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Aluminum alters NMDA receptor 1A and 2A/B
expression on neonatal hippocampal neurons
in rats
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Abstract

Background: High aluminum (Al) content in certain infant formula raises the concern of possible Al toxicity on
brain development of neonates during their vulnerable period of growing. Results of in vivo study showed that Al
content of brain tissues reached to 74 μM when oral intake up to 1110 μM, 10 times of that in the hi-Al infant
formula.

Methods: Utilizing a cultured neuron cells in vitro model, we have assessed Al influence on neuronal specific gene
expression alteration by immunoblot and immunohistochemistry and neural proliferation rate changes by MTT
assay.

Results: Microscopic images showed that the neurite outgrowth of hippocampal neurons increased along with the
Al dosages (37, 74 μM Al (AlCl3)). MTT results also indicated that Al increased neural cell viability. On the other
hand, the immunocytochemistry staining suggested that the protein expressions of NMDAR 1A and NMDAR 2A/B
decreased with the Al dosages (p < 0.05).

Conclusion: Treated hippocampal neurons with 37 and 74 μM of Al for 14 days increased neural cell viability, but
hampered NMDAR 1A and NMDAR 2A/B expressions. It was suggested that Al exposure might alter the
development of hippocampal neurons in neonatal rats.

Keywords: aluminum, neonates, primary hippocampal neuron, N-methyl-D-aspartate receptors,
immunocytochemistry

Background
Aluminum (Al) is the second most abundant mineral in
the soil, and it is also the major component of many legal
food additives [1]. Al toxicities have been reported in
renal disease patient with dialysis, due to high aluminum
content in the dialysate and/or ingestion of Al-containing
phosphate binder [2], resulting in microcytic hypochro-
mic anemia, dialysis osteomalacia and dialysis encephalo-
pathy [3]. The Al-content in the brain of person with
Alzheimer’s disease (AD) was reported to be higher than
the age-matched non-AD elderly [4], although there are
certain number of other reports disagreed with it [5,6].

Al over-loading has also been demonstrated in premature
infants receiving intravenous fluid therapy [7]. These
observations may imply that Al toxicity had a higher inci-
dence in the population with kidney malfunction or
immature kidney, such as nephropathy patients or in
neonates. Although the absorption of Al in the gastroin-
testinal tract is less than 0.3%, and absorbed Al is mostly
excreted through kidney in healthy individuals [8], the
toxicity of dietary Al has raised concerns under certain
patho-physiological, or even healthy conditions.
The nervous system, liver, and kidneys of human neo-

nates are relatively immature during the first four weeks
after birth [9], such that toxic substances may not be suc-
cessfully detoxified by liver and excreted through kidneys
during this period of development. Snell et al. (2001)
reported that the blood-brain barrier of neonates has
higher permeability than that in adults, increasing the
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probabilities of toxic substances diffusing into neural
tissues [10]. It may affect the normal development of
brain.
Since infant formula is the main food source for bottle-

fed neonates, the Al content of infant formula deserves a
greater concern. It has been reported that most skim milk
or low fat milk contains less than 15 μM of elemental Al
while some of the soy-based infant formulas contain up to
87 μM of Al [11]. Recent study also indicated that the
mean Al content of ready to feed milk formulas ranged
from 6.5 μM to 25.9 μM, and rehydrated milk formulas
contained 12.3 μM to 23.3 μM [12]. In contrast, the Al
concentration in human breast milk is only about 0.2-1.7
μM, 100 times lower than those found in infant formulas
[11,13]. Furthermore, soy protein-based formulas in the
USA have accounted for nearly 25% of the formula market
[14]. Therefore, it is crucial to investigate whether the
excessive Al in infant formula would accumulate in the
brain tissues and disturb the brain development in
neonates.
Several studies have shown that Al exposure during

pregnancy affects maturation of motor neurons and learn-
ing capability in rats and rabbits [15,16]. High Al intake
during gestation and lactation periods induces neurobeha-
vioral defects, including foot slanting, reduction of thermal
susceptibility and front-rear leg grasp ability in the pups
[17]. These behavioral studies have suggested that Al may
cause developmental change in nerve system, including
hippocampus, cerebrum and cerebellum.
Since N-methyl-D-aspartate receptors (NMDARs) are

