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ABSTRACT
SARS-CoV-2 is the cause of the current global pandemic of COVID-19; this virus infects multiple 
organs, such as the lungs and gastrointestinal tract. The microbiome in these organs, including the 
bacteriome and virome, responds to infection and might also influence disease progression and 
treatment outcome. In a cohort of 13 COVID-19 patients in Beijing, China, we observed that the gut 
virome and bacteriome in the COVID-19 patients were notably different from those of five healthy 
controls. We identified a bacterial dysbiosis signature by observing reduced diversity and viral shifts 
in patients, and among the patients, the bacterial/viral compositions were different between 
patients of different severities, although these differences are not entirely distinguishable from 
the effect of antibiotics. Severe cases of COVID-19 exhibited a greater abundance of opportunistic 
pathogens but were depleted for butyrate-producing groups of bacteria compared with mild to 
moderate cases. We replicated our findings in a mouse COVID-19 model, confirmed virome 
differences and bacteriome dysbiosis due to SARS-CoV-2 infection, and observed that immune/ 
infection-related genes were differentially expressed in gut epithelial cells during infection, possibly 
explaining the virome and bacteriome dynamics. Our results suggest that the components of the 
microbiome, including the bacteriome and virome, are affected by SARS-CoV-2 infections, while 
their compositional signatures could reflect or even contribute to disease severity and recovery 
processes.
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Introduction

The current pandemic of coronavirus disease 2019 
(COVID-19), which is caused by the recently 
emerged severe acute respiratory syndrome corona
virus 2 (SARS-CoV-2), has led to more than 
seventy million infections and one million fatalities 
as of December 2020. While a number of vaccines 
are in clinical trials,1–3 the number of infections and 
fatalities will continue to increase for a substantial 
length of time and place considerable health and 
economic burdens on the entire international com
munity. Several medications have also been tested 
for their efficacy against COVID-19, including 
remdesivir4 and hydroxychloroquine,5 but none 

has shown promising results in completed clinical 
trials. It is therefore likely that clinical handling of 
COVID-19 will become routine in most countries, 
and addressing many complications of this disease, 
such as cytokine storm and organ failure in severe 
cases or long-term carriage and reactivation of the 
virus in treated patients,6–8 will require a substantial 
amount of research into the characteristics of 
patients under treatments.

While COVID-19 primarily manifests in the 
respiratory system by pneumonia, the virus can 
infect many other organs, especially the gastrointest
inal (GI) system.9 Studies have reported that GI 
symptoms, usually diarrhea, can predate respiratory 
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manifestations,10,11 and after viruses are cleared 
from respiratory systems in treated patients, they 
can still be detected in fecal samples or rectal swabs 
for several more days.12 Fecal-oral transmission is 
also indicated by recent epidemiological analysis13 

and requires consideration in clinical treatment, as 
well as in efforts to prevent viral spread. The gut 
microbiome, which is an important component of 
the function of the GI system, is well recognized for 
its importance in participating in metabolism and 
immune modulations,14,15 and compositional and 
functional homeostasis of the gut microbiome is 
necessary to maintain proper immune functions 
and defend against infections.16 The antiviral effects 
of the gut microbiome can be long-reaching, as the 
gut microbiome not only affects viral infections in 
the GI system17 but can also produce metabolites or 
influence different lymphocytes to modulate influ
enza infections in the lung.18 For COVID-19, there is 
currently no evidence of a direct causal relationship 
between the bacteriome and COVID-19 susceptibil
ity and severity, but studies have suggested that 
COVID-19 severity in patients is indeed highly cor
related with the bacteriome, which can be utilized as 
a biomarker.19 Dysbiosis in the gut bacteriome has 
been reported in patients already infected with 
SARS-CoV-2, and shifts in the relative abundance 
of the patient’s intestinal bacteriome during treat
ment compared with healthy controls suggest poten
tial recovery.20

