrotizing enterocolitis is the most common gastroin-
testinal condition known for premature, low-birth-weight 
neonates. It has a multifactorial aetiology, and its patho-
genesis remains poorly understood. A combination of risk 
factors results in the attachment of bacteria to the imma-
ture and damaged mucosal barrier mucus. Maintenance 
of the cellular integrity of the mucosal barrier is crucial 
and correlates with a number of factors, including the tre-
foil factor family peptides, found in the goblet cells and 
which are responsible for regulating epithelial homeosta-
sis through restitution and regeneration. Together with the 
mucins they provide effective mucosal barrier protection at 
this early stage of life. The glycobiology of this condition 
has not been examined, but demonstration that depletion of 
goblet cell TFFs occurs (Vieten et al. 2005), in this condi-
tion implies a role for in this condition (Fig. 9). In view of 
the better understanding of goblet cells and the existence 
of different types with specific roles, noted above under 
“goblet and Paneth cells and the secreted mucus layer”, a 
closer examination of this phenomenon in NEC may lead 
to improved understanding of pathogenesis and protective 
measures.

Bacterial vaginosis is a common polymicrobial condi-
tion found in women. In women of childbearing age the 
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vagina is host to an abundance of bacterial strains domi-
nated by Lactobacillus species (Onderdonk et  al. 2016). 
The degradation carbohydrate by these bacteria produces 
lactic acid, which maintains a vaginal surface pH of around 
4.5, which is optimal for their growth. In BV an increase 

in mucosal pH to 6.0–7.0 lead to a change in the micro-
flora with a loss of Lactobacillus spp. and the appear-
ance of other facultative and anaerobic strains including 
anaerobic cocci, Gardnerella vaginalis, Mobiluncus spp., 
Bacteroides spp., Prevotella spp., Peptostreptococcus spp. 

Fig. 8   Loss of MUC2 and 
sulpho-Lewisa in ulcerative 
colitis. Detection of MUC2 
glycoprotein by immunostain-
ing with the Lum2–3 antibody 
for normal (a) and clinically 
severe UC (c). The same 
specimens were also tested for 
MUC2 mRNA for normal (b) 
and UC (d). Immunostaining 
for MUC2 in mucosa adjacent 
to an ulcer (e) showed reduced 
staining compared with normal 
intact mucosa (f). Detection of 
sulpho-Lea with the F2 antibody 
showed localization through-
out the mucosa, including the 
mucus gel layer (g). Sulpho-Lea 
staining was preserved in mild 
colitis (i), but was depleted at 
the luminal surface and upper 
crypts in severe colitis (h). 
In situ hybridization samples 
were counterstained with tolui-
dine blue and immunohistologi-
cal sections with haematoxylin; 
from Longman et al. (2006), 
with permission
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and Mycoplasma hominis. Clinically, this change leads 
to poor health outcomes including pelvic inflammatory 
disease, late miscarriage, spontaneous preterm birth and 
chorioamnionitis. Probiotic therapy has been used in dis-
ease management (Falagas et  al. 2007). The cervicovagi-
nal fluid (Wang et al. 2015) is part of the mucosal lining of 
the vagina and is analogous to the mucus barrier in other 
mucosae (Moncla et al. 2016). Cervical mucins and a range 
of other defensive proteins are present in the secretion 
and donate the major glycan composition present in this 
environment (Gipson 2001; Pluta et  al. 2012). The secre-
tory mucin genes MUC2, MUC5AC, MUC5B, MUC6 are 
found with major expression of MUC5AC and MUC5B 
(Gipson et al. 1999, 2001), while the membrane-associated 
mucins, MUC1, MUC4 and MUC16 are found at high lev-
els (Gipson et  al. 1999, 2001). Glycobiology plays a sig-
nificant role in the pathology of BV. The action of muci-
nases and glycosidases, especially sialidases (Wiggins et al. 
2000), has been demonstrated to be associated with the 
development of an abnormal mucosal barrier in the vagina 
(Wiggins et al. 2001; Moncla et al. 2015). In addition, the 
association of glycosulphatases in BV microflora has been 
found and implicates mucin sulphation as a feature of 
the normal and pathological state (Roberton et  al. 2005). 
Review of the female genital tract glycome has confirmed 
this relationship and yielded a focus for future development 
and therapeutic intervention (Moncla et al. 2016).

The ocular surface and the tear film have been widely 
examined in mammals as detailed above under “The Ocu-
lar Surface”. Among pathological conditions that affect 
the normal function is dry eye disease or keratoconjunc-
tivitis sicca. In this disease, a number of morphological 

abnormalities of the lacrimal apparatus arise which cause 
instability and dessication of the preocular tear film and 
changes in the ocular surface mucus. A reduced number of 
conjunctival goblet cells are detected histologically (Vieten 
et al. 2005), and the mucus becomes more viscous and less 
easy to spread evenly over the corneal surface (Corfield 
et al. 2005).

Studies show that glycobiology plays a significant role 
in this disease (Argüeso 2008). Sialylated O-glycans were 
detected in human and canine mucus (Royle et  al. 2008; 
Guzman-Aranguez et  al. 2009) and a reduction in the 
expression of sialyl-Lea reported in dry eye tears (Garcher 
et  al. 1998). Although increased sialylation was found in 
canine KCS (Carrington et al. 1998), the fraction of these 
sialic acids present as 9-O-acetylated sialic acid, largely 
in MUC 5AC mucins, was reduced or eliminated in KCS 
(Gipson et al. 2004; Corfield et al. 2005; Argüeso and Sum-
iyoshi 2006) (Fig.  10). These data emphasize the impor-
tance of glycobiology in understanding biological function.

