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Metabolic profiling is widely used as a probe in diagnosing diseases. In this study, the metabolic profiling of urinary carbohydrates
was investigated using gas chromatography/mass spectrometry (GC/MS) and multivariate statistical analysis. The kernel-based
orthogonal projections to latent structures (K-OPLS) model were established and validated to distinguish between subjects with
and without diabetes mellitus (DM). The model was combined with subwindow permutation analysis (SPA) in order to extract
novel biomarker information. Furthermore, the K-OPLS model visually represented the alterations in urinary carbohydrate
profiles of excess and deficiency syndromes in patients with diabetes. The combination of GC/MS and K-OPLS/SPA analysis
allowed the urinary carbohydrate metabolic characterization of DM patients with different traditional Chinese medicine (TCM)
syndromes, including biomarkers different from non-DM patients. The method presented in this study might be a complement
or an alternative to TCM syndrome research.

1. Introduction

Diabetes mellitus (DM) is a complex metabolic disorder
characterized by chronic hyperglycemia, hypoinsulinemia,
and ketosis. In 2000, around 171 million people were affected
with DM. By 2030, this number is estimated to increase to
366 million [1]. Current statistics shows that over 10% of
the world’s aged population (60 years and above) suffers
from this disease, and 90% of these patients have type 2
diabetes mellitus (T2DM) [2]. Diabetes always causes high
morbidity and mortality rates due to chronic microvascular
complications (e.g., retinopathy, nephropathy, or neuropa-
thy) and macrovascular complications (e.g., ischemic cardiac
problems, cerebral vascular accidents, and peripheral vascu-
lar disorders) [3].

In ancient China, DM was recognized as xiaokezheng,
a disease with symptomatic polydipsia. Traditional Chinese

medicine (TCM) has a long history of treatments for xiaok-
ezheng [4]. According to TCM theory, Yin (things associated
with the physical form of an object), Yang (things associated
with energetic qualities), Qi (life force that animates the
forms of the world), and Xue (dense form of body fluids that
have been acted upon and energized by Qi) [5] are in an
unbalanced state when people are suffering from a disease.
Similarly, patients with DM could be classified as having
deficiency syndrome or excess syndrome, which refers to the
organs’ insufficiency or excess in Qi, Xue, Yin, and Yang.

Metabolic profiling is defined as the quantitative mea-
surement of the dynamic multiparametric response of a
living system to pathophysiological stimuli or genetic mod-
ification [6]. The objective of metabolomics is to gain new
insight into the pathophysiology of a disease and identify
individual metabolites or profiles of metabolites as poten-
tial biomarkers that can distinguish between normal and
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pathological states [7]. Metabolomics has been used in the
diagnosis and evaluation of diabetic patients [8] because of
its effectiveness in evaluating systemic responses to any subtle
metabolic perturbation. In addition, it has also been used in
the identification of potential biomarkers [9].

Recent animal and human metabolomic studies have
investigated the metabolic effects of oral glucose challenge
[10–12], insulin resistance [13–18], type 1 [19, 20] or
T2DM [20–28]. Previous studies investigated the metabolic
profiling of plasma phospholipids in T2DM using liquid
chromatography/mass chromatography (LC/MS) coupled
with multivariate statistical analysis [29]. Methods based
on plasma fatty acid profiles analyzed via GC/MS were
also developed to investigate the differences between T2DM
patients and healthy volunteers [30]. A multianalytical
platform method using GC/MS and ultra performance liquid
chromatography-mass spectrometry (UPLC/MS) was devel-
oped to obtain the global metabolite profiles of DM in rat
models [31]. An imbalance between carbohydrate and lipid
metabolisms is involved in the etiology and pathophysiology
of diabetes. Therefore, a metabolic analysis is necessary to
visualize the alteration of globally circulating metabolites
in a person suffering from diabetes. In the present study, a
metabolic profiling was performed using GC/MS of urinary
carbohydrates in subjects with and without DM.