widely expressed in the hippocampus and cortex [18] and
the activation of NMDARs affects conduction between
synapses and mediated synaptic plasticity in the central
nervous system [19], therefore, they have been widely
utilized as the biomarkers for development in these
regions of the brain. There are several subunits of
NMDARs, including NMDAR 1A, 2A and 2B, and
the expression of these subunits are recognized to be
developmentally regulated during postnatal period [20].
Stimulation of NMDARs could be associated with neural
migration, regulation of axon and dendrite formation,
synapse formation, cell death as well as selective degrada-
tion of synapses [21]. On the other hand, inhibition of
NMDARs might cause defects in neural development [22].
These studies suggested that NMDAR activation may reg-
ulate neural development and differentiation. It is found
that prenatal Al exposure impaired NMDARs neurotrans-
mission in the cortex of pups [23].
There are certain studies using various level of Al to

treat neural cells. In vitro studies suggested that Al (≤ 50
μM) promoted cerebellum granule cell, the smallest neu-
rons, viability while high level of Al (≥ 100 μM) caused
cell death [24]. Griffioen and his colleagues used 158.8
μM Al (aluminum maltolate) to treat human NT2 cells, a

neural committed human teratocarcinoma cell line,
which resulted in significant cell death after incubation
for 24 hours [25]. At concentration of 180 to 630 μM, Al
inhibited the expression of neural specific markers,
microtubule-associated protein type 2 [26]. After 3-hour
treatment of 500 μM (Al citrate), the neuronal viability
was only 20% of the control [27]. One mM of Al sup-
pressed the viability of cholinergic neurons [28], caused
neural cell clustering and aggregation at days 4-6 of incu-
bation, and cell death at days 8-12 [29].
The purpose of this study was to investigate the effects

of Al at physiologic levels (attainable from dietary source)
on hippocampal neural development during postnatal per-
iod by an in vitro model, using the biomarker NMDARs
expression. The hypothesis was that elevated Al levels up
to 37 and 74 μM would decrease neural cell viability and
NMDAR 1A, 2A/B expressions. The findings of this study
may provide valuable information to establish recommen-
dations for selecting infant formula.

Methods
Primary hippocampal neuron culture
Sprague-Dawley (SD) rats (250 g~300 g) were kept under
a 12 hours dark/12 hours light cycle, at 20-22°C. Rodent
laboratory chow (Purina Lab. Chow 5001, St. Louis, MO)
and water were available ad libitum. After mating, the
pregnant females were individually housed in plastic cages.
The animal experimental procedure was compliant to the
guidelines of the National Science Council in Taiwan and
approved by the IACUC (Institutional Animal Care and
Use Committee) of the Fu-Jen University.
Although there is no direct evidence to prove that

one-day of cell culture equivalent to one-day growth of
neonates, a primary culture of hippocampal neurons
from embryonic day 19 (E19) prenatal rat embryo was
adopted for 6 days to mimic the neurons in postnatal
day 3 (PND3) neonates in vivo [2,30].
The uterus of SD rats at E19 was removed under

anesthesia. Fetus was separated and the brains were dis-
sected and placed into 1 M HBSS (Gibco 14170-013).
Under a stereo microscope (Motic® Microscope), the hip-
pocampus was removed from each pups. The hippocampal
cells were dissociated by using 0.25% trypsin (Gibco
15050-065). Cells were taken up in NEUROBASAL™-A
Medium (Gibco 21103-049) complex, containing serum-
free B27 supplement, GlutaMax™-supplement, 25 μM
glutamate, 25 mM b-mercaptoedianol, penicillin and
streptomycin [31], which was designed for neural cell cul-
ture containing the inhibitors of glial cells [32]. In addi-
tion, nerve growth factor (100 ng/ml, NGF-7S, Sigma
N0513) was added into the medium. The hippocampal
neural cells were plated onto poly-D-lysine (Sigma P-
9011) and laminin (Sigma L-2020)-coated cover slips [33]
inside of a 24-well (TPP® 92024, 9.5 × 104/per well). The
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isolated neurons were allowed to grow at 37°C in 5% CO2/
95% air and the medium was changed every 3 days. In
general, one pregnant female rat had 10-12 fetus and
about 5-6 plates of 24-well plates of hippocampal neurons
could be isolated.

