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Dynamical Mechanism of Polarons 
and Bipolarons in Poly(p-Phenylene 
Vinylene)
Fábio Luís de Oliveira Paula1, Leonardo Luiz e Castro1, Luiz Antonio Ribeiro Junior1,2*, 
Rafael Timóteo de Sousa Júnior3, Geraldo Magela e Silva1 & Pedro Henrique de Oliveira Neto1

Studies on Poly(p-Phenylene Vinylene) (PPV) and derivatives have experienced enormous growth since 
they were successfully used to fabricate the first efficient prototypes of Polymer Light-Emitting Diodes 
in the 90s. Despite this rapid progress, understanding the relationship between charge transport and 
the morphology in these materials remains a challenge. Here, we shed light on the understanding of 
the transport mechanism of polarons and bipolarons in PPVs by developing a two-dimensional tight-
binding approach that includes lattice relaxation effects. Remarkably, the results show that the PPV 
lattice loses the energy related to its conjugation during time by transferring this amount of energy 
to electrons. Such a process for energy transfer permits the quasiparticles to overcome the potential 
barrier imposed by the local lattice deformations, that are formed in the presence of an additional 
charge and, consequently, their electric field assisted transport takes place. Within the framework of 
this transport mechanism, a better insight into the origin of the carrier mobility in PPV and derivatives 
can be achieved and would be a useful guide for improving their chemical structures and morphologies.

Polymer Light-Emitting Diodes (PLEDs) are currently considered the most prominent candidates for developing 
new display technologies with good cost-efficiency compromise1,2. The awakening of interest for this field of 
research have initiated in the discovery of the Poly(p-Phenylene Vinylene) (PPV) light-emitting properties that 
are a result of both easy processing and mechanical flexibility presented by this material3. In a PLED, electrons 
and holes are injected into the polymer layer forming self-localized quasiparticles due to the strong mutual inter-
action between charge and lattice deformations, namely polarons. This carrier species has spin ±1/2 and charge 
±e4. Alternatively, bipolarons are generated in PLEDs when the process of injecting charge results in a large con-
centration of polarons. In this sense, two acoustic polarons with the same charge and antiparallel spins can merge 
to a bipolaron, that is a spinless charge carrier with charge ±2e4. Recognizably, polarons and bipolarons are the 
primary structures in playing the role of the charge transport mechanism in conjugated polymers5. They are com-
posite states in which their stability strongly depends on the lattice degrees of freedom. Therefore, determining 
the relationship between charge transport and morphology is crucial to increasing the charge carrier mobility of 
PPVs. However, the impact of these features interplay on the PLED performance is still unclear.

So far, the majority of investigations to understand the nature of the charge transport mechanism in PPVs 
have focused on experiments of time-of-flight (TOF) measurements involving PLEDs and field-effect transis-
tors6–15. Importantly, some studies have also measured the mobility of charge carriers along isolated PPV chains16. 
By using the TOF technique, Blom and coworkers have examined the hole transport in PPVs and derivatives as 
a function of electric field, temperature, frequency, and layer thickness6–9,17. Their main results show that the 
dispersive transport of holes governs the charge transport mechanism in these materials. The dispersion in the 
hole transport is due to mainly structural disorder, rather than to energetic disorder. Moreover, their findings 
also demonstrate that an enhancement in the space-charge-limited hole current of PPV derivatives may take 
place at high bias and room temperature due to the carrier density dependence of the hole mobility. As a coun-
terpoint, signatures of non-dispersive hole transport in soluble PPV derivatives were found by also employing 
TOF measurements18. The results indicate that transport properties depend on both the chemical structures of 
the polymers and solvents used for film preparation. Depending on the solvent used, PPV films can exhibit either 
non-dispersive or dispersive transport. Interestingly, these results open channels for controlling the performance 
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of PPV-based devices through careful selection of solvents. From the theoretical standing point, the effect of the 
interplay between torsional disorder of structural units and the charge transport in PPVs was studied by using 
a one-dimensional tight-binding approximation19,20. The results reveal that static or dynamic ring torsions only 
impose temporary restrictions of localization on propagating charge carriers19. Moreover, other theoretical stud-
ies have also shown that PPV chains are much more planar structures regarding other polymer species, such as 
polythiophene20. Since torsion effects have a small impact on the overall carrier dynamics in PPVs, it is essential 
to elucidating other vital mechanisms that establish the nature of the charge transport in these materials.

