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Abstract

Chromatin immunoprecipitation coupled with high throughput DNA Sequencing (ChIP-Seq) has emerged as a powerful tool for
genome wide profiling of the binding sites of proteins associated with DNA such as histones and transcription factors. However,
no peak calling program has gained consensus acceptance by the scientific community as the preferred tool for ChIP-Seq data
analysis. Analyzing the large data sets generated by ChIP-Seq studies remains highly challenging for most molecular biology
laboratories. Here we profile H3K27me3 enrichment sites in rice young endosperm using the ChIP-Seq approach and analyze the
data using four peak calling algorithms (FindPeaks, PeakSeq, USeq, and MACS). Comparison of the four algorithms reveals that
these programs produce very different peaks in terms of peak size, number, and position relative to genes. We verify the peak
predictions using ChIP-PCR to evaluate the accuracy of peak prediction of the four algorithms. We discuss the approach of each
algorithm and compare similarities and differences in the results. Despite their differences in the peaks identified, all of the
programs reach similar conclusions about the effect of H3K27me3 on gene expression. Its presence either upstream or
downstream of a gene is predominately associated with repression of the gene. Additionally, GO analysis finds that a
substantially higher ratio of genes associated with H3K27me3 were involved in multicellular organism development, signal
transduction, response to external and endogenous stimuli, and secondary metabolic pathways than the rest of the rice genome.
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Introduction

Chromatin immunoprecipitation (ChIP) coupled with high

throughput sequencing (ChIP-Seq) has emerged as one of the

most promising tools for profiling protein-DNA binding sites and

chromatin modifications on a genome-wide scale [1]. The goal of

ChIP-Seq studies is to find those genomic DNA fragments that are

enriched in immunoprecipitation fractions using antibodies

specific for DNA associated proteins of interest. Enriched regions,

those with a high density of short DNA reads after immunopre-

cipitation and DNA sequencing, are referred to as peaks. Many

programs for identification of peaks with ChIP-Seq data have been

developed in recent years [2,3,4,5,6,7,8,9,10,11]. The reported

algorithms differ in their approaches for identifying potential

enriched regions of the genome. Some algorithms, for example

MACS [10] and PeakSeq [8], use a simple sliding window and

group all reads within each window together. Others use a finer

resolution method, either considering each base pair singly as in

FindPeaks [4] or defining the windows based on the read locations

as represented by USeq [7]. After identifying windows, the

algorithms must then determine which windows are the true

enriched regions. Methods without a control (FindPeaks) either

simply report the number of reads in the windows or make an

assumption about the background distribution, such as assuming

the reads follow a Poisson distribution (FindPeaks), and calculate

significance based on the assumed distribution. Those including a

control sample (MACS, PeakSeq) use the control to more

accurately model the background distribution of the reads and

calculate an empirical False Discovery Rate (FDR) via, for

example, a sample swap technique. Distinguishing between

multiple small peaks or a single large peak is also challenging.

While some algorithms merge overlapping peaks (MACS) or peaks

within a user-supplied threshold (USeq, PeakSeq), others (Find-

Peaks) compare the height of peaks to the depth of the separating

valley to differentiate multiple small peaks from one large peak.

Pepke et al. [12] discussed a number of additional peak

identification algorithms in a review article. They made distinc-

tions among the algorithms, including how the algorithms

aggregated the reads, the criteria for significant peak identification,

read shifting to account for reading the end of the reads, use of

control, and input parameters. Similarly, Barski and Zhao [13]

also reviewed a number of algorithms for peak identification. Thus

far, however, no program has emerged as the consensus best

approach for identifying peaks in histone modification and DNA
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binding studies. Therefore, it is important to compare these

available algorithms and to suggest essential parameters to assist

molecular biology laboratories in selecting the best program for

their data analysis.

Previous studies have shown that the repressive function of

histone 3 modification H3K27me3 is conserved between plants

and animals although the modification patterns and the

mechanisms by which H3K27me3 is established or maintained

may be different [14,15]. In animals, H3K27me3 is established

and maintained by polycomb-group (PcG) protein complexes

PhoRC, PRC1 and PRC2 [16,17]. These complexes repress selected

genes at appropriate developmental stages [17,18]. Several critical

imprinted genes in Arabidopsis endosperm have been shown to be

associated with H3K27me3. The FIS class gene products, MEA,

FIS2, and FIE appear to function in a large PcG complex along

with additional components such as MULTI-COPY SUPPRES-

SOR OF IRA1 (MSI1) and retinoblastoma-related protein RBR1

[19]. The PcG complex is predicted to repress gene transcription

via histone H3K27 trimethylation and chromatin remodeling, and

the established patterns are stably propagated through mitotic cell

cycles [20]. MEA itself is imprinted via H3K27me3 [21,22]. The

self-imprinting mechanism of MEA, in which maternally

expressed MEA replenishes the FIS-PcG complex, and in turn,

the complex keeps repressing the silenced paternal MEA allele

[22,23]. PHERES1 (PHE1) is another imprinted gene in the

Arabidopsis endosperm. The silenced maternal PHE1 allele is a

direct target of the FIS-PcG complex [24]. Histone H3K27

trimethylation via the FIS-PcG complex likely both establishes and

maintains the silencing of the paternal PHE1 [24,25]. Zhang et al.

