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Parametric response mapping (PRM) of inspiration and expiration computed tomography (CT) images im-
proves the radiological phenotyping of chronic obstructive pulmonary disease (COPD). PRM classifies indi-
vidual voxels of lung parenchyma as normal, emphysematous, or nonemphysematous air trapping. In this
study, bias and noise characteristics of the PRM methodology to CT and clinical procedures were evaluated
to determine best practices for this quantitative technique. Twenty patients of varying COPD status with
paired volumetric inspiration and expiration CT scans of the lungs were identified from the baseline COPD-
Gene cohort. The impact of CT scanner manufacturer and reconstruction kernels were evaluated as potential
sources of variability in PRM measurements along with simulations to quantify the impact of inspiration/expi-
ration lung volume levels, misregistration, and image spacing on PRM measurements. Negligible variation in
PRM metrics was observed when CT scanner type and reconstruction were consistent and inspiration/expira-
tion lung volume levels were near target volumes. CT scanner Hounsfield unit drift occurred but remained
difficult to ameliorate. Increasing levels of image misregistration and CT slice spacing were found to have a
minor effect on PRM measurements. PRM-derived values were found to be most sensitive to lung volume lev-
els and mismatched reconstruction kernels. As with other quantitative imaging techniques, reliable PRM mea-
surements are attainable when consistent clinical and CT protocols are implemented.

INTRODUCTION
Lung densitometry by x-ray computed tomography (CT) is sen-
sitive to the alterations in lung parenchyma as a result of the
onset and progression of chronic obstructive pulmonary disease
(COPD). Quantitative CT-based measures of lung disease are well
characterized (1) yet have not fully transitioned into routine
clinical use, where physiological assessment and clinical pa-
tient-reported parameters remain the standard of care for COPD.
However, large clinical studies such as COPDGene (2) and
SPIROMICS (3) have been undertaken using a standardized chest
CT image acquisition protocol for disease phenotyping and for
assessing progression. With longitudinal CT data collection in
process, quantitative CT metrics must be fully characterized to
minimize measurement variability between serial examinations.

Emphysema and air trapping are 2 components of COPD
that are measured on CT images. Emphysema is measured as the

percentage of lung with voxels below �950 Hounsfield units
(HUs) (4, 5). Air-trapping measures, which quantify the extent of
both emphysematous- and nonemphysematous-diseased tissue,
include the percentage of lung with voxels below �856 HU on
expiration scans (2) and the ratio of mean lung density on inspira-
tion-to-expiration CT scans (6). In 2012, a voxel-based technique
called parametric response mapping (PRM) was shown to discrim-
inate between these 2 forms of air trapping when applied to paired
and spatially registered inspiration and expiration CT scans (7).
PRM applies previously defined thresholds for the emphysema
index (� �950 HUs) and air trapping (� �856 HUs) on spatially
aligned inspiration-to-expiration CT scans (8, 9). This allowed in-
dividual voxels within the lung parenchyma to be classified as
normal (PRMNormal), emphysematous (PRMEmph), and nonemphy-
sematous air trapping, referred to as functional small airways
disease (PRMfSAD). Whereas PRMEmph is analogous to earlier den-

RESEARCH ARTICLE

A
B
ST

R
A

C
T

© 2015 The Authors. Published by Grapho Publications, LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by/4.0/).
ISSN 2379-1381 http://dx.doi.org/10.18383/j.tom.2015.00148

TOMOGRAPHY.ORG | VOLUME 1 NUMBER 1 | SEPTEMBER 2015 69

http://creativecommons.org/licenses/by/4.0/


sity-based emphysema indices, PRMfSAD represented regions of air
trapping that were nonemphysematous (7, 10). Like other quanti-
tative CT measures, PRM may be influenced by differences among
scanner types, patient compliance, scan acquisition protocols,
scanner HU drift, and the selection of reconstruction kernels. There-
fore, reducing CT-based metric variability by identifying, quanti-
fying, and eliminating (when possible) the sources of variability
(11, 12) is required to determine the detection limits for assessing
true changes in COPD patient CT scans.

This study evaluates the sensitivity of PRM to sources of
variability present in a standardized CT clinical acquisition and
processing protocol that may affect quantitative CT measure-

ments (Figure 1). Although many of the parameters investigated
had a minimal impact on expected PRM values, this work dem-
onstrates the effect of lung inspiration/expiration volume at CT
acquisition on PRM measurements. These results reveal that
establishing the correct lung inhalation and exhalation volumes
during image acquisition is the most important quality control
measure for longitudinal CT imaging.

