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Hantavirus, a genus of rodent- and insectivore-borne viruses in the family Bunyaviridae,
is a group of emerging zoonotic pathogens. Hantaviruses cause hemorrhagic fever
with renal syndrome and hantavirus cardiopulmonary syndrome in man, often with
severe consequences. Vascular leakage is evident in severe hantavirus infections, and
increased permeability contributes to the pathogenesis. This review summarizes the
current knowledge on hantavirus interactions with hematopoietic and endothelial cells,
and their effects on the increased vascular permeability.
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INTRODUCTION TO HANTAVIRUSES AND THE ASSOCIATED
DISEASE
Hantavirus is a genus of rodent- and insectivore-borne (shrews,
moles, and bats) viruses of the family Bunyaviridae. Hantaviruses
cause two human diseases: hemorrhagic fever with renal syndrome
(HFRS) in Eurasia and Hantavirus cardiopulmonary syndrome
(HCPS) in the Americas. The infection in reservoir hosts is chronic
and asymptomatic, and infected animals secrete the virus in
their excreta. Thus far only rodent-borne hantaviruses have been
associated with human disease. Hantaan (HTNV) and Dobrava–
Belgrade hantaviruses (DOBVs) cause a severe form of HFRS
(mortality 5–15%) in Asia and Balkans, respectively, whereas
Puumala (PUUV) virus cause a milder form of HFRS (mortal-
ity <0.1%) in Northern and Central Europe. Seoul virus (SEOV),
carried by urban rats, causes a moderate HFRS worldwide. Sin
nombre (SNV) and Andes (ANDV) viruses are the main causative
agents of HCPS (mortality ∼40%) in Northern and Southern
America, respectively. Also non-pathogenic or less virulent rodent-
borne hantavirus species such as Prospect Hill (PHV) and Tula
(TULV), which both genetically cluster close to PUUV, have been
recognized (Jonsson et al., 2010; Vaheri et al., 2011, 2013; Klempa
et al., 2013).

The incubation period of HFRS is commonly 2–4 weeks
but it may vary from 10 days up to 6 weeks. The course of
HFRS is divided into five phases: febrile, hypotensive, oliguric,
polyuric, and convalescent. The febrile phase of 3–6 days starts
with rapid onset of fever accompanied with myalgia, headache,
prostration, thirst, nausea, vomiting, abdominal pain, blurred
vision, dizziness, and flushed face. In severe cases fever is fol-
lowed by decline in blood pressure (the hypotensive phase) that
is accompanied by thrombocytopenia, leukocytosis and signs of
disseminated intravascular coagulation (DIC). Vascular leakage,

commonly occurring at this phase, is manifested as petechiae,
periorbital edema, hemoconcentration, and hypotension. The
most severe cases may even lead to a fatal shock within 4–5 days
after onset of symptoms. Hemorrhages continue with ecchymo-
sis, melena, hematemesis, and epistaxis. Oliguria, hematuria,
proteinuria, and polyuria are signs of renal failure and they pre-
cede the convalescent phase that may require several weeks (Lee,
1989; Peters et al., 1999; Jonsson et al., 2010). In mild HFRS the
phases are not easily distinguished and signs of vascular leak-
age may be absent. Typically 10% of PUUV- and 30–70% of
HTNV-infected patients show hemorrhages (Lahdevirta, 1971;
Lee, 1989).