Partial least square linear discriminant analysis
(PLSLDA) is currently the common method used in super-
vised linear modeling in the field of metabolomics. However,
the relationship between the disease and metabolic data
displays nonlinear characteristics in some cases. Therefore,
nonlinear modeling has been applied in metabolomics
[32, 33]. Recently, the “kernel trick” has been efficient in
dealing with nonlinear problems. Kernel-based orthogonal
projections to latent structures (K-OPLS) [34, 35] can
considerably improve the predictive performance in situ-
ations where a strong nonlinear relationship exists. Model
population analysis (MPA) was developed based on the
idea of statistically analyzing the outputs of Monte Carlo
Sampling (MCS)-derived “population” of models. The MPA-
based method is expected to provide some comprehensive
insights into the data because it allows the statistical analysis
of some interesting outputs of several models. One typical
MPA-based method can be used to identify important
variables by examining the distribution of prediction errors
of all the submodels [36]. Subwindow permutation analysis
(SPA) was used in the present study to reveal informative
metabolites by incorporating the Monte Carlo technique
and strictly implementing the idea of MPA [37, 38].

Several diabetes-related studies have been reported in
recent years. However, the metabolic profiles involved in the
pathological processes of diabetes are yet to be addressed.
Thus, the identification of biomarkers is needed for the
adequate screening and diagnosis of diabetes. Syndrome
differentiation is an important element in TCM theories
and is the basis for the treatments of all diseases, including
DM. Therefore, the TCM syndromes of patients with DM
are necessary to characterize. However, previous studies have
not revealed the differences among the urinary carbohy-
drate metabolites in the TCM syndromes of these patients.

In the present work, we conducted a comparative analysis
of 366 subjects using GC/MS combined with K-OPLS/SPA
analysis to (1) compare the urinary carbohydrate profiles of
subjects with and without DM, (2) compare the relationship
between urine carbohydrate levels and TCM syndromes in
subjects with DM, and (3) determine the characteristics and
differences in TCM syndrome distribution between excess
and deficiency syndromes.

2. Materials and Methods

2.1. Chemicals. Carbohydrate standards (C4 sugar 1, inositol
C, talose, mannose, inositol D, glucose, inositol A, arabinose,
xylose, and C4 sugar 2) were purchased from Sigma (St.
Louis, MO, USA). Acetonitrile (HPLC grade), methanol
(HPLC grade), and methylimidazole were purchased from
Fisher/Aldrich (NJ, USA). Sodium borohydride (NaBH4),
dimethyl sulfoxide, trifluoracetic acid, acetic acid, acetic
anhydride, and chloroform (analytical grade) were pur-
chased from Sinopharm Chemical Reagent Co. Ltd. (Shang-
hai, China). Water was obtained from a Milli-Q ultra-pure
water system (Millipore, Billerica, USA).

2.2. Clinical Research Design. DM patients from the Tianlin
Community Health Service Center, Shanghai city of P.R.
China August 2009 to May 2010 were prospectively included
in the study. All 366 samples included 308 patients with
DM (241 deficiency and 67 excess samples) and 58 patients
without DM as the comparison group.

Patients were required to abstain from eating greasy
and sweet food before the study to avoid an interference
with the metabolism of the human body. Study protocol
was approved by the Ethics Committee of the Hospital,
and a written informed consent was obtained from each
respondent. Each blood sample collected in a fasting con-
dition was immediately centrifuged at 3000× g for 10 min,
and the plasma was transferred into a clean tube. All urine
samples collected in fasting condition and plasma samples
were stored at −80◦C until analysis.

2.3. Inclusion and Syndrome Differentiation Criteria. Based
on the criteria formulated by the World Health Organization
in 1999, DM is characterized by a fasting plasma glucose
(FPG) of≥7.0 mmol/L, a postload plasma glucose (2h PG) of
≥11.1 mmol/L, or a history of oral hypoglycemic or insulin
use, or both [39]. TCM syndromes, including deficiency
and excess syndromes, were differentiated according to the
guidelines [40]. The information gathered from inspection,
auscultation, and inquiring was obtained on the day of
admission. Manifestations and other diagnostic information
were determined independently by three experienced physi-
cians to ensure an objective evaluation. If the three were
in accordance, the subject will be included in the study.
Otherwise, he/she will be excluded.

2.4. Exclusion Criteria. Patients suffering from other serious
diseases involving major organs or infective diseases were
excluded from the study. Moreover, those who cannot or
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are not willing to complete the study or those who had
psychiatric disorders or intellectual dysfunctions were also
excluded.