Another frequently neglected aspect of the GI 
system that is attracting increasing attention is the 
gut virome, the collection of large numbers of 
phages and eukaryotic viruses that infects the 
host.21,22 On the one hand, phages prey on bac
teria/archaea and compose a dynamic circle of 
interaction, and in a number of diseases in which 
microbial dysbiosis is prominent, virome shifts and 
potential “dysbiosis” can also be observed. On the 
other hand, eukaryotic viruses also establish 
a degree of symbiosis with the host and modulate 
host immune responses and may leverage the host 
response to infection and/or bacteriome shifts.23 

SARS-CoV-2 infects host intestinal epithelial cells 
and may also place stress on the immune micro
environment in the gut24 which, in turn, may lead 
to alterations in the virome, and investigating vir
ome changes may help to elucidate their connec
tions to bacteriome alterations and potential 

recovery. With improvements in the enrichment 
method of virus-like particles (VLPs) combined 
with metagenomic sequencing, insights into the 
virome may serve to deepen our knowledge of the 
delicate interactions among host immune system, 
gut bacteriome and viruses.

In our research, we analyzed data from 13 
patients who were admitted for COVID-19 and 
analyzed the genomic signature of viruses in the 
GI tract compared with that of the respiratory sys
tem; more importantly, we profiled the bacteriome/ 
virome shifts that occurred in patients during treat
ment and demonstrated that they synchronize in 
alternations and respond distinctly to antibiotic 
treatments. Many of the critical clinical parameters 
were determined to be associated with bacteriome/ 
virome composition, which might eventually con
tribute to the understanding of the disease and 
management of patients.

Results

Cohort description

In our study, 13 patients with COVID-19 were 
recruited, and 37 fecal samples were collected. The 
patients included seven females and six males, and 
their median age was 48 years old (range: 15 to 85). 
The mean body mass index (BMI, kg/m2) of these 
patients was 23.8, with five patients being over
weight (> 25). Among the 13 COVID-19 patients, 
eight were antibiotic-naive and the remaining five 
were treated with antibiotics (Table 1). Based on the 
condition of the patients prior to their hospitaliza
tion, the disease severity of these subjects was clas
sified into three categories, namely severe (3), 
moderate (7) and mild (3). Additionally, to com
pare the dynamics of the bacteriome/virome 
between healthy people and COVID-19 patients, 
samples of five healthy individuals from our pre
vious study25 were selected as healthy controls in 
this work.

To investigate the evolution dynamics of the 
SARS-CoV-2 genome among patients in our 
cohort, we utilized next-generation sequencing 
(NGS) to sequenced the whole genome of the 
SARS-CoV-2 virus after amplification with 
designed primer pools using viral DNA obtained 
from throat swabs (three patients) and/or fecal 
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samples (six patients) from 13 COVID19 patients. 
In the end, we obtained a total of 17 SARS-CoV-2 
genomes for further analysis. Notably, for two 
patients, the whole genome of SARS-CoV-2 were 
obtained from both throat swabs and fecal samples 
(Table S1).

Viral genome in patients respiratory tracts vs GI 
tracts

Across the 17 genomes, the average coverage was 
97.1% (ranging from 80.5% to 99.9%). The mean 
coverage depth was 21,628 X (ranging from 3,870 
X to 41,890 X) across the whole genome per sample, 
which was large enough to meet the requirement 
for SNP calling26 (Table S1). Using Illumina reads 
and the first viral genome sequence (NC_045512) 
as a reference, we identified 68 highly confident 
SNPs in total, 31 of which were fixed in all gen
omes. Among the remaining 37 SNPs, 24 were 
nonsynonymous and led to amino acid changes in 
the ORF1ab (15), S (4), ORF3a (2), M (2) and N (1) 
gene products (Table S2).