used ChIP-chip to reveal that H3K27me3 regulates an unexpect-

edly large number of genes (,4,400), including numerous

transcription factors in Arabidopsis young seedlings [14]. The

H3K27me3 profile has also been examined in rice seedlings [26].

However, the DNA binding profile and the function of

H3K27me3 in plant endosperm remain unknown. A genome

wide profiling of the enrichment sites of H3K27me3 in endosperm

using ChIP-Seq will provide critical insight into the specific role of

H3K27me3 modification in endosperm. In addition, analysis of

the data set using multiple analytical algorithms will provide an

unbiased comparison of these analytical algorithms.

In this report, we identified H3K27me3 modification sites

within rice (Oryza sativa) young endosperm using the ChIP-Seq

approach. Four different peak identification algorithms (PeakSeq,

USeq, MACS, and FindPeaks) were used to locate H3K27me3

enrichment sites. ChIP-PCR was used to evaluate the quality of

the peaks identified by these algorithms. We also analyzed the

relative location of the peaks with respect to gene expression.

Finally, we examined the Gene Ontology (GO) annotations [27] of

the ChIP enriched genes.

Results

Chromatin Immunnoprecipitation, DNA Sequencing, and
Mapping the Short Reads to the Genome

Chromatin was isolated from young rice endosperm and

fragmented to a size range from 150 to 400 bp. The solubilized

chromatin fragments were immunoprecipitated with antibodies

against H3K27me3 (Millipore). The recovered DNA fragments

were processed for DNA sequencing by Illumina. The reads

produced by the Illumina Genome Analyzer were 36 base pairs

long. Two DNA samples were analyzed. One was immunopre-

cipitated DNA samples enriched for H3K27me3, while the other

was a control using sonicated genomic DNA fragments. A total of

10,999,931 ChIP reads were produced, and SeqMap [28]

uniquely mapped 9,554,767 (,85%) to the TIGR 6 rice genome

[29]. A total of 11,986,448 control reads were produced, and

7,202,808 (,60%) uniquely mapped to the genome. A larger

percentage of the ChIP reads mapped uniquely. This was

probably because immunoprecipitated reads were found more

frequently associated with genic regions than the control reads. In

particular, 31.9% (p-value,2.2e-16) of the H3K27me3 reads

mapped to genic regions. In contrast, only 23.9% (p-value 1) of the

input DNA mapped to genic regions. The p-values were calculated

using a binomial test. These results are consistent with previous

ChIP-chip report in plants [14].

Peak Identification
Four peak calling programs (MACS [10], PeakSeq [8],

FindPeaks version 3.1.9 [4], and USeq [7]) were used to identify

peaks of the mapped reads, respectively. Table 1 summarizes

characteristics of the peaks identified by each of the programs and

Figure 1 shows an example of some of the peaks identified by the

different programs displayed in GBrowse [30].

The results show that the average peak bandwidth called by

PeakSeq ranges from 2,393 bp to 11,284 bp depending on the

max_gap parameter. Smaller values of the max_gap parameter

result in shorter peak bandwidths. In the remainder of this

manuscript, all PeakSeq results use max_gap = 200 and the

program is referred to as PeakSeq(200). The peaks produced by

FindPeaks have an average bandwidth of 846 bp while those

identified by Useq average 2,313 bp—similar to those identified

by PeakSeq(200). The peak bandwidth identified by MACS is the

shortest at 778 bp on average.

FindPeaks identified 41,516 peaks covering 9.0% of the

genome, USeq identified 9,094 peaks covering 5.4% of the

genome, and MACS identified 15,738 peaks covering 3.1% of the

genome. In contrast, peaks identified by PeakSeq with different

max_gap values covers from 44% to 68.9% of the genome and

identifies from 23,760 to 71,269 peaks.