2.5. Clinical and Laboratory Assessment. Clinical data includ-
ing date of birth, height, weight, body mass index (BMI),
waist and hip circumference, systolic blood pressure (SBP),
and diastolic blood pressure (DBP) were determined by
a senior physician. Obesity is characterized by a BMI
of ≥25.0 kg/m2 according to the Asian guidelines [41].
Serum levels of alanine aminotransferase (ALT), FPG, gly-
cated hemoglobin (HbA1c), triglycerides (TG), high-density
lipoprotein cholesterol (HDL-C), very low-density lipopro-
tein cholesterol (VLDL-C) in fasting condition, and 2h PG
were measured using an automatic biochemical analyzer
(Hitachi7180, Tokyo, Japan).

2.6. Sample Preparation of Urine for GC/MS. A 200 μL
sample of urine from each group was blended with 20 μL
of ammonia and 1 μL of 0.5 mol/L NaBH4/dimethyl sul-
foxide (DMSO). Acetic acid (100 μL) was added dropwise
to reduce the abundance of NaBH4 after the reduction
reaction (120 min at 40◦C). Acetylation (10 min at 40◦C)
was performed after adding 200 μL of 1 methylimidazole and
1 mL of acetic anhydride. Subsequently, 2 mL of water was
mixed with the extracts for 10 min at 40◦C, and the mixtures
were extracted with 2 mL of chloroform. The samples were
centrifuged (4000× g for 10 min), and the supernatant was
discarded. The samples were washed with 5 mL of water to
remove the chloroform layer. The remaining layer was added
with 1 g of sodium sulfate and taken for GC/MS. Allose
(20 μL) was used as an internal standard to be added into
each 200 μL sample.

2.7. GC/MS Conditions. GC/MS was performed using a
Finnigan gas chromatograph (ThermoFinnigan, USA) cou-
pled with a mass spectrometer (TRACE DSQ). A TR-5ms
capillary column (60 m × 0.25 mm × 0.25μm, Thermo)
was used in the gas chromatographic system. The inlet
temperature was 250◦C. Column temperature was increased
from an initial 140◦C to 198◦C (2◦C per min for 4 min). It
was then programmed from 198◦C to 214◦C (4◦C per min),
214◦C to 217◦C (1◦C per min for 4 min), and 217◦C to 250◦C
(3◦C per min for 5 min). Inlet temperature was maintained
at 250◦C. Helium was used as a carrier gas at a flow rate
of 1.0 mL/min. The GC/MS was injected with 1 μL aliquots.
The mass spectrometer was operated in electron impact and
full-scan monitoring modes (m/z 40–450) with 0.2 s/scan
velocity. Source temperature, electron energy, and solvent
delay were set at 250◦C, 70 eV, and 10 min, respectively.

2.8. Data Analysis and Software. All data were processed
by the Xcalibur software (ThermoFinnigan, USA), and the
detected peaks were aligned using hand integral methods.
The ion peak area for each detected peak was normal-
ized by NIST 05 Standard mass spectral databases in the

NIST MS search 2.0 (NIST, Gaithersburg, MD, USA) soft-
ware. Semiquantitative concentrations of urinary monosac-
charides were obtained through the ratio of the peak
area to the standard. The K-OPLS package (available at
http://kopls.sourceforge.net/download.shtml) and Statistic
toolbox of the MATLAB (version 7.1, Mathwork Inc.)
software were used in the statistical treatment of the data
and application of various multivariate methods. Parts of the
source codes used in implementing SPA in MATLAB were
freely available at http://code.google.com/p/spa2010/down-
loads/list.

Data are shown as mean ± standard deviations (SD). In
addition, significance was expressed through independent
t-tests for continuous variables and Pearson Chi-square
tests for categorical variables using the SPSS 17.0 software
(SPSS, Chicago, Ill, USA). Fisher’s exact tests were calculated
when the expected frequencies were less than 5 in any cell.
A P value of <0.05 was considered to indicate statistical
significance.