Close inspection of genetic variants in individual 
patients demonstrated low diversity and mutation 
rates in SARS-CoV-2. Clustering analysis based on 
the SNPs identified in all 17 genomes within 7 
patients demonstrated that the majority of the 
sequenced genomes belonged to the same clade, 
while only one sample with relatively few mutations 
clustered with the viral reference (Figure 1a). 
Similar results were observed in two individual 
patients for whom both respiratory and intestinal 
SARS-CoV-2 genomes were obtained, suggesting 

that the SARS-CoV-2 genomes in the respiratory 
and intestinal tracts of patients, if both detectable, 
originated from the same strain (Figure 1b).

We further examined the genomic variations of 
SARS-CoV-2 and their correlation with different 
disease severities in our cohort. Among the 
patients, we observed three different categories 
regarding the severity of cases, namely, severe (3), 
moderate (1) and mild (3) cases. The patients did 
not exhibit significant differences in terms of 
anthropometric measures, including age (P = .42, 
Kruskal-Wallis test), and sex (P = .66, Kruskal- 
Wallis test), and when we determined the frequen
cies of SNPs identified in the genomic analysis, we 
observed that no SNPs were significantly enriched 
in any of the groups (P > .05, Fisher’s exact test). 
A recent human genetic study identified key host 
genetic variations and their correlations with dis
ease severity,27 while in contrast, our study was not 
able to identify specific genetic mutations of SARS- 
CoV-2 that may contributing to disease severity in 
our cohort.

Virome composition and shifts along treatment

To investigate viral components of the GI tract and, 
more importantly, potential shifts along treatment 
with antibiotics and antiviral medications (details in 
Table 1) within COVID-19 patients, we specifically 
analyzed the virome in our cohort using an inte
grated viral genome database as a reference (meth
ods). Viral DNA and RNA were purified from 
preparations of enriched virus-like particles (VLPs) 
obtained from stool samples and characterized by 

Table 1. Cohort information of patients with COVID-19, included in our study.
ID Gender Age BMI Antibiotics Antiviral drugs Comorbidities Disease severity GI symptoms (duration)

BJ-1 Male 45 24.8 Moxifloxacin LPV/r Hypertension Moderate Diarrhea (three days)
BJ-3 Male 15 28.69 Not used LPV/r None Mild Nil
BJ-4 Male 67 24.69 Not used Nil Hypertension Moderate Nil
BJ-5 Male 48 24.85 Piperacillin/ 

tazobactam, Cefuroxime
LPV/r None Severe Abdominal distention (two days)

BJ-9 Male 47 18.93 Not used LPV/r Hyperthyroidism Mild Nil
BJ-10 Male 67 26.29 Moxifloxacin, Piperacillin/ 

tazobactam
Arbidol Gallstones Severe Diarrhea (three days)

BJ-2 Female 39 21.08 Not used LPV/r, Ribavirin None Moderate Diarrhea (two day)
BJ-6 Female 54 27.47 Not used LPV/r, Arbidol None Moderate Nil
BJ-7 Female 65 21.57 Not used Nil Hypertension Moderate Nil
BJ-8 Female 85 25.8 Levofloxacine Arbidol Arthritis Severe Nil
BJ-11 Female 69 19.47 Not used LPV/r Hypertension Moderate Constipation (three days)
BJ-12 Female 44 20.56 Moxifloxacin LPV/r None Moderate Diarrhea (three days)
BJ-13 Female 41 26.3 Not used LPV/r None Mild Nil

LPV/r: Lopinavir/Ritonavir
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metagenomic sequencing based on methods devel
oped in our lab.25 As expected, the viromes of 
COVID-19 patients include DNA/RNA viruses 
(Herelleviridae family, Virgaviridae family), bacter
iophages (Caudovirales order, CrAss-like phage, 
Inoviridae family, Microviridae family, Myoviridae 
family, Podoviridae family, and Siphoviridae family) 
that infect bacterial cells, and some unclassified 
viruses in the gut (Figure 2a). Despite the significant 
individual differences in viral composition, shared 
viruses were observed to primarily belong to the 
Microviridae family. SARS-CoV-2 nucletides were 
determined to be notably low in relative abundance 
compared with VLP-originated nucleotides and 
could not be detected in the majority of patients 
(reaching coverage ≥ 30% and read number ≥ 10 in 
only one patient).