The identified peaks were further characterized by their

frequency of being identified by the four programs and the

variation in peak height for each program (Table 2). All the peaks

identified by MACS (100%) and 99% of the peaks identified by

USeq are also identified by at least one other program. In contrast,

43.19% of the peaks identified by PeakSeq are not identified by

any other program. Visual inspection of the ChIP and Input reads

in GBrowse shows that many peaks identified by PeakSeq occur in

regions where no substantial differences between the Input and the

ChIP can be observed. Therefore we conclude that many of the

peaks identified by PeakSeq are false positives. This is further

indicated by the lowest average peak height (,10.51) for PeakSeq

among the four algorithms (Table 2). FindPeaks and USeq peaks

have similar average peak heights (,17.85 and ,17.87,

respectively) while those of MACS (,14.05) are lower than these

two. USeq combines many small peaks into a single peak resulting

in a larger average peak bandwidth than FindPeaks or MACS.

Although FindPeaks does not make use of the Input (control) data,

most of the peaks it identifies are confirmed by other programs.

The Correlation of H3K27me3 Peaks and Gene Expression
To correlate gene expression with the H3K27me3 peaks, we

carried out a gene expression profile study using an Affymetrix rice

whole genome array with the cDNAs of rice endosperm at the

same developmental stage as that in the ChIP experiment. TIGR

6 identifies 73,403 genes (including some alternate splice forms),

but only 35,522 genes were represented on the gene expression

microarray. In order to investigate the relationship between gene

expression and ChIP-Seq peaks, only those genes with gene

H3K27me3 Profiling in Rice Endosperm
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expression values were included in the analysis. These genes were

grouped into four categories based on the location of H3K27me3

peaks relative to the gene: ‘‘within’’ the gene, ‘‘upstream’’ of the

gene less than 2 kb, ‘‘downstream’’ of the gene less than 2 kb, and

‘‘none’’ within 2 kb either downstream or upstream of the gene. In

some cases, a gene could be assigned to multiple categories. We

found that this involved a relatively small percentage of the genes

(about 10.47% with USeq) and therefore concluded that assigning

each gene to a single category would not significantly alter the

analysis results.

Figure 2 displays the distribution of peaks identified by each of

the peak identification programs. It is clear that the peaks

identified by different programs displayed substantial differences.

MACS, USeq, FindPeaks and PeakSeq(200) identified 97%, 86%,

65% and 20% of the total genes with no peak, respectively. For

H3K27me3 peaks identified to be within a gene, the ratio was 2%

for MACS, 5% for USeq, 22% for FindPeaks, and 71% for

PeakSeq. For H3K27me3 peaks in the promoter region, the ratio

was about 0.6% for MACS, 5% for USeq, 7% for FindPeaks, and

5% for PeakSeq. For the H3K27me3 peaks downstream of a gene,

the ratio was about 0.4% for MACS, 4% for USeq, 6% for

FindPeaks and 4% for PeakSeq, respectively. These results

demonstrate that different programs will identify different peaks

although the same dataset is used.

The expression values were discretized into three categories:

high, middle, and low as described in Materials and Methods. We

categorize all genes according to computed expression level, with

12,093 genes in high group, 10,204 genes in middle group, and

13,944 genes in low group, which are 33%, 28% and 39% of the

total microarray identified genes, respectively. The number of

genes in each of the categories is similar. We further examined the

conditional probability of gene expression and peak category using

the three gene expression classifications and the four peak

categories described above. Figure 3 shows the percentage of

Table 1. Statistical comparison of peaks identified by different peak calling programs.

Program Peak Count Base pair coverage Percent coverage Mean peak bandwidth Standard deviation

PeakSeq, 200 71,269 170,523,735 43.8% 2392.7 3518.7

PeakSeq, 350 43,343 213,874,615 55.0% 4934.5 6805.2

PeakSeq, 589 23,760 268,102,711 68.9% 11283.8 14890.5

FindPeaks 41,516 35,140,770 9.0% 846.4 429.7

USeq 9,094 21,031,355 5.4% 2312.7 3176.2

MACS 15,738 12, 227,095 3.1% 777.9 831.5

This table shows some basic statistics about the peaks identified by each of the peak calling programs. The percent coverage indicates the percentage of the genome
identified as part of a peak. To compute the percentage, a genome size of 389 Mb was used [38]. The PeakSeq program was run three times with a different max_gap
parameter each time. The number following the comma indicates the value used for the max_gap.
doi:10.1371/journal.pone.0025260.t001

Figure 1. GBrowse visualization of identified peaks. This image displays a 200 kb region of rice chromosome 1. The top track indicates the
positions of all genes identified by TIGR, v6. The next two tracks display the distribution of ChIP and Input (control) reads respectively. The following
four tracks display the predicted peaks by each of the four examined peak calling programs. The sequence read numbers were normalized to ensure
that the ChIP and the Input had identical read numbers over the total genome. Therefore, the height of the graph in this figure directly correlates
with the read number in the region to visually display the DNA enrichment.
doi:10.1371/journal.pone.0025260.g001

H3K27me3 Profiling in Rice Endosperm
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genes in the three expression categories for the four types of peaks

identified by each of the peak calling programs, respectively.