2.9. K-OPLS Models for Classification. Based on our previous
work [42] and related literature [34, 43], the K-OPLS model
was employed in the present study to build a classifier, with
σ as the parameter for the Gaussian kernel function. The
kernel matrix K was centered to model estimation. The
K-OPLS algorithm modeled the kernel matrix K through
a set of predictive and Y-orthogonal components. Thus,
the predictive score matrix and the Y-orthogonal score
vector were estimated. After the estimation step of each
Y-orthogonal component, K was deflated using the Y-
orthogonal variation, followed by a subsequent updating
of the predictive score matrix and further estimation of Y-
orthogonal components. The kernel function parameter (σ)
and the number of Y-orthogonal components (Ao) of the K-
OPLS model were optimized using 10-fold cross-validation.
All the samples were randomly partitioned into 10 equally
sized folds according to their categories. Subsequently, 10
iterations of calibration and validation were performed. As
a result, onefold of the data was held out for validation,
whereas the remaining nine folds were used for calibra-
tion. Details on the model are provided in the previous
work.

2.10. Revealing Informative Metabolites through Statistical
Assessment of Variable Importance. Previous studies [37, 44]
indicated that the SPA method used for uncovering informa-
tive metabolites is constructed based on the prediction error
distribution of the K-OPLS models, which are based on the
subdatasets obtained through Monte Carlo sampling in both
sample and variable space.

In the equation DMEAN j = MEAN j,B − MEAN j,A,
MEAN j,A and MEAN j,B denote the mean prediction errors
calculated by the normal K-OPLS and the latter permuted
K-OPLS models of the jth metabolite, respectively. If
DMEAN j > 0, the inclusion of the jth metabolite in the K-
OPLS model may improve the predictive performance. This
type of metabolite is deemed as a candidate of informative
metabolites in the present study. By contrast, if DMEAN j <
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0, the inclusion of this metabolite into a model may most
probably reduce the predictive performance. Therefore, this
type of metabolite is considered uninformative/interfering.

With these preparations, the informative metabolites
were identified in the following successive steps. (1) All the
metabolites with DMEAN j < 0 were removed. (2) The
Mann-Whitney U test was used in the remaining metabolites
to check the significance of the difference between the two
distributions. (3) The metabolites were ranked using the
P value. The metabolites with P values smaller than the
predefined threshold (e.g., 0.01) were considered informative
metabolites, whereas those with P values larger than the
threshold were considered uninformative metabolites. The
P values calculated in this manner are conditional in all
other metabolites because both normal prediction errors
and permuted prediction errors are dependent on all other
metabolites included in all the subwindows [37, 44]. Usually,
the more important a metabolite is, the higher the score
assigned to it. In this case, a so-called Conditional Synergetic
Score (COSS) is defined as the minus logarithm-transformed
P value:

COSSi =
{−log10(Pi), DMENi > 0

−log10(Pi + 1), DMENi ≤ 0.
(1)

Clearly, the more significant a metabolite is, the higher
the score it will get. Particularly, a metabolite with P < 0.01
will have a COSS > 2. Thus, the informative metabolites
revealed via SPA may be considered the most probable bi-
omarker candidates.

3. Results

3.1. Clinical Characteristics of Excess and Deficiency Syn-
dromes in Patients with DM. Clinical characteristics of the
366 subjects are summarized in Table 1. Among the 366
subjects, 308 (84.1%) were diagnosed with DM, 67 (21.8%)
of which had excess syndrome. The patients with deficiency
syndromes were significantly more likely to be older than
those with excess syndromes in the DM group (P < 0.01).
However, other statistical significances were not found. The
systolic blood pressure, serum fasting and post-load glucose
levels, and glycated hemoglobin were significantly higher in
subjects with DM compared with those without DM (P <
0.001). However, opposite results were found for incorpora-
tive hyperlipidemia (P < 0.001).