Alpha – and beta-diversity analyses based on the 
Shannon index and Bray-Curtis distance, respectively, 
showed no significant differences between COVID-19 
patients and healthy controls regarding the composi
tion of the baseline virome (Figure 2b, P = .168, 
PERMANOVA). Comparison of baseline viromes 
from COVID-19 patients with healthy individuals 
using the Wilcoxon rank-sum test showed that the 

abundance of some phages (including Inviridae and 
Microviridae) and a plant-RNA virus (Virgaviridae) 
identified by blastn as cucumber green mottle mosaic 
virus (CGMMV) as well as unclassified viruses were 
significantly higher in COVID-19 patients than in 
healthy subjects (Figure 2c). Notably, we found that 
the virome was relatively stable across multiple time 
points in patients (Fig. S1a). To study shifts in viral 
abundance over the course of treatment, we traced 
viral groups that differed significantly between 
COVID-19 patients and healthy controls and found 
that the alteration in viral abundance over time was 
inconsistent (Figure 2d). Nevertheless, we found 
a strong correlation between the composition of 
viral and bacterial communities in both COVID-19 
patients and healthy controls, as determined by 
Procrustes analysis (Fig. S2a, P = .001). Additional 
network analysis demonstrated that bacterial species, 
including Bacteroides vulgatus, Faecalibacterium 
prausnitzii, and Ruminococcus gnavus, and three 
Microviridae bacteriophages, that is, 
Microviridae__sp._ctmin955, Microviridae__sp. 
_ctvbz116, and Microviridae__sp.ctjA9876, compose 
central network nodes and potential keystone species 
that could play important roles in mediating the 

Figure 1. Overview of genomic SNP mutations in the SARS-CoV-2 genomes reconstructed in our study. (a) Clustering of SARS-CoV-2 
genomes using Manhattan distances of total SNPs. Blue solid circles represent throat swab samples; red solid circles represent fecal 
samples; Wuhan-1 (NC_045512) was used as the outgroup. (b) A subbranch tree of (a), showing genomes of SARS-CoV-2 from throat 
swabs and fecal samples collected in two patients who had both.
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Figure 2. Composition and alterations of viral communities among COVID-19 patients and healthy controls. (a) Heatmap showing viral 
composition in COVID-19 patients’ fecal samples (n = 37) and healthy controls. The relative abundance of viral communities was 
normalized to Z-Scores. (b) Alpha – and beta-diversity of the virome between COVID-19 patients (n = 13) and healthy controls are 
shown with the Shannon index and constrained PCoA analysis based on Bray-Curtis dissimilarity, respectively. Red points represent 
COVID-19 patients, and blue solid circles represent healthy controls. (c) Comparison of viral abundance between COVID-19 patients and 
healthy controls. In this bubble plot, each dot represents one species of virus on the x-axis, clustered by their respective order, and the 
y-axis value denotes the inverse log10 p value, with those above the dashed line (p < .05) significantly different between healthy 
controls and patients. The size of each dot corresponds to the mean relative abundance in both COVID-19 patients and healthy 
controls. Hollow circles represent viruses enriched in patients with COVID-19, while solid circles represent viruses enriched in healthy 
individuals. (d) Dynamic changes of differential viral relative abundance along treatment within COVID-19 patients fecal samples.
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interactions between the viral and bacterial commu
nities (Fig. S2b); none of the eukaryotic viruses, how
ever, was determined to be central in terms of 
network structure.