METHODS
Study Participants
Data used in this study were obtained under an institutional
review board–approved protocol, and all participants involved

Figure 1. Schematic of modes of variability at various stages in the PRM workflow. Clinical protocol consists of patients
being trained to hold their breath at full inspiration and full or relaxed expiration. CT protocol guides acquisition at both
points using site-specific CT systems, acquisition parameters, and reconstruction kernels. Data processing consists of
lungs from the serial CT scans being segmented from the thoracic cavity and then spatially aligned to a single geometric
frame using site-specific algorithms. PRM quantification is performed by classifying voxels with paired HU values as nor-
mal parenchyma (green voxels), functional small airways disease (yellow voxels), or emphysema (red voxels).

Table 1. Subject Characteristics

Parameter GOLD 0 GOLD 1 GOLD 2 GOLD 3 GOLD 4

Sex (female/male) 1/3 1/3 2/2 3/1 2/2

Age (y) 54.1 (12.6) 67.4 (8.5) 62.4 (11.8) 57.2 (8.0) 67.0 (11.6)

Height (cm) 173.0 (16.0) 171.0 (4.0) 170.8 (13.4) 167.8 (5.8) 170.5 (6.6)

Weight (kg) 77.4 (20.1) 76.2 (11.4) 72.7 (25.7) 80.2 (39.2) 63.8 (10.8)

BMI (kg/cm2) 25.4 (3.0) 26.0 (3.1) 24.3 (6.16) 28.3 (13.6) 21.8 (1.9)

TLC (from CT) 5.9 (1.1) 6.3 (1.1) 6.1 (1.31) 6.2 (0.4) 7.3 (0.3)

RV (from CT) 3.0 (0.3) 2.9 (0.3) 3.4 (.32) 4.2 (0.6) 5.6 (0.6)

Percentage of FEV1 predicted 102.3 (14.1) 89.3 (4.3) 70.0 (11.0) 37.5 (7.6) 19.6 (3.7)

Percentage of FVC predicted 99.3 (14.7) 107.5 (10.8) 101.3 (20.3) 85.8 (9.0) 48.5 (13.8)

FEV1/FVC 0.8 (0.06) 0.6 (0.07) 0.5 (0.10) 0.3 (0.04) 0.3 (0.04)

Values are mean � SD.
Abbreviations: BMI, body mass index; FEV1, forced expiratory volume in 1 second as a percentage of predicted; FVC, forced expiratory vital capacity; RV,
residual expiratory volume computed from CT; TLC, total lung capacity computed from CT.
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provided written consent as part of the COPDGene clinical trial
(2). Participants were separated into groups of 4 based on Global
Initiative for Chronic Obstructive Lung Disease (GOLD) (13)
stages 0 to 4 (Table 1). Baseline clinical and CT data were used
from a total of 20 randomly selected participants along with
participant characteristics and pulmonary function test results.

CT Data Acquisition
Quantitative CT data, measured in HUs, were acquired at full
inspiration (total lung capacity [TLC]) and at relaxed expiration
(functional residual capacity [FRC]) as defined in the COPDGene
protocol (2). Scans used were obtained from different scanners
involved with image acquisition in the COPDGene trial (Table 2).
CT data were reconstructed using both sharp and standard ker-
nels. All CT scans were linearly corrected using predefined mean
HU values for blood (50 HUs) and air (�1000 HUs) (14, 15).

CT Data Analysis
The mean HU of air and aortic blood was measured from the
paired CT data acquired from different vendor systems and
reconstruction kernels. Volumes of interest (VOIs) were manu-
ally contoured at approximately a 10-mm radius or smaller as
needed within the ambient air outside the patient, the blood
within the aorta, and the air inside the trachea.

PRM was applied to paired inspiration/expiration CT scans
as previously reported (7). In brief, the lung parenchyma was
segmented from the thoracic cavity and airways. Inspiration and
expiration image volumes were spatially aligned to a single
geometric frame using a thin-plate spline with mutual informa-
tion as an object function. Each parenchymal voxel (ie, the
smallest unit of volume in an image data set) was classified
using the emphysema index and air-trapping thresholds, de-
fined by COPDGene as �950 HUs on the inspiration scan and
�856 HUs on the expiration scan, respectively, and used for
generating joint-density histograms of paired parenchymal HU
values of the voxels. This allowed each voxel to be classified as
normal (green), emphysematous (red), or nonemphysematous
airflow obstruction (also referred to as functional small airways
disease) (yellow). Relative volumes for each class were calcu-
lated by summing all voxels within a classification and normal-
ized to the total lung volume.