3.2. GC/MS Profiles of Urine Samples. Based on the pre-
viously developed method and related literature [45], the
GC/MS parameters were optimized for the Thermo GC/MS
system used in the present study. This system allowed the
detection of several peaks from the GC/MS chromatogram
within 50 min of analysis cycle. The typical total-ion chro-
matograms from the GC/MS of urine samples from DM
patients are shown in Figure 1. Ten urinary carbohydrate
metabolites were identified in patients with and without DM
using standards, and their peak areas were integrated for
further multivariate analysis.
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Figure 1: GC/MS profiles of carbohydrate metabolites from urine
of the DM patients: (1) C4 sugar 1, (2) C4 sugar 2, (3) arabinose, (4)
xylose, (5) inositol A, (6) allose (the internal standard), (7) inositol
C, (8) talose, (9) mannose, (10) glucose, and (11) inositol D.

3.3. Classification of the K-OPLS Models. All the samples
were used to build models. In the present study, K-OPLS
was performed using the Gaussian kernel function. σ and
Ao were optimized using 10-fold cross-validation. Accuracy
of classification of cross-validation (ACCV) was calculated
for each combination of σ and Ao. These parameters were
optimized by generating models with σ and Ao values of 0.1
to 10 and 1 to 10, respectively.

Figure 1 shows the results after cross-validation. ACCV
was the largest at σ = 0.5 and Ao = 1 for DM and non-
DM as well as for excess and deficiency syndrome groups.
These optimal parameters were selected to model for these
two groups, respectively (Figures 2(a) and 2(b)).

Tenfold cross-validation was applied to evaluate the
predictive abilities of the constructed K-OPLS-DA models.
The primary data were divided into 10 sets. One set was the
“test set,” and the others were the “training sets,” which were
repeatedly calculated 10 times to obtain the components.
Table 2 shows the Q2Y, R2Y, and R2X used in evaluating
all the calibration models of the two groups. R2X and
R2Y were defined as the explained variation of the input
(metabolic data) and output variables (disease category
data), respectively. Q2Y denoted the prediction statistics over
cross-validation for the classification task [46]. The values
of these parameters approaching 1.0 indicate a stable model
with a predictive reliability [47]. High coefficient values of
R2Y and Q2Y represent good prediction [48]. As displayed
by the score plots of K-OPLS (Figure 3(a)), the two sample
groups can be separated into distinct clusters to indicate
the changes in the metabolic response of the DM and non-
DM urine samples. The samples in the excess and deficiency
groups were also clearly separated (Figure 3(b)). The R2X,
R2Y, and Q2Y of the former model were 0.591, 1, and 0.853,
respectively, whereas those of the latter model were 0.543, 1,
and 0.783, respectively (Table 2). These results indicated that
the models had a good ability of explaining and predicting
the variations in the X and Y matrices.
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Table 1: Clinical and biological characteristics of excess and deficiency syndromes in patients with DM.

Subjects with DM (n = 308) Subjects without DM (n = 58)

Total Excess Deficiency Pa Total Pb

Gender (male/female, n) 308(116/192) 67(27/40) 241(89/152) 0.718 58(22/36) 0.969

Age (year) 70.32± 9.08 65.09± 9.71 71.77± 8.36 <0.001 67.84± 10.84 0.066

BMI (kg/m2) 25.28± 2.96 24.92± 3.01 25.38± 2.92 0.261 26.10± 3.11 0.056

Waist circumference (cm) 91.01± 8.42 89.88± 8.70 91.32± 8.33 0.213 91.55± 8.22 0.654

Hip circumference (cm) 101.24± 7.58 100.50± 7.81 101.44± 7.52 0.358 101.53± 6.33 0.781

Waist-to-hip ratio (WHR) 0.90± 0.06 0.89± 0.05 0.90± 0.06 0.439 0.90± 0.07 0.743

Obese (BMI ≥ 25) 51.3%(158/308) 49.3%(33/67) 51.9%(125/241) 0.810 60.3%(35/58) 0.262

Hypertension 93.2%(287/308) 89.6%(60/67) 94.2%(227/241) 0.290 98.3%(57/58) 0.232

Hyperlipidemia 39.3%(121/308) 37.3%(25/67) 39.8%(96/241) 0.816 81.0%(47/58) <0.001

Coronary heart disease 21.8%(67/308) 23.9%(16/67) 21.2%(51/241) 0.757 25.9%(15/58) 0.605

Cerebrovascular accident 0.07%(22/308) 0.06%(4/67) 0.07%(8/241) 0.878 0.07%(4/58) 1.000