Table 3 shows the significance of the relationships between gene

expression and the peaks identified by each program. The p-values

were computed using a hypergeometric test and represent the

probability of obtaining each of the conditional probability values

by chance. Despite the wide variation in the peak characteristics,

the peaks from all of the programs result in similar biological

conclusions. As Table 3 indicates, regardless of the program used

to identify the peaks, a statistically significant relationship exists

between the probability of low gene expression and an upstream

H3K27me3 peak. Furthermore, all of the programs except

FindPeaks indicate a significant relationship between downstream

peaks and low gene expression. These results suggest that the

presence of H3K27me3 upstream or downstream of a gene is

frequently associated with transcriptional repression. Similar

conclusions were reached in ChIP-chip studies in Arabidopsis [14]

and ChIP-Seq studies in rice young seedlings [26].

Verifying Peak Predictions by ChIP-PCR
In order to further evaluate the peak algorithm results, we

selected 18 genes with H3K27me3 peaks and 5 genes without

peaks identified visually on the genome browser according to the

sequence reads profile. Then we performed ChIP followed by

semi-quantitative PCR experiments for these 23 genes. Figure 4

shows the results of the ChIP-PCR experiments. The eighteen

genes with enriched peaks showed the same enrichment pattern

using ChIP-PCR. We further checked the classification of these

genes by each of the peak identification algorithms. The results

revealed that FindPeaks, MACS, PeakSeq and USeq successfully

Table 2. Comparison of peak characteristics of different peak calling programs.

Program One Support Two Support Three Support Four Support Peak Height

PeakSeq 43.19% 23.27% 15.84% 17.71% 10.51

FindPeaks 0.94% 37.32% 20.79% 40.96% 17.85

USeq 0.01% 16.05% 38.01% 45.92% 17.87

MACS 0.00% 40.95% 27.87% 31.18% 14.05

Table entries show the overlap of peaks identified by each program with those identified by other programs. Each column entry gives the percent of base pairs
belonging to peaks identified by the specified program that were also identified as in peaks by other programs. Peak height gives the mean difference between the
highest and lowest read counts of the peaks identified by that program.
doi:10.1371/journal.pone.0025260.t002

Figure 2. Distribution of gene classifications. These pie charts detail the portion of genes falling into each of the four categories based on their
position relative to ChIP-Seq peaks: Upstream, Downstream, Within and No peak. The label above each pie chart indicates the program with which
the pie chart is associated. In all cases, the blue portion represents the genes with an upstream peak, the red represents genes with a downstream
peak, the green represents genes with a peak within the gene, and the purple represents genes with no peak identified.
doi:10.1371/journal.pone.0025260.g002
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classify 13, 2, 18 and 12 of the 18 enriched genes, respectively

(Table 4). Only PeakSeq classifies one of the five unenriched genes

as enriched. These results suggest that although PeakSeq

successfully identifies the genes with enrichment (high sensitivity),

its specificity suffers when compared to the other programs. On

the other hand, although MACS generates high resolution peaks,

the sensitivity in peak identification is compromised. The USeq

also lost some peaks presented in the cell.

GO Annotations of H3K27me3 Associated Genes
We next analyzed the GO annotations assigned to the genes

with significant enrichment. The GO is divided into three distinct

categories: (i) the biological processes (BP) in which the gene

product participates; (ii) the molecular functions (MF) that describe

the gene product activities, such as catalytic or binding activities, at

the molecular level; and (iii) the cellular component (CC) where

the gene product can be found. We used agriGO [31] to identify

GO annotations for which each of the groups of genes were

significantly enriched compared to all genes in the genome.

Because MACS’ peaks were supported by all four programs, we

selected those for GO analysis. Figures 5, 6 and 7 show the

enriched GO annotations for genes with low expression and

upstream peaks in the biological process, molecular function and

cellular component categories, respectively. H3K27me3 seems to

Figure 3. Conditional probabilities of gene expression versus peak classification. This figure illustrates the conditional probabilities of
gene expression versus peak classification for each of the four peak identification programs. For example, the top bar for MACS indicates that
approximately 20% of the genes with a peak upstream had high expression, while about 50% of those with a peak upstream had low gene
expression.
doi:10.1371/journal.pone.0025260.g003
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particularly affect multicellular organism processes and develop-

ment, signal transduction, response to stimuli (including external

stimulus, endogenous stimulus and stress), and secondary meta-

bolic process as shown in Figure 5. The biological processes tightly

associated with H3K27me3 are transcription factor activities and

oxygen binding (Figure 6). Furthermore, substantially more

H3K27me3 modified genes encode proteins located in the cell

wall, plasma membrane, ER, and mitochondrion (Figure 7). We

found that a large number of cell wall metabolic pathway genes

subjected to the regulation of H3K27me3 as shown in Table S1.