Treatments with aluminum
0, 37 and 74 μM of aluminum chloride (AlCl3, Merck
801081) was added respectively into the culture medium
on day 6 (PND3), and the cells were treated for 7 or 14
days, to mimic the period of birth to weaning in vivo
study. AlCl3 solution prepared in sterile deionized distilled
water, the pH value was adjusted to 7.4 and mixed before
used (Al content ≦ 5 ppb). Culture medium with or with-
out fresh-made Al was changed every 3 days. The Al
dosages added in the culture medium were based on pre-
vious pilot study in our lab. The Al concentration in the
whole brain of neonatal rats (PND 17) were 0.79 ±
0.24 mg/L, 0.83 ± 0.18 mg/L and 1.44 ± 0.72 mg/L when
neonates fed artificial rat’s milk with various Al contents
(0, 1 and 2 mM AlCl3 respectively from PND 3 to 17).
Therefore, physiological levels of Al in brain tissues are
between 0 and 2 mg/L (0-74 μM).

Cell morphology and viability
The cellular morphological images of hippocampal neu-
rons were obtained by a inverted microscope and a digital
image system (LEICA DMIL and DFC350FX). The viabi-
lity (cell counting) of neurons was examined by the 3-(4,5-
dimethylthiazo)-2,5-diphenyltetrazolium bromide (MTT)
test. Fresh-made MTT solution, 5 mg/ml in Dulbecco’s
Modified Eagle’s Medium (DMEM) was added to the
medium. The cells were incubated at 37°C, with 5% CO2

for two hours. The MTT solution was removed after incu-
bation and 500 μl DMSO (dimethyl sulfoxide) was added
to each well. Optical density was measured at 550 nm
with ELISA reader (μQuant, Bio-TEK instrument). The
results are presented by using the mean of control group
as 100%, and the cell viability in each experimental group
is expressed as percentage of the control group.

Immunocytochemistry
Dual-Immunofluorescence staining was conducted from
using a published method [33]. Briefly, cultured neural
cells were fixed in 4% paraformaldehyde in PBS and
washed with PBS. PBS with 5% FBS was added to the
cells as blocking buffer. After removing the solution, the
cultured cells were incubated with primary antibodies
(mouse anti-NMDAR 1A monoclonal antibody (Chemi-
con international MAB363) and rabbit anti-NMDAR 2A/
B polyclonal antibody (Chemicon international AB1548))
at 4°C overnight. After incubation with secondary antibo-
dies, including donkey anti-mouse IgG (Alex Fluor 488)

and donkey anti-rabbit IgG (Alex Fluor 555), cell nuclei
were stained by DAPI (Santa Cruz Biotechnology, sc-
3598). The cells were then mounted (DakoCytomation),
and fluorescent images were captured by a fluorescent
microscope (LEICA DM2500) and a digital image system
(Photometrics Cool SNAP™ EZ). The fluorescent signal
levels of NMDAR 1A, 2A/B were quantified, using the
chemoluminescence/fluorescence spectrometer (Perkin
Elmer Precisely Wallac Victor3™ 1420 multi-lable coun-
ter). The fluorescent content was calibrated by the cell
number per well and the protein expression was
expressed as the amount of specific protein in each cell.
The protein level in each experimental group was
expressed as percentage of the control.

Statistical analysis
Data was analyzed using a SAS package (Statistical Analy-
sis System, version 9.2). All values were expressed as mean
± standard deviation. ANOVA was used to analyze the dif-
ferences among the variable followed by Scheffe’s multiple
comparisons. The significance of difference was deter-
mined as p < 0.05.