Hyperuricemia 0.07%(23/308) 0.06%(4/67) 0.08%(19/241) 0.791 0.09%(5/58) 0.973

Fatty liver disease 75.3%(232/308) 67.2%(45/67) 77.6%(187/241) 0.112 87.9%(51/58) 0.053

SBP (mmHg) 138.68± 14.37 137.34± 13.71 139.05± 14.55 0.391 133.00± 14.22 0.006

DBP (mmHg) 78.70± 9.44 79.97± 9.23 78.35± 9.48 0.209 79.10± 8.84 0.764

FPG (mmol/L) 7.43± 1.95 7.56± 2.21 7.39± 1.88 0.994 5.78± 1.41 <0.0001

2h PG (mmol/L) 11.25± 3.70 11.21± 3.54 11.26± 3.75 0.918 7.69± 3.30 <0.0001

HbA1c (%) 7.25± 1.35 7.13± 1.31 7.28± 1.36 0.461 6.17± 0.96 <0.0001

TG (mmol/L) 1.53± 0.92 1.45± 0.79 1.56± 0.96 0.908 1.87± 1.31 0.068

HDL cholesterol (mmol/L) 1.34± 0.36 1.31± 0.26 1.35± 0.39 0.473 1.39± 0.39 0.363

AST (U/L) 25.21± 12.83 27.14± 13.49 24.68± 12.61 0.171 26.38± 13.93 0.537

VLDL cholesterol (mmol/L) 2.56± 0.56 2.55± 0.59 2.56± 0.55 0.951 2.48± 0.57 0.322
a
P value refers to the comparison between excess versus deficiency syndromes within the DM group. bP value refers to the comparison between subjects with

and without DM using chi-square test or t-test analysis.
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Figure 2: Accuracy of classification of cross-validation (ACCV) produced from each combination of σ and Ao parameters after cross-
validation. ACCV was the largest when σ = 0.5 and Ao = 1 for (a) DM and non-DM subjects as well as for (b) excess and deficiency
groups.
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Figure 3: First predictive and Y-orthogonal score components, depicting how the Y-orthogonal variation was captured by the K-OPLS
model. (a) Changes in the metabolic response in the urine of DM and non-DM patients. (b) Clear separation of the excess and deficiency
groups.

Table 2: Results of prediction of the K-OPLS models.

Models σ Ao R2X R2Y Q2Y

DM and non-DM 0.5 1 0.591 1.000 0.853

Excess and deficiency 0.5 1 0.543 1.000 0.783

3.4. Differential Metabolites from SPA Based on the K-
OPLS Models. For this data, the number of Monte Carlo
Simulation (N), ratio of calibration samples to the total
samples (R), and number of variables to be sampled in each
Monte Carlo Simulation (Q) of SPA were set to 1000, 0.8, and
8, respectively.

Each metabolite was first standardized with zero mean
and unit variance before further analysis. With this setup,
the SPA was applied to the data, and the P value of each
metabolite was computed through the Mann-Whitney U test
(Figures 4(a) and 4(b)). The corresponding COSS for each
metabolite is shown in Figures 4(c) and 4(d).

The two plots of DM and non-DM data obviously suggest
that metabolites, including C4 sugar 1, inositol C, mannose,
inositol D, glucose, and C4 sugar 2, were of small P values
(smaller than 0.01) and COSS > 2. These six metabolites
may possibly be formative metabolites or biomarkers. Thus,
they should be included in further analysis. The remaining

four metabolites were of high P values and COSS < 2. The
first six significant metabolites were selected to have the
best metabolite patterns, which collectively showed high
prediction abilities in the clinical outcome. Combined with
the t-test results (P < 0.05), the four metabolites were as
follows: C4 sugar 1, inositol D, glucose, and C4 sugar 2.
Similarly, the variables C4 sugar 1, C4 sugar 2, inositol C,
talose, and xylose were found to have P < 0.01 and COSS > 2
in the excess and deficiency group data. However, based on
the t-test results, only xylose and C4 sugar 2 were statistically
significant in the two groups.