Discussion

Comparison of the four peak identification programs
We analyzed the performance of four different peak identifica-

tion programs with ChIP-Seq data from rice endosperm. The

programs produced quite different peaks in terms of peak size,

number and relative position to a gene. We evaluated the peak

predictions using ChIP-PCR and compared the accuracy of peak

prediction of these algorithms. PeakSeq identifies a large number

of peaks, which cover from 44% to 69% of the genome. However,

the identified peaks were not very precise as shown in ChIP-PCR

tests and in comparison of the read profiles between ChIP and

Input samples in GBrowse. While MACS identified peaks were

supported by other peak calling programs, this program might

miss many true peaks as shown in our ChIP-PCR verification.

USeq identified peaks are also reliable but the program only

identifies large peaks. The smaller peaks were not detected or

merged with nearby peaks. FindPeaks identified a large number of

peaks with various sizes and the identified peaks were mostly

reliable as judged by ChIP-PCR and the average peak height.

However, FindPeaks does not take the control data into

consideration while identifying the peaks. To acquire accurate

peak calling results, the control data needs to be considered. A

simple compensation method is to subtract the peaks generated by

control data alone after normalization with the same program. A

Table 3. p-values for associations between gene expression
and gene classification.

Expression Value Peak Location FindPeaks PeakSeq USeq MACS

High Downstream 1.00 1.00 1.00 1.00

High None 0.00 1.00 0.00 0.00

High Upstream 0.98 1.00 1.00 1.00

High Within 1.00 0.00 0.66 1.00

Low Downstream 0.65 0.00 0.00 0.00

Low None 1.00 0.00 1.00 1.00

Low Upstream 0.00 0.00 0.00 0.00

Low Within 0.00 1.00 0.17 0.00

Middle Downstream 0.00 0.73 0.22 0.59

Middle None 1.00 0.94 0.52 0.13

Middle Upstream 0.72 0.84 0.47 0.67

Middle Within 0.02 0.02 0.70 0.80

This table shows the results of using a hypergeometric test to test for statistical
significance between the expression value for genes and the peak classification
for genes. The expression value and peak location indicate the classification of
the genes for expression and peak classification, respectively. The remaining
four columns provide the calculated p-values based on peak classifications for
each of the peak identification programs. The statistically significant cells are
bold. A cut-off of 1022 was used to identify significant relationships.
doi:10.1371/journal.pone.0025260.t003

Figure 4. Semiquantitative PCR analyses of Regions Enriched
by ChIP. Antibodies for H3K27me3 were used for ChIP experiments
with the chromatin isolated from rice endosperm. Input: DNA sample
extracted from the chromatin before the chromatin immunoprecipita-
tion step. ChIP: DNA sample extracted from ChIP enriched chromatin.
Mock: DNA extracted from sample that went through the IP procedure
without antibody. Primers were designed to amplify the gene indicated
on the right. The amplified fragment sizes were from 100 bp to 260 bp.
About 20 ng of template DNA were used and the DNA was amplified
for twenty four thermal cycles. The genes were selected based on ChIP-
Seq data analysis results, including eighteen enriched and five
unenriched genes as indicated in the figure.
doi:10.1371/journal.pone.0025260.g004
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variety of differences in these algorithms, such as use of a control

dataset and statistical corrections for read counts, can account for

the differences. Given that each program has advantages and

disadvantages, it is the best to analyze the data with multiple

programs to verify the results. Meanwhile, it is still necessary to

develop more ChIP-Seq data analysis tools to eventually identify a

program that best fits the requirements of regular molecular

biology laboratories for ChIP-Seq studies.

Deng’s group published an H3K27me3 whole-genome profile

from Nipponbare seedling shoots in the four-leaf stage [26].

Genomic regions associated with H3K27me3 modification were

identified using MACS, in which the parameters (bandwidth,

300 bp; mfold, 32; p-value of 1.00e-05) were set up to call peaks

representing enriched epigenetic marks. In their study, out of

41,043 non-TE genes, 17,211 (41.9%) were found to be modified

by H3K27me3. Our study of an H3K27me3 whole genome

profile in rice endosperm reveals that a total of 15,738 peaks were

identified using MACS. The results in both seedlings and

endosperm were similar although endosperm has fewer cell types.

Function of H3K27 trimethylation
Despite the differences, all four of the ChIP-Seq data analysis

programs reach similar conclusions about the effect of H3K27me3

on gene expression. Its presence upstream of a gene is often

associated with repression of expression (Table 3 and Figure 3).