Results
Figure 1 showed the microscopic images of cultured hip-
pocampal neurons (200 ×). Based on morphological obser-
vation, Figure 1b (37 μM, 7 days) and Figure 1c (74 μM,
7 days) seemed to have more neural cells than the control
group (Figure 1a). Figure 1e (37 μM, 14 days) and 1f
(74 μM, 14 days) appeared to have more neural cell, com-
pared to the control group (Figure 1d). More interconnec-
tions between aggregates of hippocampal neurons were
also observed in 74 μM Al groups cultured for 7-days
(Figure 1c) and 14-days (Figure 1f), compared to the con-
trol groups accordingly (Figure 1a, d). In addition,
increased neurite outgrowth (white arrows) at PND 17, as
illustrated in Figure 1e were also observed in hippocampal
neurons of Al treated cells.
Quantitative results of cell viability of hippocampal neu-

rons were shown as Table 1. The result of statistical analy-
sis indicated that the neural cell viability would increase
along with the Al exposure dosage. The cell numbers of
three groups (0, 37 and 74 μM Al) were (2.1 ± 1.3) × 104,
(4.8 ± 1.5) × 104 and (6.9 ± 2.5) × 104 respectively (p <
0.05). The neural cell viability would also increase along
with the Al exposure time, and the cell numbers of two
groups (7 and 14 day) were (3.9 ± 1.8) × 104 and (6.3 ±
2.8) × 104 respectively (p < 0.05). Neuronal cell viability
significantly increased by 3.08 and 4.34 times compared to
the control group ((1.2 ± 0.3) × 104) in cells treated with
37 and 74 μM Al treated for 7 days ((3.8 ± 0.8) × 104,
(5.4 ± 1.2) × 104, p < 0.05). Compared to the control
group((3.0 ± 1.2) × 104), neuronal cell viability significantly
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increased by 1.94 and 2.78 times in cells treated with 37
and 74 μM Al for 14 days ((5.8 ± 1.5) × 104, (8.4 ± 2.6) ×
104, p < 0.05).
The immunocytochemical analysis for the expression

of NMDAR 1A (green color) and NMDAR 2A/B (red
color) were shown as Figure 2 and 3. NMDAR 1A and
NMDAR 2A/B were both detected on the entire neuron,
including cell membrane and cytoplasm (Figure 2j).
Based on morphological observation, cells in Figure 2k
(37 μM, 7 days) and 2l (74 μM, 7 days) seem to have
less NMDARs, compared to the control group (Figure
2j). Cell disruption (white arrows) was observed in neu-
rons treated with 74 μM Al for 7 days (Figure 2l) and
cell debris (white arrows) was observed in neurons trea-
ted with 74 μM Al for 14 days (Figure 3l). These

findings suggested that Al might urge the NMDARs
neurons to cell disruption, debris and death.
Quantitative analysis of NMDAR 1A expression was

shown in Figure 4. The NMDAR 1A expressions per
cell in Al treated groups (both 37 and 74 μM) were
lower than that in the control group in accordance with
time (p < 0.05). Cells treated with 37 and 74 μM Al for
7 days showed decreased NMDAR 1A expressions by
39% and 40%, respectively, compared to the control
group (p < 0.05). The NMDAR 1A expressions in cells
treated with 37 and 74 μM Al for 14 days both dropped
73% compared to the control group (p < 0.05).
Similar result was observed in the NMDAR 2A/B

expressions (Figure 5). The expressions of NMDAR 2A/B
per cell decreased in Al treated groups for both 7 days and
14 days (Figure 5, p < 0.05). Compared to the control
group, NMDAR 2A/B expressions decreased 36% and 39%
in the cells treated with 37 and 74 μM Al for 7 days
respectively (p < 0.05), and 75% and 73% in the cells trea-
ted with 37 and 74 μM Al exposure for 14 days respec-
tively (p < 0.05).

Discussion
In this study, we found that treating culturing neurons
with 37 and 74 μM of Al increased neurite outgrowth, an
index of neural differentiation, in the developing neuron.
Evidences had pointed out that the events of sprouting
and neurite outgrowth were associated with an increased
tyrosine-tubulin (Tyr-Tub) expression which enhanced

Figure 1 Microscopic images of cultured hippocampal neurons. (A), (B), and (C) are neurons cultured with 0, 37 and 74 μM Al respectively
for 7 days (PND 10). (D), (E) and (F) are neurons cultured with 0, 37 and 74 μM Al respectively for 14 days (PND17). White arrows label the
neurite outgrowth and white line shows the scale bar expressed as 50 μm.