Similarly to HFRS, the incubation period in HCPS is rather
long, ranging from 1 to 5 weeks. The course of HCPS is
divided into febrile, cardiopulmonary, diuretic, and conva-
lescent phase. The symptoms begin with non-specific febrile
phase of 3–5 days that may be include headache, dizziness,
nausea, anorexia, diarrhea, and abdominal pain. Pulmonary
and/or cardiogenic complications follow the febrile phase. Symp-
toms of pulmonary edema include dyspnea, tachypnea, and
non-productive cough, which are likely due to leakage of lung
capillaries. Resulting hypoxia may cause tachycardia and shock,
which may be fatal (Peters et al., 1999; Jonsson et al., 2010).
The pulmonary edema formed during cardiopulmonary phase
is cleared during diuretic phase. Like in HFRS, thrombocytope-
nia, oliguria, renal failure, and hemorrhages are often diagnosed
in HCPS caused by South American viruses such as ANDV
but are strikingly often missing in SNV-caused HCPS (Mac-
neil et al., 2011). Due to the fact that some HFRS cases involve
pathological findings similar to HCPS cases a common name (han-
tavirus disease) for both diseases has been suggested (Vaheri et al.,
2013).
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MECHANISMS OF ENDOTHELIAL CELL PERMEABILITY IN
HANTAVIRUS DISEASES
Plasma leakage from vasculature into tissues is a hallmark of han-
tavirus infection. Clinically, this is presented by hemorrhages (the
presence of plasma fluid in tissues), hemoconcentration (rela-
tive cell number increase in plasma), and hypotension (decreased
blood pressure). Vascular leakage can be caused by either enhanced
endothelial cell (EC) permeability or by direct injury to the vas-
culature. In HFRS, widespread EC swelling, perivascular edema,
diapedesis of erythrocytes, and mononuclear cell infiltrates with-
out evidence of EC damage have been observed by microscopy
(Tsai, 1987). This suggests that endothelial barrier function is
lost due to enhanced permeability rather than by direct cellular
cytotoxicity or injury of the vasculature. Hantavirus antigens are
present in ECs during HFRS (Cosgriff, 1991) and in ECs of lung
capillary during HCPS (Zaki et al., 1995), but based on in vitro
studies hantavirus infection of ECs does not induce direct cyto-
pathic effects (Yanagihara and Silverman, 1990; Pensiero et al.,
1992; Valbuena and Walker, 2006; Mackow and Gavrilovskaya,
2009; Vaheri et al., 2013). However, virus-induced general inflam-
mation may compromise the barrier function of the endothelium

and induce vascular leakage. If so, similar mechanisms could be
behind the hemorrhages seen in other viral infections. On the
other hand, the infection of ECs might lead to virus-specific pro-
motion of permeability. Evidence in favor for both scenarios is
discussed in the following paragraphs. Hypotheses on increased
vascular permeability in hantavirus diseases are presented in
Figure 1.

INFLAMMATION
Endothelial cell activation occurs in HFRS. Upregulated levels of
soluble EC receptors: E-Selectin (Takala et al., 2000), intercel-
lular adhesion molecule (ICAM; Han et al., 2010), and tumor
necrosis factor receptor (TNFR)-1 (Kyriakidis and Papa, 2013)
are released into circulation during acute HFRS. While there is
no evidence on EC activation in HCPS, the upregulation of pro-
inflammatory cytokines: interleukin (IL)-6, tumor necrosis factor
(TNF)-α, and interferon (IFN-γ) that all are capable of acti-
vating the endothelium, have been reported in both hantavirus
diseases (Linderholm et al., 1996; Peters et al., 1999; Klingstrom
et al., 2002; Abel Borges and Figueiredo, 2008; Sadeghi et al.,
2011; Saksida et al., 2011; Korva et al., 2013; Kyriakidis and Papa,

FIGURE 1 | Mechanisms of vasculopathy in hantavirus infections. The
recognition of hantaviruses by macrophages (Mϕ) or dendritic cells
(DCs) induces proinflammatory cytokines, which evoke a change from
anti- to pro-adhesive phenotype of endothelial cells (ECs). Pro-adhesive
ECs bind monocytes (MOs) through ICAM-1 – integrin β2 interaction,
and platelets (PLTs) through vWF through αIIbβ3 integrin interaction.
Activated MOs and PLTs then respectively promote coagulation through
tissue factor (TF) and contact activation pathway (factor XII), to restrict
the spread of the virus. Simultaneously hantavirus-infected ECs display

viral glycoproteins on their surface, which respectively bind β2 and β3
integrins of polymorphonuclear neutrophils (PMNs) and PLTs. The
binding results in the release of neutrophil extracellular traps (NETs)
from PMNs and increased activation of PLTs. These virus-induced events
enhance inflammation and may result in an excessive formation of
immunothrombosis. Complement and contact pathway activations, both
associated with immunothrombosis, contribute to vascular leakage
through anaphylatoxins C5a and C3a, membrane attack complex (MAC)
and bradykinin (BK).
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2013). Especially high-levels of TNF-α is linked with a more
severe disease (Kanerva et al., 1998; Makela et al., 2001; Borges
et al., 2010; Korva et al., 2013). Pro-inflammatory cytokines are
mainly produced by activated macrophages. It is known that
macrophages can be infected by hantavirus which could lead
to their activation (Vaheri et al., 2013). These cytokines induce
EC permeability either directly or via EC activation, which
leads to leukocyte recruitment and subsequent EC gap formation
(Marcos-Ramiro et al., 2014). Leukocytosis is common in han-
tavirus diseases and probably relates to the inflammatory response
against the pathogen. Interestingly, a recent report indicated
that neutrophil activation through extracellular trap formation
occurs in the mild form of HFRS (Raftery et al., 2014). Han-
taviruses can activate neutrophils in vitro by direct binding but
also pro-inflammatory ECs will recruit neutrophils. The role of
pro- or anti-inflammatory response to hantavirus infection in the
rodent host respectively promote either viral clearance or toler-
ance (Easterbrook and Klein, 2008; Guivier et al., 2010; Li and
Klein, 2012). Therefore, it seems that while the pro-inflammatory
response of the host is required for virus clearance, its excessive
activation will lead to EC permeability and subsequent vascular
leakage.