Similarly, its presence downstream of a gene is also associated with

repression of expression. Additionally, GO analysis revealed that

many of the H3K27me3 associated genes were involved with

multicellular organism development, signal transduction, response

to external and endogenous stimuli, and secondary metabolic

processes. Interestingly, cell wall related genes stand out as a

distinct group that is regulated by H3K27 trimethylation. Detailed

examination of the genes used for GO analysis shows that 25 out

of 247 (10.1%) genes subjected to H3K27me3 regulation are

involved in cell wall metabolism. The p value for such a

distribution is 5E-28. Our results suggest that H3K27 trimethyla-

tion not only plays a key role in regulating development, signal

transduction, and response to external and endogenous stimuli,

but also is a key regulator of metabolism.

Materials and Methods

Plant materials
All plants used in this study were rice strain Oryza sativa ssp

japonica cv Nipponbare. The immature rice seeds were harvested

6–7 days after pollination. The cross-linking of the chromatin was

achieved by vacuum infiltrating PBS (pH7.4) with 1% formalde-

hyde for 15 min at room temperature. The cross-linking reaction

was stopped by adding glycine to a final concentration of 0.125 M

and incubating for 5 min under vacuum. The tissues were rinsed 3

times with PBS.

Chromatin extraction
The chromatin was extracted from endosperm following the

protocol of Gendrel et al [32] with minor modification. Briefly,

after removal of the embryo, the seeds were ground to a fine

powder in liquid nitrogen and resuspended in chromatin isolation

buffer I (0.4 M sucrose, 10 mM Tris-Cl pH 8.0, 10 mM MgCl2,

5 mM b–mercaptoethanol, 1 mM PMSF) followed by filtration of

the slurry through 4 layers of cheesecloth and 2 layers of Miracloth

and centrifugation at 12,000 g for 10 min. The pellet was washed

in buffer II (0.25 M sucrose, 10 mM Tris-Cl pH8.0, 10 mM

MgCl2, 1% Triton X-100, 5 mM b–mercaptoethanol, 1 mM

PMSF) and centrifuged as above. The pellet was homogenized in

buffer III (1.7 M sucrose, 10 mM Tris-Cl pH8.0, 2 mM MgCl2,

0.15% Triton X-100, 5 mM b–mercaptoethanol, 1 mM PMSF)

and layered over an equal volume of buffer III. The pellet of

chromatin was recovered by centrifugation at 27,000 g for 30 min.

Chromatin immunoprecipitation
ChIP experiments were carried out as described by Gendrel et

al [30]. Briefly, the chromatin pellet was resuspended in lysis

buffer (50 mM Tris-Cl pH 8.0, 10 mM EDTA, 1% SDS) and

fragmented to a size range of 150–400 bases with the Sonic

Dismembrator (Fisher, model# 550). Solubilized chromatin was

immunoprecipitated with antibodies against H3K27me3 (Milli-

pore, Cat# 07-449). Antibody-chromatin complexes were pulled-

down using protein A agarose/Salmon Sperm DNA, washed and

then eluted. After cross-link reversal and proteinase K treatment,

immunoprecipitated DNA was extracted with phenol-chloroform,

ethanol precipitated, and treated with RNase. ChIP DNA was

quantified using PicoGreen. Input DNA was extracted from the

initial solubilized chromatin.

Library Preparation and Solexa Sequencing
Input and ChIP samples were processed following Illumina’s

protocol from the ChIP DNA Sample Prep Kit. Briefly, 10 ng

input and ChIP enriched DNA was subjected to end repair,

addition of ‘‘A’’ bases to 39 ends, ligation of adapters, agrose gel

size selection for fragments with average size about 186 bp, and

Table 4. Algorithm classifications for PCR genes.