4. Discussion

TCM is a medical system with at least 3000 years of unin-
terrupted clinical practice. It has the advantage of collecting
macroscopic information of a patient for diagnosis, with
syndrome as the core of diagnosis and therapy in TCM [49].
Nowadays, the diagnosis of syndromes in TCM mainly relies
on four examinations (inspection, listening and smelling
examinations, inquiry, and palpation). Outcomes of TCM
diagnoses may lack consistency among TCM doctors [50,
51]. Thus, the accuracy is relatively low. The use of objective
indices in syndrome diagnosis in TCM may significantly
improve accuracy.
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Figure 4: The computed P values and COSS through SPA for DM and non-DM group data (a and c) and excess and deficiency group data
(b and d). The variable index consists of the following: (1) C4 sugar 1, (2) inositol C, (3) talose, (4) mannose, (5) inositol D, (6) glucose, (7)
inositol A, (8) arabinose, (9) xylose, and (10) C4 sugar 2. ∗Represents P < 0.05 from the t-test between groups.

Until now, syndromes in TCM have always been studied
in a specific disease or biomedical condition. In addition,
several studies have demonstrated that syndromes are sig-
nificantly associated with diseases [49, 52, 53]. However, the
biological basis of a syndrome in the context of a disease is
rarely studied. The issue is significantly critical because it
not only establishes a diagnostic avenue in a microcosmic
level but also divides the disease into several subtypes and
provides a basis for individual therapy. The establishment of
a diagnostic method in the microcosmic level is an urgent
and major problem in TCM [54].

DM is characterized by two major defects: a dysregu-
lation in pancreatic hormone secretion and a decrease in
insulin action on target tissues (insulin resistance). These
abnormalities are related to several defects in insulin-
signaling mechanisms and several steps in regulating glucose
metabolism (transport and key enzymes of glycogen synthe-
sis or mitochondrial oxidation) [55]. The development of
strategies to diagnose, prevent, or delay the progression of
DM has gained increasing interest because of its high mor-
bidity and mortality rates. TCM has played an important role
in lowering blood glucose and controlling the development
of DM. Many studies have shown that TCM, such as Radix
Astragali, Radix Rehmanniae, and Radix Trichosanthis, also
has hypoglycemic effects [56]. Thus, the present study was
designed to determine whether metabolomics is useful and

powerful enough to differentiate between the deficiency and
excess syndromes of TCM using DM as a model.

The systolic blood pressure, serum concentrations of
fasting and post-load glucose, and glycated hemoglobin
were significantly higher in subjects with DM than in those
without DM. This result is in accordance with the char-
acteristics of diabetes. By contrast, no clear difference was
found between the two groups. This result reflects that the
two subject groups had relative backgrounds in terms of age,
sex, waist circumference, hip circumference, WHR, diastolic
blood pressure, TG, ALT, VLDL, and HDL levels, except for
the incidence of incorporative hyperlipidemia.

The deficiency syndrome patients were older than the
excess. This finding is in agreement with the TCM theory
that Qi, Xue, Yin, and Yang are more insufficient in older
than in younger people. However, other differences including
biochemical values were not found between the two groups.
This result implies that the TCM syndromes are difficult
to differentiate using the clinical biochemical indicators.
Therefore, TCM syndromes should be distinguished using
other methods.

Considering the intrinsic relationship between TCM
theory and systems biology, some researchers began to dis-
cuss the prospective application of metabolomics to TCM
theory. Metabolic profiling has been recently exploited in
the pathophysiological studies of diseases [57–60]. However,
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only a few reports concerning the metabolomics approach
in TCM research have been found in the current literature
[61, 62]. In the present study, a GC/MS-based metabolomic
approach was used for determining the biochemical profiles
of different TCM syndrome types in DM. Moreover, the
method was also used in testing whether the metabolomics
approach is powerful enough to differentiate TCM syndrome
types.

With the development of metabolomics, the data-mining
technique has become increasingly mature. Its advantages
are very applicable to the complex correlativity study of
TCM syndromes and metabolites. However, the relationship
between disease and metabolic data displayed nonlinear
characteristics in the present study. Therefore, good models
were not performed using the PLSLDA or OPLSDA method,
such as R2X < 0.3 or Q2Y < 0.1. The nonlinear classification
model K-OPLS had later shown stronger classification ability
than the PLSLDA and OPLSDA linear classifiers.