Table 1 The cell viability of cultured hippocampal
neurons by MTT-test 1,2,3

Time (day) Al level (×104 μM) Time effect

0 37 74

7 1.2 ± 0.3 CY 3.8 ± 0.8 BY 5.4 ± 1.2 AY 3.9 ± 1.8 Y

14 3.0 ± 1.2 BX 5.8 ± 1.5 BX 8.4 ± 2.6 AX 6.3 ± 2.8 X

Dosage effect 2.1 ± 1.3 C 4.8 ± 1.5 B 6.9 ± 2.5 A

1. All values are Mean ± SD (cell numbers).
2. Values in the same row with different A, B, C superscripts are significantly
different at a = 0.05 level.
3. Values in the same column with different X, Y superscripts are significantly
different at a = 0.05 level.
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the neuronal plasticity. Meanwhile, extra cellular matrix
molecules and cell adhesion molecules could also pro-
mote neurite outgrowth [34]. One study had indicated
that 10-20 μM Al (aluminum lactate) promotes neuronal
sprouting and neurite outgrowth are associated with an
increased tyrosine-tubulin (Tyr-Tub) expression in a
mouse neuroblastoma cell line after 48 and 72 h of Al

exposure [35]. The result of Al accelerating neuronal
sprouting and neurite outgrowth was similar to our
study. Also as a trivalent element, neurons seeded on gal-
lium nitride (GaN) were able to form an extensive neurite
network and neurite outgrowth [36]. However, there is
still a few evidence showing possible mechanism of Al
affecting neurite outgrowth directly. Further investigation

Figure 2 Fluorescence immunocytochemical images of the cultured hippocampal neurons. Green (A, B, C), red (D, E, F) and blue (G, H, I)
fluorescence represent NMDAR 1A, NMDAR 2A/B and the nucleus of the cells, respectively. (J), (K) and (L) are neurons cultured with 0, 37 and 74
μM Al for 7 days (PND 10). White arrows label the cell disruption and white line shows the scale bar expressed as 50 μm.
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is needed for elucidating the possible pathways Al may be
involved in neurite outgrowth.
As mentioned earlier, many researches had proved

that exposure to high level of Al (150 μM-1 mM) could
decrease the neural cell numbers and cause cell death.
However, few study concerned about the effect of phy-
siological concentrations of Al (< 100 μM) on neural

cells. There was a study reported that low levels of Al
(≤ 50 μM) promoted cerebellum neural cell viability
while high levels of Al (≥ 100 μM) caused cell death
[24]. Our results indicated that cell viability was still
enhanced in developing or neonatal neurons even with
Al content up to 74 μM. Nonetheless, physiological
levels of Al still could cause some subtly negative

Figure 3 Fluorescence immunocytochemical images of the cultured hippocampal neurons. Green (A, B, C), red (D, E, F) and blue (G, H, I)
fluorescence represent NMDAR 1A, NMDAR 2A/B and the nucleus of the cells, respectively. (J), (K) and (L) are neurons cultured with 0, 37 and 74
μM Al for 14 days (PND 17). White arrows label the cell debris and white line shows the scale bar expressed as 50 μm.
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influences to the neural cell. Low levels (100 nM to
2 μM Al2 (SO4)3) of Al appeared to induce a stress-
responsive, pro-inflammatory and pro-apoptotic gene
expression program that may initiate, enhance and/or
accelerate neural cell demise, both neuronal- and glial-
specific genetic output in both isolated human brain cell
nuclei [37] and cultured human neural cells [38].
In the limbic system of mammals, the hippocampus is

crucial for processes of learning and long-term memory.
Since NMDARs play an important role on neural cell
growth and differentiation in hippocampus, expression
of NMDARs in hippocampus has been implicated as