COMPLEMENT ACTIVATION
Complement activation occurs in acute HFRS, as judged by
decreased C3 and increased membrane attack complex (MAC)
levels in plasma (Guang et al., 1989; Paakkala et al., 2000; Sane
et al., 2012; Laine et al., 2014), and it correlates with upregula-
tion of pro-inflammatory cytokines and disease severity (Laine
et al., 2014). Complement activation produces circulating ana-
phylatoxins, C3a and C5a, which may cause EC activation and
permeability in addition to direct MAC-mediated vascular injury
(Kerr and Richards, 2012). Complement activation could be
inflammation-dependent (Takano et al., 2013). However, comple-
ment might be activated also by virus-related immune complexes
that are seen on the surface of ECs and platelets in HFRS
(Penttinen et al., 1981; Guang et al., 1989). We recently reported
upregulation of galectin-3 binding protein (Gal-3BP) in acute
HFRS, and found a correlation between Gal-3BP and MAC lev-
els (Hepojoki et al., 2014). We also demonstrated that hantavirus
infection induces Gal-3BP production in ECs (Hepojoki et al.,
2014), and such overproduction could sensitize the infected cells
for complement attack. Furthermore, our unpublished data show
that Gal-3BP interacts with hantavirus particle, and thus also
the binding of Gal-3BP to either virions or to the surface of
infected cells may promote complement activation. Glomeru-
lar ECs are the prime site of complement attack (Takano et al.,
2013). Interestingly, we found that Gal-3BP is produced in the
glomeruli and tubular epithelium of PUUV-infected macaques.
The complement attack against glomerular EC could contribute
to kidney dysfunction in hantavirus diseases. Decay-accelerating
factor (DAF or CD55) acts as a controller of complement acti-
vation on cell surfaces. Curiously, DAF also interacts with both
New and Old World hantaviruses (Krautkramer and Zeier, 2008;
Buranda et al., 2010; Popugaeva et al., 2012), and the interaction
might affect DAFs physiological functions resulting in increased
complement activation. On the other hand, hantavirus infection

of renal glomerular (e.g., podocytes) and tubular cells results in
disruption of cell-cell contacts that could directly lead to decreased
kidney barrier function and subsequent proteinuria (Krautkramer
et al., 2011). Also, soluble urokinase-type plasminogen activator
receptor (suPAR), elevated in the plasma and urine of HFRS
patients, could affect podocyte integrity (Outinen et al., 2013,
2014).

IMPAIRED HEMOSTASIS
Increased coagulation is associated with hemorrhages especially
in HFRS. Laboratory findings such as increased bleeding time,
prothrombin time, activated partial thromboplastin time, and
thrombin time together with decreased plasma activity of sev-
eral coagulation factors, and the presence of fibrin degradation
products are indicative of DIC in severe HFRS (Guang et al.,
1989; Lee et al., 1989). The decreased levels of coagulation fac-
tors compromise the barrier function of vasculature and lead to
increased bleeding times. Additionally, the increased activity of
thrombin can directly induce EC permeability (Kleinegris et al.,
2012). Both increased coagulation and fibrinolysis are present
also in the mild form of HFRS, even though hemorrhages are
not commonly observed (Lahdevirta, 1989; Laine et al., 2010,
2011, 2014). Although coagulation abnormalities are recognized
in HCPS (Duchin et al., 1994), they have not been comprehen-
sively studied. Given the central role of platelets in coagulation,
it is likely that thrombocytopenia in hantavirus diseases is due to
increased peripheral consumption. On the other hand, the loss
of platelets from circulation could be due to platelet binding of
infected ECs as suggested by in vitro studies (Gavrilovskaya et al.,
2010).