Generation of Simulated CT Data
The impact of inadequate lung ventilation during CT acquisition
on PRM measurements was evaluated using simulated CT data
from 5 subjects, each representing GOLD 0 through 4. This was
performed by spatially deforming the expiration lung scans

Figure 2. Impact from variability in lung ventila-
tion on PRM. PRM measurements from a patient
diagnosed with GOLD stage 2 COPD show the
influence of variable expiration resulting from in-
adequate training or disease. CT data was ac-
quired at full inspiration (A) and relaxed expira-
tion (C) (ie, FRC). Representative CT lung slices,
PRMs, and corresponding lung HU joint-density
scatter plots are presented at FRC and simulated
expiration volumes (C) increased by 20% (D) and
40% (E) from FRC (C). The effective change in
median HU values at various expiration volumes
are presented in (B) and correspond to a down-
ward shift of the peak in the joint-density plot on
the expiration axis, resulting in more tissue classi-
fied as PRMfSAD and PRMEmph. The resulting
changes in PRMNormal, PRMfSAD, and PRMEmph

are shown for 5 sample cases at relaxed expira-
tion (F), where solid lines depict a 0% to 20%
change in expiration volumes simulated from FRC
to TLC and dotted lines represent further shifts in
expiration volumes toward TLC.

Table 2. CT Manufacturers and Brands

N Manufacturer Scanner

1 Siemens Sensation 16 (0.75-mm voxels)

3 Siemens Sensation 64 (0.75-mm voxels, 3 reconstructions)

6 Siemens Definition (0.75-mm voxels)

4 GE LightSpeed VCT (0.625-mm voxels)

6 GE LightSpeed 16 (0.625-mm voxels)
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using a mass-preserving, diffeomorphic transform to model a
series of exhalation lung volumes in 10 steps from expiration to
full-inspiration volumes acquired at TLC (16). Mass was pre-
served by adjusting the HU values for volume changes by mul-
tiplying each voxel by the local Jacobian of the warping trans-
form. Simulations used linear control point trajectories between
�50 control points per lung identified on both the expiration
and inspiration lungs. PRM was applied to the paired original
inspiration and simulated expiration CT data as previously
described.

Simulated CT data were also generated to evaluate the
impact of spaced thin-slice expiration CT data on PRM measure-
ments. Gapped CT data were generated from contiguous whole-
lung CT scans by subsampling the more widely spaced thin-slice
images, resulting in an axial spacing of 0.625, 1.25, 2.5, 5, and
10 mm or 0.75, 1.5, 3.0, 6.0, and 12 mm depending on the
original reconstruction. PRM was applied to the paired simu-
lated spaced expiration and original inspiration CT data as
previously described.

Simulations were performed to test the influence of misreg-
istration on PRM metrics. A known high-quality registration
solution was defined by 113 feature points that served as basis
points for thin-plate spline transforms. Random perturbations of
this feature set were generated and used to compute transforms
that created misregistered solutions. Simulated target defor-
mations ranged from 0 to 30 mm (the approximate distance
the diaphragm moves between inspiration and expiration; a
mean of �15 mm would be no registration), where any
simulations with folding were removed. Included deforma-
tions had a mean feature displacement of 0 to 6.6 mm,
resulting in features that moved up to a mean of approxi-
mately 10 voxels with a 40-voxel regional deformation max-
imum. PRM was calculated at each registration solution, and

the results were analyzed to determine how local misregis-
trations contributed to PRM metric variability.

Statistical Analysis
Ambient air, tracheal air, and aortic blood HU values between
vendor systems were compared using an unpaired Student t test.
A paired Student t test was used to compare differences in HU
values in the 3 VOIs between reconstruction kernels. Bland–
Altman analysis was performed to illustrate differences in the
individual PRM metrics between sharp and standard recon-
structed CT data. All statistical analyses were performed using
IBM SPSS Statistics version 21.