important indicators of both learning and neural devel-
opment [39]. Several studies indicated that there is
NMDAR 1A/2B subunits combination in immature
brain and NMDAR 1A/2A subunits combination in
mature brain [40,41]. The distribution and variation of
NMDARs subunits in the developmental process might
constitute the functional divergence in brain nerve sys-
tem. In present study, protein expressions of NMDAR
1A and NMDAR 2A/B decreased while increasing
dosages of Al in culture medium (37 and 74 μM). It was
also suggested that overexposure of Al caused neural
excitability and decreased cell viability, possibly
mediated by NMDARs [23,42]. Our results was also
confirmed with report of Exley et al. [43] that Al could
induce toxic effects on neurons even at physiological
concentrations. Other report indicated that the thresh-
old concentration of Al without inducing negative
effects on NMDA is currently set at < 10 μM [42]. This
study concluded that exposure to physiological concen-
trations (0-74 μM) of Al might cause the developmental
change of hippocampus in neonatal rats.
The results of fluorescence immunocytochemical

images suggested that Al could hamper the hippocampal
neurons that express NMDARs proteins, although the
neural cell viability of the hippocampus was enhanced by
37 and 74 μM of Al. Walton’s study suggested that Al
induced the hippocampal lesion of aged rats and AD peo-
ple, looked like cell disruption, consisting of dysfunc-
tional Al-rich microtubule-depleted pyramidal cells with
damaged neurites and synapse loss [44]. Therefore, pro-
liferated cells might express functional proteins other
than NMDARs. Our results also confirmed that Al expo-
sure caused decrement of NMDARs expression during
developmental period of neonatal rats.
The possible mechanisms of Al toxicity on neurons in

brain was also an important issue. Al might block ion
uptake of Ca2+, Fe2+, Mg2+, and Na+ that affected neuronal
metabolism [45]. Al might induce free radical mediated
lipid peroxidation, increment of oxidative stress and cell
damage in glioma and neuroblastoma [46]. Physiologically
relevant amounts of iron and aluminum are capable of
inducing Fenton chemistry-triggered gene expression pro-
grams that may support downstream pathogenic responses
and brain cell dysfunction [47]. Al might also stimulate G-
proteins associated with second messenger system in vivo
[48]. Kim showed that prenatal exposure to Al altered
neuronal nitric oxide synthase expression in the frontal
cortex of rat offspring [49]. It was suggested that Al had
high affinity to nucleic acid, allowing accumulation of Al
in chromosome of hippocampal pyramidal neurons and
neuron death [50]. Al also affects enzymes that maintain
brain function, such as cholinesterase [51] and superoxide
dismutase [52]. Al may inhibit Ca2+ channel; thus increase
permeability and fluidity of neural cell membrane [53].

Figure 4 Quantitative analysis of NMDAR 1A expression. There
are significant difference (P < 0.05) of values with different
superscripts A, B, at the neurons which were cultured with 0, 37
and 74 μM Al at the same time point. There are significant
difference (P < 0.05) of values with different superscripts X, Y, at the
7th day (PND 10) and the 14th day (PND 17) at the same Al level.
NMDAR 1A expression in 7-day control was considered as 100%.

Figure 5 Quantitative analysis of NMDAR 2A/B expression.
There are significant difference (P < 0.05) of values with different
superscripts A, B, C, at the neurons which were cultured with 0, 37
and 74 μM Al at the same time point. There are significant
difference (P < 0.05) of values with different superscripts X, Y, at the
7th day (PND 10) and the 14th day (PND 17) at the same Al level.
NMDAR 2/AB expression in 7-day control was considered as 100%.
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In our study, we suggested that Al might induce neuro-
toxicity by hampering protein expressions of NMDAR 1A
and NMDAR 2A/B.
The final shematic conclusions of the present study

included four points (Figure 6). Al enhances neonatal
hippocampal neurite outgrowth and neural cell viability.
Al hampers the expression of NMDAR 1A and 2A/B of
the hippocampal neurons.

Conclusions
In conclusion, treating hippocampal neurons with 37
and 74 μM of Al for 14 days enhanced neural cell viabi-
lity, but down-regulated the expressions of NMDAR 1A
and NMDAR 2A/B. It was suggested that Al exposure
might alter the development of hippocampal neurons in
neonatal rats. The mechanisms by which Al increases
neural cell viability and decreases NMDARs expressions
will need further investigation.
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