Extrinsic and contact system pathways can induce coagulation.
Increased activity of plasma kallikrein in HFRS patients (Guang
et al., 1989) is suggestive of contact system activation. Corroborat-
ing this notion, one severely ill patient with NE was successfully
treated with icatibant, a bradykinin receptor antagonist (Antonen
et al., 2013; Vaheri et al., 2014). Bradykinin is a peptide produced
in plasma through kallikrein–kinin system and it promotes vascu-
lar permeability. Furthermore, the surface of hantavirus-infected
ECs promotes kallikrein activation, bradykinin formation, and
increased permeability when incubated with proteins involved
in the kallikrein–kinin pathway of plasma (Taylor et al., 2013).
A shift from anticoagulant to procoagulant-state is seen in the
endothelium of HFRS patients. In acute HFRS von Willebrand
factor (vWF) and coagulation factor VIII, normally residing in
Weibel–Palade bodies of ECs (Rondaij et al., 2006), are released
in to the circulation (Guang et al., 1989; Laine et al., 2011). The
exocytosis of Weibel–Palade bodies is further corroborated by the
detection of increased levels of angiopoetin-2, a protein promot-
ing vascular permeability (Eklund and Saharinen, 2013) in HFRS
(Krautkramer et al., 2014).

The activation of ECs together with complement and
coagulation pathways in hantavirus diseases is suggestive of
immunothrombosis (Engelmann and Massberg, 2013), which
is a form of innate immunity that acts by trapping blood-
borne pathogens to a “mesh” of fibrin and chromatin. Fibrin
is a product of thrombin activity and extracellular chromatin is
released from activated neutrophils and monocytes. Failure of
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immunothrombosis to restrict the spread of the virus may trigger
DIC via unrestricted formation of microvessel thrombi and the
excessive activation of inflammation. Immunothrombosis could
thus represent the first physiological stage in the development of
severe hantavirus disease.

CYTOTOXIC T CELLS AND HUMORAL IMMUNE RESPONSE
The possible role of the cytotoxic T cells (CTLs, also referred
to as CD8+ T cells) in hantavirus pathogenesis is extensively
reviewed elsewhere (Terajima and Ennis, 2011). It is clear that
CTLs are upregulated in both acute HFRS and HCPS (Huang
et al., 1994; Kilpatrick et al., 2004; Wang et al., 2009; Lindgren et al.,
2011; Rasmuson et al., 2011). One mechanism on how CTLs might
enhance vascular permeability is direct killing of hantavirus-
antigen positive ECs. However, cell death is not obvious in patients.
Lately, hantavirus-infected ECs were found to block CTL and nat-
ural killer (NK) cell cytotoxicity in vitro (Gupta et al., 2013), thus
providing an explanation for the discrepancy. Despite this, CTLs as
well as other hematopoietic cells may contribute to the increased
EC permeability by releasing pro-inflammatory cytokines. The
upregulation of Gal-3BP, a potent stimulator of CTLs and NK
cells (Ullrich et al., 1994), in acute hantavirus infection (Hepojoki
et al., 2014) might play a role in the pathogenesis of hantavirus
disease.

Hantavirus infection also induces a strong antibody response
against the structural proteins of the virus (Vapalahti et al.,
1995, 2001). Curiously, the appearance of antibodies against the
viral proteins coincides with the occurrence of symptoms. Also
rheumatoid factor (RF) is present at the same time (Penttinen
et al., 1981). Both RF and antibodies could contribute to comple-
ment activation, which in turn could compromise vasculature’s
barrier functions.

INFECTION OF ECs
Pro-inflammatory cytokines and mediators of both comple-
ment and coagulation cascades are mainly produced by activated
monocyte/macrophages or cleaved from plasma proteins. But
what is the role of replication in ECs for hantavirus pathol-
ogy? Hantavirus infection of ECs induces interferon (IFN-β)
and chemokines RANTES (regulated on activation, normal T
cell expressed and secreted) and IP-10 (IFN-γ inducible pro-
tein) in vitro (Sundstrom et al., 2001; Geimonen et al., 2003;
Kraus et al., 2004; Khaiboullina et al., 2013). However, the major-
ity of reports indicate that hantavirus infection per se does
not alter EC permeability (Yanagihara and Silverman, 1990;
Pensiero et al., 1992; Khaiboullina et al., 2000; Sundstrom et al.,
2001; Gavrilovskaya et al., 2008), although vascular endothelial
growth factor (VEGF)-dependent permeability increase occurs in
ANDV infection (Shrivastava-Ranjan et al., 2010). Interestingly,
there is a decrease in the level of the tight junction protein ZO-1
in HTNV-infected glomerular ECs that likely affects the barrier
function of glomerulus (Krautkramer et al., 2011). Except for
innate immunity activation, very little data supports EC activa-
tion in response to hantavirus infection in vitro, suggesting that
EC infection would not contribute to inflammation.

