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Brevibacterium linens is one of the main bacteria found in the smear of surface-ripened cheeses. The genome of the industrial
strain SMQ-1335 was sequenced using PacBio. It has 4,209,935 bp, a 62.6% G�C content, 3,848 open reading frames, and 61
structural RNAs. A new type I restriction-modification system was identified.
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Brevibacterium linens is a Gram-positive bacterium found on
the surface of a variety of washed rind cheeses produced glob-

ally (1–3). This non-spore-forming, halotolerant, strictly aerobic
chemoorganotroph undergoes a rod-cocci cycle during growth
and possesses mesodiaminopimelic acid in its cell wall (1, 2, 4).
B. linens plays key roles during cheese ripening in the breakdown
of lipids and proteins (2), the production of volatile sulfur com-
pounds (5, 6), and the development of color due to carotenoid
pigment production (1, 2, 4, 7). Furthermore, the production and
accumulation of compatible solutes allows B. linens to grow in
hyperosmotic environments (4). The genomes of three B. linens
strains are currently available, of which one is complete (GCA_
001606005.1) and two are scaffold and draft sequences (GCA_
000167575.1 and GCA_000807915.1, respectively).

The genome of B. linens SMQ-1335 was sequenced using one
SMRT cell in a PacBio RSII sequencer (Génome Québec Innova-
tion Centre, Montréal, QC, Canada), which generated 76,075 raw
subreads of an average length of 9,010 bp that provided an average
coverage of 162-fold. The genome was assembled into one contig
using HGAP (8). BLASR (9) was used to align and preassemble the
sequences using the longest reads as seeds to which all the other
subreads were recruited and mapped to correct random errors. The
Celera assembler (10) was then used to de novo assemble these long
and corrected reads into contigs. The sequences were refined using
Quiver, wherein the raw reads were aligned on the contigs to generate
a consensus sequence containing the complete genome. The single
contig had redundant ends of 16,018 bp that were removed from one
end for the final assembly. The origin of the genome was set upstream
of the gene coding for the replication initiator protein DnaA. Gene
prediction and annotation was performed using RAST (11) and
BLASTp (12). The B. linens SMQ-1335 genome has a high G�C
content (62.6%) and is composed of 4,209,935 bp, 3,848 genes, and
61 structural RNAs (49 tRNAs and 12 rRNAs).

In vitro tests revealed that B. linens SMQ-1335 is sensitive to
vancomycin, daptomycin, gentamicin, tetracycline, and rifampin.
However, this strain was insensitive to �-lactam antibiotics (pen-
icillin and ceftriaxone), trimethoprim-sulfamethoxazole (TMP-

SMX), and a second-generation fluoroquinolone (ciprofloxacin).
A gene likely coding for the lantibiotic linocin was identified using
BAGEL3 (13).

No genes coding for known toxins were found in the genome
of SMQ-1335 using Virulence Finder (14), Virulence Factor Data-
base (15), and DBETH (16). RAST and PHASTER (17) identified a
putative prophage (31,300 bp). Analysis of this prophage sequence
revealed many transposases and integrases, suggesting that this may
be a nonfunctional prophage.

The methylome (18) of B. linens SMQ-1335 was analyzed to
identify DNA methyltransferases and restriction endonucleases
(19) as well as specificity subunits (20). The new methyltransferase
M.Bli1335I, the restriction endonuclease Bli1335IP, and a new
type I RM system were assigned, with the recognition site se-
quence CGGANNNNNNTTC. The SMQ-1335 genome may con-
tain additional RM systems (types II, III, and IV). For the type II,
a new restriction endonuclease (Bli1335II) was also assigned with
DTGAAT as the recognition sequence.

Accession number(s). The complete genome sequence of
B. linens SMQ-1335 is available in GenBank under the accession
number CP017150.
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