RESULTS
Impact of Lung Ventilation Variability
Simulated expiration lung volume increase (Figure 2C–E) re-
sulted in a drop in the mean HU density of the lung (Figure 2B).
PRM analysis of the original inspiration and expiration at var-
ious simulated volumes resulted in a decrease in PRMNormal and
increase in PRMfSAD. As shown in Figure 2, this trend resulted
from a shift of the joint-density histogram toward less attenu-
ation along the expiration axis (x-axis). Those cases with a large
dynamic range between inspiration and expiration volumes,
that is, GOLD stages 0 and 1, demonstrated the most sensitivity
to insufficient expiration ventilation in PRM metrics (Figure 2F).
Nevertheless, realistic variability in expiration volumes from
FRC is typically around 20% (Figure 2F, solid lines). Deviation in
expiration volumes within this range (0%–20% of FRC) resulted
in only subtle changes in PRM metrics that were mainly ob-
served in GOLD stage 1 through 3 cases. PRMEmph, classified
primarily by the �950-HU threshold on inspiration scans, varies
only slightly with exhalation volume changes (Figure 2F). Sim-
ulations that resulted in inaccurate PRMEmph measurements

Figure 3. Impact of CT vendor and reconstruction kernel. HU values are measured in ambient air (b1), tracheal air
(b2), and aortic blood (c) for 2 scanner brands and standard and sharp reconstructions. The 3 regions of interest are
depicted in a representative axial CT slice (A). Box plots are presented for the HU values of air (B) and aortic blood (C)
obtained from CT data acquired from different CT vendors and reconstruction kernels. For reference, ideal air and water
attenuation values should be �1000 HUs and 0 HUs, respectively, with a target blood value of 50 HUs (27). The lines
on the box plot are as follows: center line, median; bottom and top boxes, 25% and 75% quantiles, respectively; bot-
tom and top bars, 1.5 times the box size or the minimum value if no values fall in that range. Note for normally distrib-
uted data approximately 95% of the data are expected to lie between the distal fences.
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were observed from the anticipated effect of insufficient inspi-
ration during a TLC maneuver (data not shown).

Impact of Reconstruction Kernel and Scanner
Manufacturer
The impact of reconstruction kernel and scanner type on HU
values is demonstrated in ambient and tracheal air and aortic
blood. As shown in Figure 3, mean values of ambient air differed
significantly between reconstructed kernels in both inspiration
(vendor 1, P � .001; vendor 2, P � .001) and expiration (vendor
1, P � .001; vendor 2, P � .0001) CT scans. In addition,
expiration tracheal air mean HU values were also found to vary
between reconstruction kernels (vendor 1, P � .0001; vendor 2,
P � .01). Negligible differences in mean HU values were ob-
served for aortic blood irrespective of vendor. Differences in
reconstruction kernels were evident in the PRM measurements
from the same cases (Figure 4). Soft-tissue reconstructions (ie,
standard) resulted in a tighter cluster of lung HU voxel-paired
values (Figure 4A, C), whereas sharp bone reconstructions con-
tained more noise, resulting in a broader distribution of the
voxel joint-density histogram (Figure 4B, D). Bland–Altman

analysis (Figure 4E) of the data revealed that PRM metric vari-
ability derived from standard and sharp kernels. Elevated levels
in PRMNormal resulted in differences as high as 15% relative lung
volume between reconstruction kernels, with the standard ker-
nel generating larger PRM values than the sharp kernel as
indicated by positive differences. In contrast, PRMfSAD and
PRMEmph were found to have both positive and negative differ-
ences between reconstruction kernels. These results illustrate the
complexity of the reconstruction kernel’s impact on PRM
measurements.

Impact of Slice Interval
The impact of noncontiguous CT scans with a 10-mm gap
spacing on PRM were evaluated next (Figure 5). Figure 5A
shows a schematic of the simulated distribution of CT slices with
10-mm gaps superimposed on a full-inspiration lung scan.
Overall, mean differences in PRM values between gapped and
full-resolution (ie, contiguous slices) CT data were generally
small, with moderate-to-severe emphysema (�1%) being the
least affected. Differences were found to be slightly elevated in GOLD
stage 0 (PRMNormal � �3%) and GOLD stage 1 (PRMNormal � �2%;

Figure 4. Impact of reconstruction kernels on
PRM. Standard kernel reconstruction results in
the smoothing of PRM (A) compared with a bone
reconstruction (B). The noisier sharp reconstruc-
tion results in a broader distribution for the HU
joint-density histogram (D) than the standard re-
construction (C). Bland–Altman analysis (E)
shows that standard reconstructions result in an
increase in PRMNormal and decrease in PRMEmph

classifications relative to bone reconstructions
regardless of scanner type. PRMfSAD, however, is
reduced in mild COPD but increases in more
severe diseases with standard compared to bone
reconstructions for both scanner types.
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PRMfSAD � �1.5%) participants (Figure 5B). Nevertheless, differences
in all PRM metrics were relatively low and likely resulted from the
diffuse nature of COPD in the cases analyzed.