In the present work, we investigate the transport mechanism of polarons and bipolarons in PPVs using a 2D 
tight-binding Hamiltonian that considers lattice relaxation effects. Our approach defines a set of parameters that 
model a PPV lattice semi-empirically. The central finding obtained here shows that the loss of conjugation in the 
lattice activates the transport of charge carriers at isolated chains of this material. This result suggests that charge 
transport can be improved by tuning the effective conjugation along the PPV chain.

Results
We begin the discussions of our results by presenting the features of charge localization (Fig. 1(a)) as well as 
related lattices distortions (Fig. 1(b)) for a PPV chain endowed of a polaron and a bipolaron. The left strip in both 
panels denote the charge and bond-length patterns for a lattice containing a polaron whereas the right strips are 
referring to the bipolaron case. For the sake of clarity, we show the region in the chain where the charge is local-
ized. In Fig. 1(a) one can note that the charge localization similarly takes place for both charge carriers, in which 
most of the charge lies in two PPV units. Since bipolarons have twice as much charge than polarons, one can 
realize stronger signatures of hot colors in the right strip of Fig. 1(a), denoting the formation of a stable bipolaron. 
In this doubly charged bound state, two polarons merge to form a bipolaron by the overlap of a common lattice 
distortion, which enhances geometrical relaxation of the bond lengths as illustrates the right strip of Fig. 1(b). 
Moreover, one can note that the formation of polarons and bipolarons alters the conjugation pattern, i.e. the 
alternation between σ (red) and π (blue) carbon-carbon bonds as presented in regions with the absence of charge. 
These signatures for charge localization and local lattice deformations are pieces of evidence that a self-interacting 
state was formed involving both components.

Now we discuss the remarkable transport mechanism of polaron and bipolarons in a PPV chain. Importantly, 
we note that this process, as discussed below, takes place in this class of materials exclusively. To the best of 
our knowledge, the transport of these charge carriers in other conjugated polymers21–23 and other species of 
organic semiconducting materials such as molecular crystals24,25 and graphene nanoribbons26,27 occurs differently. 
Figure 2(a) depicts, respectively, the time evolution of the mean charge density for a PPV lattice containing a 
polaron and a bipolaron. In Fig. 2 the dynamics for both charge carriers takes place during two ps for an electric 
field strength of 1.0 mV/Å. In this figure, one can note that there is a waiting time, about 1.2 ps, where both charge 
carriers do not move even with the action of the external electric field. Immediately after this transient time, one 
can realize the polaron and bipolaron start to move linearly as a response to the applied electric field. During their 
transport, the polaron keeps its initial localization whereas the bipolaron gets even more delocalized at each time 
step. At 2 ps, the charge delocalization reaches such a level that the bipolaron is no longer stable. Later, we use 
the time evolution of the energy levels to characterize this loss of stability for the bipolaron case. Surprisingly, the 
result presented in Fig. 2(b) suggests that bipolarons are not dynamically stable in PPV lattices.

A better understanding of the overall transport mechanism of charge carriers in PPV can be achieved by 
analyzing the features involved in the time evolution of the bond lengths for the carriers dynamics presented 
above. Figure 3 illustrates such characteristics in the very few instants of simulation for a part of the lattice that 
does not contains charge (the first 15 Å of its length). In this figure, it is possible to note that the PPV lattice loses 
the energy related to the bond conjugation during the time. As a result, the deviations in the bonds, from their 
equilibrium position, get smaller as the simulation time increases. This process is illustrated here by the lowering 
in intensity for the red and blue colors that represent, respectively, the σ and π bonds. We can note that the lattice 
containing a bipolaron loses much more energy than the one with a polaron. During the process of loss of conju-
gation, the lattice energy associated with the deviations in the bond lengths is transferred to electrons through the 
electron-lattice interaction term. Such a mechanism for the energy transference makes the polaron and bipolaron 
overcome the potential barrier imposed by the local lattice deformations moving as a response to the applied 
electric field systematically. Since bipolarons have twice more charge than polarons, more lattice energy should 
be transferred from the lattice to the electronic degree of freedom in the former case to realize the carrier motion. 