In the present study, we first discovered that the com-
prehensive differences of metabolic intermediates between
subjects with and without DM focused mainly on those
involved in glucose metabolism. The study identified ten
carbohydrate compositions, including C4 sugar 1, inositol C,
talose, mannose, inositol D, glucose, inositol A, arabinose,
xylose, and C4 sugar 2. Based on the results of K-OPLS/SPA,
six and five possible markers with P < 0.01 and COSS > 2
were found in DM and non-DM subjects and excess and
deficiency groups, respectively. T-test was also used to
compute the P value for each metabolite. Clearly, the results
of t-test were not comparable with those of SPA. Two or
three of them had no significant difference between groups
based on the t-test (P > 0.05), further suggesting that the
conditional P value calculated via SPA was much more
informative. The main reason may be that the variable
importance computed using SPA can reflect the synergetic
effect to some extent [44]. Therefore, one metabolite may
not be alone in a disease status but interacts with other
metabolites.

Consequently, four intermediates including inositol D,
C4 sugar 2, glucose, and C4 sugar 1 produced during
glycolysis were elevated in the DM group samples. The high
prediction performance of the four metabolites indicates that
they are possible biomarker candidates for DM. Further-
more, two potential biomarkers, xylose and C4 sugar 2, were
discovered in the two syndromes using K-OPLS/SPA and t-
test. These potential biomarkers can be identified by the MS
database and corresponding standards.

Metabolites are endogenous and exogenous molecules
that play a role in cellular regulatory and biological systems.
Glucose is the major source of energy production and
macromolecule biosynthesis in maintaining the normal state
of the body. Highly active glycolysis and an impaired
Krebs cycle guarantee enough metabolic intermediates by
avoiding thorough oxidation of glucose. This phenomenon
is essential for the synthesis of macromolecules, such as
lipid, protein, and nuclear acid, during cell division [63–
65]. The circulating glucose is filtrated by the glomerulus
and absorbed by the renal tubules. Therefore, healthy
human urine should not contain any sugar. Hyperglycemia,

other metabolic disorders, and chronic complications due
to an absolute lack of insulin and/or a reduction of the
biological effects of insulin may cause the appearance of
corresponding sugars in urinary metabolites. For example,
4-carbon sugars are the intermediate products of glucose
metabolism. Inositol, a water-soluble vitamin, can play
insulin-like roles on a metabolic enzyme. Mannose is a
sugar monomer of the aldohexose series of carbohydrates
and a C-2 epimer of glucose. It cannot be metabolized
well in vivo. Hence, 90% of mannose will be discharged
through the urine within 30 min to 60 min, and 99% of
mannose in residual urine will be excreted in the next 8 h.
Arabinose is a monosaccharide containing five carbon atoms
and is decomposed into glucose and fructose by intestinal
sucrose. Sucrose is involved in amino and nucleotide sugar
metabolisms. Xylose is the connection unit between the sugar
chain and serine or threonine as a combined form in vivo.
Talose, also called hydrolysis of lactose, has an unknown
significance so far. Therefore, the above components were
present in the urine of DM patients. This finding indicates
the presence of significant glucose metabolism disorders in
diabetes.

Metabolic profiling can sensitively reflect all physiolog-
ical and pathological changes. Moreover, it can elucidate
the “syndrome” concept in TCM complex physiological
systems. Using all metabolites in the evaluation of the human
health status is more accurate and comprehensive than using
a single index [66, 67]. The present study indicated that
xylose and C4 sugar 2 were higher in the excess than in
the deficiency group. Therefore, the holistic application of
metabolic profiling in studying the syndrome essence of
TCM is reasonable. In summary, these potential biomarkers
reflected the deregulation of glucose metabolism in diabetic
individuals, which might help in DM diagnosis and TCM
syndrome differentiation.

5. Conclusions

This research strongly supported that metabolic profiling
analysis combined with K-OPLS and SPA is a powerful
tool in revealing metabolic differences between various
groups, obtaining valuable information to probe molecular
mechanisms, and discovering the scientific connotation of
TCM theory. Larger randomized trials with an appropriate
methodology, including the study of diabetic patients with
different TCM syndromes, are required to confirm the results
of the present study.
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