It seems widely accepted that pathogenic hantaviruses dif-
fer from non-pathogenic viruses by their ability to delay early

innate immunity induction (i.e., IFN-β), which would selec-
tively restrict replication of apathogenic viruses (Geimonen et al.,
2003; Spiropoulou et al., 2007; Matthys and Mackow, 2012). These
observations are mainly based on PHV and could in the future be
complemented by studies with other apathogenic or low-virulent
hantaviruses. This would be very interesting, since even different
isolates of the same virus markedly differ in replication kinetics
and in recognition by the innate immunity machinery (Sundstrom
et al., 2011). Integrins have been, according to in vitro studies,
declared as the cellular receptors of hantaviruses, and PHV is dis-
tinct from all pathogenic hantaviruses studied in its ability to use
α5β1 instead of αVβ3 integrin on ECs (Mackow and Gavrilovskaya,
2009). However, since the virulence of HFRS- and HCPS-causing
hantaviruses (both claimed to use β3-integrin) differs dramat-
ically, the role of integrin-receptor on virulence is scanty. In
fact Sangassou hantavirus, capable of infecting humans (Klempa
et al., 2010), was shown prefer β1 integrins for entry in vitro
(Klempa et al., 2012). Integrins of hematopoietic cells (platelets
and neutrophils), interact in vitro with hantaviruses to mediate
adherence of platelets on infected ECs and release of chromatin
from neutrophils (Gavrilovskaya et al., 2010; Raftery et al., 2014).
Such interactions could directly contribute to thrombocytopenia,
coagulopathy and EC permeability.

Endothelial cell infection could lead to viremia, which has been
postulated to play an important role in the vascular dysfunction
(positive correlation with hemoconcentration and thrombocy-
topenia) and worsened disease outcome in SNV-caused HCPS
(Terajima et al., 1999). In concordance, more viral RNA has been
found in plasma of patients with DOBV (severe HFRS) as com-
pared to PUUV (mild HFRS; Korva et al., 2013). Similarly, more
DOBV than PUUV is found in their respective carrier rodents
(Korva et al., 2009). These findings suggest, possibly trivially, that
the actual amount of infecting virus could be an important fac-
tor for pathogenesis. This is also supported by in vitro infections
where the initial viral load negatively correlates with cell survival
(Strandin et al., 2008).

VASCULAR ENDOTHELIAL GROWTH FACTOR
Vascular endothelial growth factor induces angiogenesis, which
is accompanied by increase in vascular permeability. In vitro
observations show that hantavirus infection renders ECs hyper-
sensitive to the permeabilizing effects of VEGF and VEGF levels
are increased in both HFRS and HCPS (Shrivastava-Ranjan et al.,
2010; Gavrilovskaya et al., 2012; Ma et al., 2012; Tsergouli and
Papa, 2013; Krautkramer et al., 2014), but at different kinetics.
While in HCPS the VEGF levels return to normal in the recovery
phase, the VEGF level may remain high in HFRS from the febrile to
early convalescent phase. This suggests that VEGF would not con-
tribute to disease development in HFRS, but would rather mediate
angiogenesis and vasculature repair in the recovery. Increased lev-
els of circulating endothelial progenitor cells (EPCs), correlating
with disease recovery, are observed in NE (Krautkramer et al.,
2014).

CONCLUSION
Human hantavirus infection is a dead-end for the virus. Humans
and the different reservoir hosts differ genetically, and the genetic
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differences in receptors, and in the mediators of immune response
likely contribute to the course of the disease. The degree of
homology and molecular mimicry between the reservoir host
and human might partially explain the varying degree in dis-
ease severity between different hantaviruses. The same factors
could also explain the differences in pathogenesis between differ-
ent hantaviruses. All human hantaviruses initially enter the lung.
The HCPS causing hantaviruses predominantly cause the disease
already in the lung, whereas HFRS causing hantaviruses find their
way into kidneys. The degree of disease severity is also affected
by individual differences in for instance immune activation. In
overall it seems that there are several simultaneously occurring fac-
tors, which contribute to the permeability increase, in hantavirus
infection.
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