Polaron Bipolaron Polaron Bipolaron

Figure 1.  (a) Mean charge density and (b) bond-length for a polaron (left strip) and a bipolaron (right strip) in 
the ground state arrangement.
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Note that the bond deviations for the bipolaron case almost vanishes. Conversely, the lattice containing a polaron 
suffers a small change in intensity of the bond deviations but the bond conjugation pattern is still present in an 
evident fashion. These results for the dynamical lattice arrangement suggests that, in the bipolaron case, a sub-
stantial amount of lattice potential energy is converted into kinetic energy for the electrons that form its structure. 
In the dynamical process, the bipolaron has gained enough energy to overcome the potential barrier associated 
with the expanded region of its acoustic deformation and then accelerates to a velocity comparable to the polaron 
case. However, from that moment, the conversion energy mechanism keeps accelerating the bipolaronic charge 
that decouples from its local lattice deformations by increasing its delocalization. As a consequence, the bipolaron 
loses its stability. As can be inferred by analyzing both Figs. 2 and 3, the conversion energy mechanism favors the 
polaron stability and transport. Therefore, these results suggest that the quasiparticles responsible for playing a 
role in the charge transport in PPV lattices are polarons.

As mentioned above, the dynamical signature for the system’s energy levels helps to better characterize how 
stable are the charge carriers in a PPV lattice. Finally, we present in Fig. 4(a,b), respectively, the energy levels 
time evolution for the dynamical simulations of a polaron and a bipolaron shown in Fig. 2. As illustrates Fig. 4, 
the two intragap levels inside the bandgap at the beginning of the simulation denote the formation of a stable 
charge carrier. Since a bipolaron deforms much more the lattice than polarons, its energy spectrum can be iden-
tified by a couple of states deeper inside the gap when compared to those of a polaron. In Fig. 4(a) one can note 
that two intragap levels remain consistently inside the bandgap through the rest of the simulation. This result 
corroborates with the other findings discussed above indicating that the polaron is dynamical stable under the 
conditions established in the simulation for this particular case. On the other hand, Fig. 4(b) shows the signa-
ture of the loss of stability of the bipolaron that is related to the intragap levels that return to the conducting and 
valence bands.

Figure 2.  Time evolution of the mean charge density for a PPV lattice containing (a) a polaron and (b) a 
bipolaron.

Figure 3.  Time evolution of the bond lengths for a PPV lattice containing (a–c) a polaron and (d–f) a bipolaron 
for the cases presented in Fig. 2. Here, we show the three initial time steps for a part of the lattice that does not 
contains charge (the first 15 Å of its length).
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Methods
The model Hamiltonian employed here is given by = +H H Hlatt elec, where the first and second terms govern the 
lattice and electronic degrees of freedom, respectively. By employing a harmonic approximation28, we treat the 
lattice dynamics classically. To avoid edge effects, we consider periodic boundary conditions. In this sense, its 
Hamiltonian assume the following form

∑ ∑ η= +
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where Pi is the momentum of the i-th site with mass M, and K is the force constant associated with the σ bond28.
The electronic Hamiltonian, in turn, describes the π-electrons dynamics according to the equation below,
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The summation runs over π-electrons in neighboring i and j sites with spin s (see Fig. 5). †Ci s,  and Ci,s denote 
the creation and annihilation of an electron in states denoted by their subscript indices. To consider an external 
electric field (

→
E ), we use a vector potential according to 

→
= −

→
E t c A t( ) (1/ ) ( ). The exponentials come from the 

Peierls substitution method29. The unit vector r̂i j,  points from j site to i site. Finally, the parameter γ in Helec is 
defined as 


γ ≡ cea , where a is the lattice parameter, e the fundamental charge, and c the speed of light. The term 

ti,j is the hopping integral, which couples the π-electrons to the lattice according to

αη= − .t t (3)i j i j, 0 ,

In Eq. 3, α is the electron-phonon coupling constant and ηi j,  is the relative displacement of the lattice sites 
from their equilibrium positions.