Bacteriome shifts along treatment
To determine the impact of COVID-19 on the 
bacterial communities in the gut, we compared 
the compositions of gut bacterial communities in 
COVID-19 patients with those of healthy controls. 
In keeping with published studies,19,20 our initial 
finding was that the intestinal bacterial diversity of 
COVID-19 patients was significantly lower than 
that of healthy controls (Figure 3a, P < .05, 
Wilcoxon test), thereby exhibiting the signs of 
potential dysbiosis. Additionally, COVID-19 
patients treated with antibiotics showed a trend of 
lower bacterial diversity than patients who did not 
receive antibiotics (Figure 3b), suggesting that anti
biotic confounding effects be considered in future 
studies of gut bacteriome shifts in COVID-19 
patients. Principal coordinate analysis (PCoA) 
based on Bray-Curtis distance showed a signi 
ficant difference in the gut bacteriome between 
COVID-19 patients and healthy controls (Figure 
3c, PERMANOVA, P = .004). Compared to healthy 
controls, bacterial abundance differential analysis 
showed that Ruminococcus gnavus, Eggerthella, 
Coprobacillus, Lachnospiraceae bacterium 2_1_58 
FAA, Clostridium ramosum, Eggerthella lenta and 
Lachnospiraceae bacterium 1_4_56FAA were sig
nificantly enriched in COVID-19 patients, while 
Alistipes_sp_AP11, Roseburia intestinalis, Burkho 
lderiales bacterium 1_1_47, Eubacterium_hallii, 
Parasutterella_excrementihominis, Alistipes indis
tinctus, Coprobacter fastidiosus, Eubacterium eli
gens, Bacterioidales bacterium ph8, Bacterioides 
salyersiae, Odoribacter splanchnicus, Alistipes sha
hii, Ruminococcus bromii and Bacteroides massi
liensis were significantly depleted (Figure 3d, 
P < .05). Notably, we also observed that the patients 
had a relatively stable bacteriome across multiple 
time points (Fig. S1b).

Subsequently, we traced bacterial groups that dif
fered between healthy controls and COVID-19 
patients and studied their dynamics during treatment 
with antibiotics and antiviral medications (details in 
Table 1). Among the enriched bacterial communities 

in COVID-19 patients, Lachnospiraceae bacterium 
2_1_58FAA and Ruminococcus gnavus showed signs 
of decrease over the course of treatment, except in 
three individuals, while other bacteria fluctuated over 
time and exhibited no clear pattern (Fig. S3a). 
Similarly, among depleted bacterial groups in 
COVID-19 patients, there were no signs of recovery 
of bacteria (Fig. S3b). However, bacterial diversity did 
significantly increase over the course of treatment in 
three individuals out of 11 patients, indicating 
a potential recovery of bacterial composition and 
functionality; the effects of this recovery on the host 
remain to be explored, but previous studies did sug
gest that an increase in bacterial diversity signatures 
improved host health status28 (Fig. S4).

Responses of the bacteriome and virome to 
antibiotics

Previous studies have shown that the usage of anti
biotics has a significant effect on bacterial abundance 
in the human gut,29 but little is known about the effect 
on viral abundance, particularly the effect of antibio
tics in treating viral infections. Using PCoA analysis of 
bacterial abundance based on Bray-Curtis distance, 
we first observed that there was a significant difference 
between COVID-19 patients using antibiotics and 
those not using antibiotics (Figure 3e, P = .001, 
PERMANOVA). In addition, a similar analysis also 
identified significant differences in the composition of 
the virome within COVID-19 patients (Figure 3f, 
P = .021, PERMANOVA).