Impact of Image Registration
Simulations were performed to assess how sensitive the PRM
metrics were to the misregistration of paired whole-lung CT
data. Widespread local misregistration showed progressive vari-
ability of PRM metrics as a function of increasing deformations
(Figure 6). The largest differences in PRM were observed in
GOLD stage 3 and 4 participants, where all 3 classifications
provide significant contributions to the lung volume. Overall,
mean misregistrations of 2.5 mm (maximum deformation of 7.5
mm) yielded PRM differences of up to 1% of the lung. Further-
more, we also investigated and quantified the impact of regis-
tration direction on PRM because this can affect overall PRM
results. Registering the inspiration to the expiration images
resulted in higher percentages of tissue identified as air trapping
(Figure 7). Because tissue compresses upon expiration, tissue
with functional small airways disease compressed less and re-
mained a larger percentage of the total lung volume (mean:
PRMfSAD � 3.1; 95% CI: 0.8, 5.4) than if measured on the
inspiration volume. Differences of PRMNormal and PRMEmph were
close to 0, but PRMNormal had a slightly larger 95% CI (mean:
PRMNormal � 0.1; 95% CI: �4.1, 4.2) (mean: PRMEmph � �0.4;
95% CI: �1.6, 0.8).

DISCUSSION
The consistency of PRM measurements for longitudinal appli-
cation was evaluated for several prevalent sources of variability
in the PRM-processing pipeline. Most of these steps introduced

negligible variability in PRM. Nevertheless, significant effects
were found as a result of inadequate lung ventilation during
image acquisition. The clinical protocol for CT acquisition in-
troduces various sources for HU variability that include proper
lung ventilation and thin-sliced gapped CT acquisitions during
expiration. The more significant of these 2 effects was the
volume of lungs at image acquisition (TLC, FRC). PRM, with its
use of inspiration and expiration CT scans, is susceptible to both
volumes. A recent study has found that at lung volumes above
90% of vital capacity, emphysema Perc1 measures (first percen-
tile of inspiratory attenuation distribution) varied negligibly
(17). These results are in agreement with our PRMEmph values
generated from simulations with slightly varying inspiration
lung volumes from TLC (data not shown). Moreover, previous
studies have delineated the interscan measurement variability
caused by inspiration differences among scans (18) along with a
proposal for using optimal protocols for CT surveillance of
emphysema in a lung cancer screening environment (19). How-
ever, for expiration lung volumes, small corrections have been
applied to low-attenuation analysis with a threshold of �856
HUs on the expiratory image (LAA�856E) by adjusting the
thresholds based on the degree of deviation from the normal
population in the difference of 90th percentile attenuation be-
tween inspiration and expiration images. However, this correc-
tion was sufficient only when volume differences were much
less than the difference between residual volume and FRC (20).
Spirometrically gated air-trapping measures have been shown
to be more sensitive than FEV1 in response to treatment in a
cystic fibrosis cohort (21). Nevertheless, a recent study has
shown that air trapping in heavy smokers with 3-month repeat

Figure 5. Impact of 10 mm slice intervals on PRM. Spacing between slices is illustrated in (A). PRM differences from full
resolution are presented per GOLD stage for a standard reconstruction kernel (B). Variations in PRMNormal are greater
for mild COPD. PRMfSAD varies the most in mild COPD, whereas similar but small variations in all 3 metrics are seen in
moderate-to-severe COPD. The lines on the box plot are as follows: The lines on the box plot are as follows: center line,
median; bottom and top boxes, 25% and 75% quantiles, respectively; bottom and top bars, 1.5 times the box size or
the minimum value if no values fall in that range. Note for normally distributed data approximately 95% of the data are
expected to lie between the distal fences (n � 4 per GOLD stage).
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exams have variability that is incompletely explained by breath-
ing level (22). It has also been found that spirometry monitored
with biofeedback aids in scanning children with cystic fibrosis
at consistent lung levels for measuring air trapping (23). Al-
though clinical CT protocols tend to undertake shorter scans to
minimize x-ray exposure to the patient, simulations of reduced-
dose scans by more widely spaced thin-slice images showed
increased variability, but no more than typical of emphysema
measured from such scans (24). We would expect PRM to show
a similar responsiveness to low-dose CT scans or those recon-
structed with iterative reconstruction methods, but this will
require confirmation.