The presence of amyloid deposits in the brain is a hall-
mark of Alzheimer’s disease (AD) (Shoemark and Allen 
2015) and increases with age in humans and is associated 
with progressive decline of cognitive function and demen-
tia. The pathogenesis of AD is still poorly understood, but 
the identification of the accumulation of protein aggregates 
derived from amyloid precursor protein has been identified. 
The normal proteolytic processing of APP is implicated in 
AD, and the resulting aggregates form a focus for the dep-
osition of amyloid to generate senile plaques in the brain. 
Correlations of AD with the patterns of microbial coloni-
zation in the body and changes associated with increased 
age have been presented (Shoemark and Allen 2015), and 

Fig. 9   Depletion of goblet 
cells in necrotizing enterocol-
itis. The trefoil factor family 
peptide TFF3 is shown with 
immunostaining (a) in normal 
neonatal colon (×10 magnifica-
tion), with staining of all goblet 
cells and the lumen (arrow). 
Normal neonatal colon at ×40 
magnification shows a granular 
pattern of TFF3 in goblet cells 
(b). Reduction of goblet cells in 
a patient with NEC is shown at 
×10 (c) and ×40 (d) magnifica-
tion and reveals empty goblet 
cells (arrows in d), in particu-
lar at the surface epithelium; 
from Vieten et al. (2005), with 
permission
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these may link with glycoprotein metabolism through inter-
actions at mucosal surfaces throughout the body, especially 
in the gastrointestinal tract, as discussed above. In support 
of this suggestion, recent data in a mouse KO model for 
neuraminidase 1 (Neu1) Neu1−/− have demonstrated a role 
for this gene. Under normal conditions, this gene codes 

for an enzyme that desialylates sialoglyconjugates. This 
enzyme is known to regulate lysosomal exocytosis through 
its action on the lysosome-associated membrane protein 1 
(Yogalingam et  al. 2008). One function of this protein is 
the mediation of lysosome docking at the plasma mem-
brane. These lysosomes then release their contents into the 

Fig. 10   Histology of normal 
and KCS canine conjunctival 
tissues. Tissue sections from 
normal canine conjunctiva 
were stained with the anti-
MUC5AC antibody 21M1 (a); 
Alcian Blue/PAS (b); mild-PAS 
(c); SNA for α(2–6)-linked 
sialic acids (d); WGA (e) and 
antibody TKH2 against sialyl-
Tn (sialyl-α(2–6)GalNAc) (f). 
Magnification is ×40 in all 
cases. Histology of KCS canine 
conjunctival tissues. Tissue 
sections from animals with KCS 
stained with periodic acid-
Schiff/Alcian Blue (g) and high 
iron diamine/Alcian Blue (h). 
Magnification is ×40 in both 
cases. Taken from Corfield et al. 
(2005) with permission
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extracellular environment. This function is common to the 
majority of cells. In the absence of NEU1, the lysosomal-
associated membrane protein 1 (LAMP-1) remains sia-
lylated and leads to an increased number of lysosomes at 
the plasma membrane. As a result abnormal remodelling 
of the extracellular matrix and plasma membrane glyco-
calyx occurs (Annunziata et al. 2013). The work identifies 
APP as a substrate for NEU1 and rescue of the condition 
in Neu1−/− mice is achieved by intracranial injection of 
NEU1, resulting in fewer amyloid plaques (Annunziata 
et al. 2013). These results open the door for further exami-
nation of glycosylation in AD and potential therapeutic 
approaches.

Conclusions and perspectives

This review provides an overview of the range of glycan 
structures present in and utilized by the Eukaryotes. Future 
studies will be in the application of structural technology 
and bioinformatics to clarify the glycosylation of glyco-
proteins structurally and conformationally. This is espe-
cially important for those situations, where glycoproteins 
have an already clearly defined biological function and 
also where changes in glycosylation occur in relation to 
normal development, tissue function and disease. Attrac-
tive perspectives include the regulation of malignancy-
associated expression of growth factors by manipulatory 
glycosylation (Gabius et al. 2012). Many of the advances 
leading to our current knowledge have come from dis-
ease situations where glycoproteins are implicated and the 
glycans they carry are responsible for aberrant biological 
behaviour. It is therefore necessary to identify the normal 
glycosylation patterns in order to demonstrate their sig-
nificance in disease. The sites of tissue presence of gly-
coproteins are a fundamental part of this programme and 
depend on histological approaches to address this issue. 
The importance of lectins and antibodies is crucial in this 
respect (Roth 2011) and is covered further in the section 
on lectins in this theme issue. As implicated under “Gly-
cosylation of proteins” above, advances in carbohydrate 
and supramolecular chemistry contribute to make custom-
made reagents available (Murphy et al. 2013; Percec et al. 
2013; Zhang et  al. 2015a, b; Roy et  al. 2016; for a his-
tochemical application, please see Roy et  al. 2017, this 
issue). This is relevant for histochemistry and cell biology, 
where design and preparation of new molecules can sup-
port improved detection and specificity analysis.
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