To investigate the specific effect of antibiotics on the 
abundance of bacterial and viral communities in 
COVID-19 patient fecal samples, we utilized MaAs 
Lin2 (multivariate analysis by linear models) to iden
tify differential bacterial and viral species. Using this 
method, ten species, including Subdoligranulum, 
Roseburia inulinivorans, Roseburia hominis, Parasutt 
erella excrementihominis, Lachnospiraceae bacterium 
2_1_46FAA, Faecalibacterium prausnitzii, Dorea for
micigenerans, Coprococcus catus, Collinsella aerofa
ciens and Bacteroides vulgatus, showed a significant 
decrease correlated with antibiotic usage, while Veill 
onella parvula, Coprobacillus and Clostridium ramo
sum showed a significant increase, and no virus was 
identified as a differential species between with anti
biotic-treated and antibiotic-untreated in COVID-19 
patients (Figure 3g, P < .05, Wilcoxon test).
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Figure 3. Alteration of bacterial communities and impact of antibiotics in COVID patients. (a) Box plot of bacterial Shannon diversity 
among COVID-19 patients and healthy controls. * represents P < .05 (Wilcoxon rank-sum test). (b) Box plot of bacterial Shannon 
diversity among COVID-19 patients without antibiotics (n = 8) and with antibiotics (n = 5). Abx– and Abx+ represent patients who were 
not treated with antibiotics and those who were treated with antibiotics during hospitalization, respectively (Wilcoxon rank-sum test). 
(c) Constrained PCoA plot based on Bray-Curtis dissimilarity between COVID-19 patients and healthy controls, P = .004, PERMANOVA. 
(d) Bar plot of differential bacterial communities among COVID-19 patients and healthy controls, which was performed using the 
Wilcoxon rank-sum test (P < .05). The orange bar represents fecal samples from patients with COVID-19, and blue bar represents 
healthy controls. (e) Constrained PCoA plot of the bacteriome in patient fecal samples treated with antibiotics and patient fecal 
samples without antibiotics using Bray-Curtis dissimilarity, P = .001, PERMANOVA. Different samples of the same individual are 
connected by the same colored line. (f) Constrained PCoA plot of viral communities in patients’ fecal samples treated with antibiotics 
and patients’ fecal samples without antibiotics using Bray-Curtis dissimilarity, P = .021, PERMANOVA. (g) Boxplot of differential bacterial 
communities identified by MaAsLin2 within COVID-19 patient fecal samples treated with/without antibiotics. (Wilcoxon rank-sum test). 
* P < .05; ** P < .01; *** P < .001; **** P < .0001; colors: red represents patients treated without antibiotics while blue represents 
patients treated with antibiotics.
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Clinical parameters associated with bacteriome/ 
virome

Next, we systematically analyzed COVID-19 
patients’ clinical information to further investigate 
the potential contributions of the gut bacteriome/ 
virome to host health and recovery. The clinical 
data that we examined included disease severity 
(severe, moderate and mild), chemical characteris
tics of patient blood collected on the same day as 
fecal sampling, and profile of lymphocyte cells. In 
total, we collected clinical data from 18 samples 
from ten patients regarding nine routine blood 
parameters and five immune cell counts (Table S3).

PCoA based on Bray-Curtis distance showed sig
nificant differences in bacterial communities among 
disease severities (Figure 4a, P = .001, PERMA 
NOVA), as did the viral communities (Figure 4b, 
P = .001, PERMANOVA). Next, we performed a spe
cies – and genus-level differential enrichment analysis 
of bacterial and viral communities within COVID-19 
cases of varying disease severity. At the species level, 
a total of 19 bacterial taxa were observed to be 
enriched in various disease severities. Eighteen out of 
19 showed significant enrichment in severe cases of 
COVID-19, including Coryneb 
acterium durum, Rothia mucilaginosa, Enterococcus 
faecium, and Campylobacter gracilis, while only 
Eubacterium rectale showed significant enrichment 
in mild cases of COVID-19 (Table 2, FDR < 0.05, 
Wilcoxon test). At the genus level, such genera as 
Corynebacterium, Enterococcus, Rothia, Mega 
sphaera, and Campylobacter were significantly 
enriched in severe cases, while Eubacterium was 
depleted in severe cases (Table S4). Additionally, 17 
viruses, including 14 Microviridae phages, one 
Inoviridae phage, one Podoviridae phage and one 
unclassified virus, were enriched in severe cases, 
while no viral communities were determined to be 
enriched in mild cases (Table S5, FDR < 0.05, 
Wilcoxon test).