Gene PCR Result FindPeaks MACS PeakSeq USeq

LOC_Os01g04800 + + 2 + +

LOC_Os01g18440 + + 2 + +

LOC_Os01g18584 + + 2 + +

LOC_Os02g07430 + + 2 + +

LOC_Os02g45850 + + 2 + +

LOC_Os03g63810 + + 2 + 2

LOC_Os04g41229 + 2 2 + 2

LOC_Os05g11130 + + 2 + +

LOC_Os05g20930 + 2 2 + 2

LOC_Os05g48990 + 2 2 + 2

LOC_Os06g11330 + + 2 + +

LOC_Os07g13260 + + 2 + +

LOC_Os08g02160 + 2 2 + 2

LOC_Os08g06370 + + 2 + +

LOC_Os09g24490 + + 2 + +

LOC_Os10g39130 + 2 2 + 2

LOC_Os11g29870 + + + + +

LOC_Os12g10540 + + + + +

LOC_Os03g09930 2 2 2 2 2

LOC_Os01g10504 2 2 2 2 2

LOC_Os12g43640 2 2 2 2 2

LOC_Os12g44380 2 2 2 2 2

LOC_Os07g40570 2 2 2 + 2

This table shows the result of the PCR analysis. The first column indicates the
TIGR rice gene name. The second column shows the PCR result. The remaining
columns indicate the classification of the gene by each of the programs. A ‘‘+’’
indicates a ChIP-enriched gene, while a ‘‘2’’ indicates an unenriched gene.
doi:10.1371/journal.pone.0025260.t004
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Figure 6. Enriched GO molecular functions of genes with low expression and an upstream peak. This figure shows the significant
molecular function GO annotations for genes with low gene expression and a MACS peak upstream. The notation and coloring are the same as that
described in Figure 5.
doi:10.1371/journal.pone.0025260.g006

Figure 5. Enriched GO biological processes of genes with low expression and an upstream peak. This figure shows the significant
biological process GO annotations for genes with low gene expression and a MACS peak upstream. The top line in each of the boxes lists the GO
identifier of the term and the statistical significance (multiple hypothesis corrected p-value, lower is more significant) of that annotation. The middle
lines are a description of the GO term. The four numbers on the bottom line are the number of genes with low expression and an upstream peak that
had the annotation, the number of genes with low expression and an upstream peak that had any annotation (always 247), the total number of
genes that had the annotation and the total number of genes that had any annotation (always 30241). The color of the box is an indication of the
significance of the term. White boxes are not significant. The higher level it is, the more significant the GO term is. The color of the arrows indicates
the relationship among the GO terms. Black signifies ‘‘is_a.’’ Orange is ‘‘part_of;’’ red is ‘‘positive_regulate.’’ Purple is ‘‘regulate,’’ while green is
‘‘negative_regulate.’’ Long dashes indicate ‘‘two significant nodes,’’ and short dashes mean ‘‘one significant node.’’
doi:10.1371/journal.pone.0025260.g005
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PCR amplification to produce a DNA library of adapter-modified

fragments. DNA sequencing was carried out using the Illumina/

Solexa Genome Analyzer sequencing system at a concentration of

2 to 4 pM. Cluster amplification, linearization, blocking and

sequencing primer reagents were provided in the Solexa Cluster

Amplification kits and were used according to the manufacturer’s

specifications.

Mapping the short reads to the genome
The generated short reads were mapped onto the genome using

SeqMap [28] allowing up to two mismatches between the short

read and genome. The Illumina reads were aligned to TIGR

version 6 of the rice genome [29]. The alignments were output in

ELAND format [33]. Only reads which mapped uniquely to the

genome were retained.

Identifying peaks
Each of the four peak calling programs (MACS [10], PeakSeq

[8], FindPeaks [4], and USeq [7]) was used to identify peaks with

the mapped reads. Tables S2, S3, S4, S5 show the parameters

used when running the four peak calling programs. As previously

described, these algorithms address the peak identification

problem differently. Whenever possible, though, parameters were

selected in a manner to be consistent in all programs for the

purpose of comparison.

All the ChIP-Seq data were deposit to NCBI’s Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo/) with the deposi-

tion number GSE27048 for genome-wide maps of chromatin state

in rice endosperm.

Calculating the support value of a peak by different
programs

The support value of a peak by different programs was calculated

on a base-pair basis. We labeled each base pair with the programs

that identified that base pair as belonging to a peak. We call the

number of programs which identified a base pair as belonging to a

peak the supporters of that base pair. Then, we counted the number

of base pairs with supporters of four (so all programs identified that

base pair as belonging to a peak), three, two, and one and listed

these support programs with the peak. Finally, we calculated the

percentage of base pairs for each support value for each program.

For example, if one program identified a total of 200 base pairs as

belonging to peaks and of those 200, 60 had a support value of 2,

then 30% of the base pairs for that program had support 2.

Figure 7. Enriched GO cellular components of genes with low expression and an upstream peak. This figure shows the significant
cellular component GO annotations for genes with low gene expression and a MACS peak upstream. The notation and coloring are the same as that
described in Figure 5.
doi:10.1371/journal.pone.0025260.g007
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Calculating peak height
The height of peaks was calculated on a per-peak basis. We

counted the number of ChIP-Seq reads mapping to each position

in the peak. The minimum number of reads was subtracted from

the maximum number of reads in the peak. We then calculated

the mean of this difference over all peaks for each program.