The dynamics calculation starts from an arbitrary initial set of coordinates η{ }i j, , that is necessary to solve the 
electronic part of our model Hamiltonian initially. As a consequence, this procedure leads to an 
eigenvalue-eigenvector equation for the electronic component of the system, where the eigenvalues are Ek and the 
eigenvectors are ψ =i t( , 0)k s, . These quantities can be related as follows:

ψ ψ ψ ψ= = − = − ′ = − ″ =E i t t j t t j t t j t( , 0) ( , 0) ( , 0) ( , 0), (4)k k s i j l s i j l s i j l s, , , , , , ,

where i, j, j′ and j″ are neighboring sites.
To solve the classical component or our model, that describes the lattice structure, we turn to the 

Euler-Lagrange equation30. From the solution of the electronic part, we evaluate the expectation value of the wave 
function 〈Ψ| |Ψ〉L . This equation leads to:
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Figure 4.  Time evolution of the (a) polaron and (b) bipolaron energy levels for the cases presented in Fig. 2.
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Figure 5.  Schematic representation of a PPV lattice.
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couples the electronic and lattice degrees of freedom. The primed sum means that only the occupied states are 
considered.

The solution of the Euler-Lagrange equation with =P 0i  leads to a new set of coordinates η{ }i j,  that is used to 
recalculate the electronic Hamiltonian. This process is repeated iteratively until they reach the convergence crite-
ria. As a result, this self-consistent procedure yields the ground state geometry that considers the interdependence 
between charge and lattice.

After achieving the convergence criteria, the time evolution of the initial state can be accomplished using the 
full Euler-Lagrange equation30. The time evolution of the electronic part is governed employing the 
time-dependent Schrödinger equation. To do so, we expand the wave function |ψ t( )k s, ⟩ in the basis of eigenstates 
of the electronic Hamiltonian, {|ϕ t( )l s, ⟩}, at a given time t. Therefore, the wave function in time +t dt can be 
expressed as
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where ε t( )l  is the eigenenergy of |ϕ t( )l s, ⟩. The dynamics of the electronic structure is carried out by using Eq. 7, 
that is evaluated numerically and then employed to the calculation of the expectation value of a new Lagrangian30. 
The Euler-Lagrange equation leads to a Newtonian type expression that takes into account the neighboring 
bonds:
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Conclusions
In summary, the origin of the charge carrier dynamics in PPV chains under the influence of an external electric 
field were analyzed employing a 2D tight-binding Hamiltonian that takes into account lattice relaxation effects. 
Interestingly, our results revealed that the PPV lattice loses the energy related to its conjugation during time by 
transferring this amount of energy to electrons that yield a polaron and a bipolaron. This energy transference acti-
vates their electric field assisted transport. In the bipolaron case, a substantial amount of lattice potential energy 
is converted into kinetic energy for the electrons that form its structure. In the dynamical process, the bipolaron 
gains enough energy to overcome the potential barrier associated with the expanded region of its acoustic defor-
mation and then move linearly during 500 fs. However, from that moment, the conversion energy mechanism 
keeps accelerating the bipolaronic charge that decouples from its local lattice deformations by increasing its delo-
calization. As a consequence, the bipolaron loses its stability. Conversely, this mechanism for conversion energy 
favors the polaron stability and transport. Therefore, these results suggest that the quasiparticles responsible for 
playing a role in the charge transport in PPV lattices are polarons.
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