Longitudinal quantitative CT measures are also challenged
by the normal fluctuations found in CT scanners as well as the
lack of consensus on the appropriate reconstruction kernel. The
trade-off is well known between CT image noise and resolution,
and the variety of smoothing/denoising reconstruction kernels
used in clinical practice has a confounding effect on histogram-
quantified metrics such as PRM. Variations in calibration, re-
construction, and changes over time in scanners can shift re-
constructed HU values, resulting in changes in the histograms of
voxels within the lung VOI and therefore in the joint-density
histogram of paired inspiration/expiration voxels as well. Such
shifts lead to inconsistent classifications of voxels as normal,
emphysematous, and air-trapping lung tissues. A previous study

has shown that when torso HU values were tracked over time,
tracheal air measures were variable, whereas air outside the
abdomen was more stable (25). Gradual drifts in HUs showed up
in phantom-based monitoring (26) with occasionally larger
(�10 HU) shifts observed for both air and blood HU values (11).
Adjustments for air and water values have been proposed based
on actual measured HU values of blood (14) and/or air (27) but
can be difficult because of the axial variability of air measures,
particularly in the trachea. Tracheal air adjustments were useful
for correcting some CT attenuation-based measures across scan-
ners in a normal cohort, but possibly not for expiration-based
measures (28). Different CT reconstruction kernels have been
found to result in significant differences in mean LAA�950I and
LAA�856E values (12) and have different noise levels (29, 30),
and we found similar results with PRM metrics. Although com-
paring metrics from different reconstruction kernels has been
attempted (31), it is not advisable for PRM. This variability
caused by differing reconstruction methodology, particularly
for quantifying small airways disease, remains a significant
problem (11).

Because PRM depends on paired voxels from coregistered
inspiration and expiration scans, the final source of variability
in PRM is image registration. Advances in imaging software and
registration methods have provided multiple robust methods for
registering lung data sets, with accuracy typically at the sub-

Figure 6. Impact of misregistration on PRM. Misregistration is simulated using a feature set (aqua dots) shown on a
sample lung volume (A) that is moved slightly to deform a good registration solution (4 each; Gold stages 0 to 4).
Changes in PRM increase as the mean absolute misregistration across the feature set increases. PRM changes are
pooled by GOLD stage and represent mean � SD differences (B–F). Note that mean changes of 2.5 mm may include
local deformation regions of up to 7.5 mm or approximately 10 voxels.
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voxel level (32, 33). When a lung registration succeeds, remain-
ing misregistration instances are primarily local and small. Our
simulations show that, possibly unexpectedly, such localized
misregistrations introduce a smaller (� �2%) variability than
contributions from other scan acquisition factors. We observed that
PRM robustness may be the most challenged when faced with more
difficult registrations that are found in both healthier patients and
those with a highly heterogeneous disease resulting from unusual
deformations of the lung that are hard to recover. We have also
confirmed that PRMs from different registration directions (ie,

register inspiration to expiration vs register expiration to inspira-
tion) have a small nonzero bias in PRMfSAD values.

Some limitations to this study should be noted. The overall
data presented for bias and noise characterization in the PRM CT
methodology were acquired using a limited data set of 20 pa-
tients obtained from the COPDGene cohort. As such, future
studies involving the use of larger longitudinal data sets (includ-
ing zero-change/test-retest data) rather than the simulated data
presented herein should be undertaken to demonstrate that
corrective calibrations can be used to minimize nondisease-
related variation. Furthermore, all potential sources of vari-
ation were investigated in isolation, whereas a multivariable
analysis would be useful for evaluating their joint impact on
PRM metrics.

As large COPD studies such as COPDGene and SPIROMICS
begin to acquire longitudinal data, quantitative CT-based met-
rics must become robust enough to be able to analyze these data.
To compare quantitative values, the sources of variability pres-
ent in these measurements must be identified, and their effects
on the quantitative measure must be further understood. Several
factors that introduce variability into attenuation-based CT
metrics can generally be avoided by standardizing CT protocols.
Using the same CT parameters and reconstructions and register-
ing these scans in a consistent direction each time lead to
metrics with less variability (34). In summary, HU adjustment
might not add sensitivity, standard reconstructions lead to less
noisy PRM values, and registration direction should be consis-
tent. Scans with fewer image slices do add noise, albeit small, to
PRM metrics. However, PRM as a metric was shown to be most
sensitive to lung volume, which may be influenced by changes
in lung function as a result of disease progression as well as
patient compliance. As such, care must be taken to ensure
accurate ventilation during CT scanning because variability in
lung volume remains difficult to correct.
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