Gene expression experiments
The immature rice seeds were harvested 6–7 days after

pollination. After removal of the embryo, the seeds were ground

to a fine powder in liquid nitrogen and re-suspended in RNA

extraction buffer (50 mM Tris-Cl, pH 8.0, 150 mM LiCl, 5 mM

EDTA, pH 8.0, 1% SDS). The mixture was extracted twice with

phenol-chloroform and once with chloroform. A five volume of

TRIZOL was added to the aqueous phase and then extracted

once with chloroform. The RNA was precipitated with isopropa-

nol. After washing with 70% ethanol, the RNA was dissolved into

DEPC-H2O. After digestion with RNase-free DNase, the RNA

was quantified with the NanoDrop method and qualified with

Agilent 2100 Bioanalyzer. A 5 ug of RNA was used as starting

material for the microarray experiment. The cRNA probe was

labeled and hybridized to the gene chips according to the

manufacturer’s instruction (Affymetrix). The raw microarray data

was extracted from the chip images by using the Gene Chip

Operating Software (Affymetrix). All the microarray data is

MIAME compliant and the raw data has been deposited to

NCBI’s Gene Expression Omnibus (http://www.ncbi.nlm.nih.

gov/geo/) with the deposition number GSE26840 for expression

data from rice endosperm.

Characterizing gene expression levels
Each raw expression score was log transformed, and then a z-

score was computed for each gene:

zi~ exi{mexð Þ=sex,

where zi is the z-score for gene i, exi is the log base 10 expression

value for gene i, mex is the mean, and sex is the standard deviation.

Note that the resulting z-scores have a mean of 0 and a standard

deviation of 1.

The z-scores were then discretized into three categories: ‘‘high

expression,’’ ‘‘middle expression’’ and ‘‘low expression’’ based on

the number of standard deviations from the mean as shown below:

discretize zið Þ~
high,ziw0:5

middle,{0:5ƒziƒ0:5

low,ziv{0:5

:

8><
>:

Mapping between ChIP-Seq peaks and genes
The genes were partitioned into four disjoint sets based on

where the peaks were located relative to the gene. If a gene body

overlapped any peak, then the gene was labeled ‘‘within’’ (because

the peak is within the gene). If any peak fell at most 2 kb upstream

of a gene, it was labeled ‘‘upstream’’ (because the peak is upstream

of the gene). Likewise, if any peak fell at most 2 kb downstream of

a gene, it was labeled ‘‘downstream’’ (because the peak is

downstream of the gene). Genes with no peaks within, upstream

or downstream were labeled ‘‘none’’ or ‘‘no peak.’’ Each gene

received only a single label. The precedence of the labels was

‘‘within,’’ ‘‘upstream,’’ ‘‘downstream’’ and ‘‘none.’’ This analysis

was performed for each of the peak identification programs. We

also tested using a window of 1 kb upstream of a gene and 500 bp

downstream of a gene and obtained similar results.

Computing conditional probabilities and statistical
significance

Conditional probability is the probability that a proposition is

true given that another proposition is true [34]. For example,

P ex~lowjChIP{Seq~upstreamð Þ is the conditional probability

that the gene expression for a particular gene is ‘‘low’’ given that

the gene has an H3K27me3 peak ‘‘upstream.’’ Conditional

probability can be calculated as:

P(X~xjY~y)~P(X~x,Y~y)=P(Y~y):

The conditional probabilities were calculated for gene expression

given ChIP-Seq peak position relative to the gene. We computed

p-values for the conditional probabilities using a hypergeometric

test [35] implemented in R [36].

Verifying peak predictions
In order to verify the peaks identified by the programs, we

selected eighteen genes that were classified as having nearby peaks

and five genes that were classified as having no nearby peaks based

on the sequence read profile in genome browser for ChIP-PCR

verification. Semi-quantification PCR reactions were performed

for these genes; the primers used are listed in Table S6. The PCR

reaction parameters were as follows: 1 cycle of 2 min at 95uC; 28

cycles of 30 s at 95uC, 30 s at 58uC, and 30 s at 72uC; cycle of

2 min at 75uC. The enrichment of H3K27me3 was determined by

regular agarose gel electrophoresis.

Investigating GO annotations of H3K27me3 enriched
genes

Functional categorization of genes was carried out according to

the GO rules [27] by agriGO [31]. Because of its high specificity,

the gene classifications from MACS program were used. The

query list for agriGO consisted of the genes which had an

upstream peak and low gene expression, while the background was

the TIGR gene model. Statistical significance was determined

using a hypergeometric test using the Yekutieli multi-test

adjustment [37].

Data deposition
All the microarray data was MIAME compliant and that all the

microarray and ChIP-Seq data were deposit to NCBI’s Gene

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) with

the deposition number GSE26840 for expression data from rice

endosperm and GSE27048 for genome-wide maps of chromatin

state in rice endosperm.
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reactions.
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