Through Spearman’s correlation between the 
abundance of microbial communities and clinical 
data, three bacteria, Bacteroides ovatus, Lachnospi 
raceae bacterium 5_1_63FAA and Eubacterium ven
triosum, were found to be positively correlated with 
inflammatory immune clinical parameters, such as 
CD4, CD8, lymphocytes and T cells, indicating that 
they may be potential proinflammatory agents (Figure 

4c), while only one bacterial species, Faecalibacterium 
prausnizii, was positively correlated with NK cells. At 
the same time, we observed that Bifidobacterium ani
malis and Escherichia were negatively correlated with 
CD4, CD8, lymphocytes and T cells, while Corp 
robacillus, Clostridium ramosum and Clostridi 
um symbiosum showed a significant negative associa
tion with NK cells. Notably, Bacteroides unifromis, 
Faecalibacterium prausnitzii and Subdoligranulum 
were determined to be positively associated with 
B cells. In the virome, we observed that one 
Caudovirales phage (Caudovirales__sp._ctMRY1) 
and two Microviridae phages (Microviridae__sp. 
_ctPUC591, Microviridae__sp._ctuhp737) were sig
nificantly positively associated with NK cells and 
CD4, respectively, while another two Microviridae 
phages (Microviridae__sp.__ctVgT292, Microviri 
dae__sp._ctCvT735) were significantly negatively 
associated with T cells (Figure 4c, P < .05).

Virome and bacteriome in SARS-CoV-2-infected 
mouse model

To further explore the potential mechanisms gov
erning the bacteriome/virome in mice infected with 
SARS-CoV-2, we performed additional analysis on 
the intestinal contents of nine SARS-CoV 
-2-infected hACE2 transgenic mice, the most com
mon model used currently for SARS-CoV-2 stu
dies. Among these mice, four first were vaccinated 
using full-length spike protein from SARS-CoV-2 
as an experimental vaccine (see Methods), and the 
remaining five were unvaccinated. After infection 
with SARS-CoV-2, the vaccinated group showed 
a decrease of more than 223-fold in viral load in 
the lung tissue compared to the unvaccinated 
group; these nine mice can be regarded as infected 
(vaccinated) vs. infected (unvaccinated) mice. 
Using second-generation sequencing, we obtained 
the metagenomic and metatranscriptomic data of 
the abovementioned nine mice and performed 
comparative analysis regarding the virome and 
bacteriome.

We explored the virome in mice through meta
genomic and metatranscriptomic sequencing using 
an integrated viral genome database (see Methods); 
VLP enrichment was not performed, since hand
ling of the materials was restricted to the facilities of 
the Biosafety Level III lab; instead, we used deep 
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sequencing to mine the viruses contained in the 
intestinal content materials of the mice. Although 
SARS-CoV-2 infection was limited to lung tissues 
in our model, and it was not detected in the intest
inal content materials, we identified various viruses 
in the mouse metagenomic and metatran 
scriptomic data, including Myoviridae, Sipho 
viridae and Podoviridae belonging to the order 

Caudoviridales, CrAss-like phage, Retroviridae 
and unclassified viruses (Figure 5a). Comparison 
of Shannon diversity index of viromes demon
strated higher diversity in infected (unvaccinated) 
mice than infected (vaccinated) mice in both meta
genomic data and metatranscriptomic data, while 
the application of PCoA based on Bray-Curtis dis
tance showed significantly differences between 

Figure 4. Correlation of clinical information with bacterial and viral communities. (a) Constrained PCoA analysis for bacterial 
communities of COVID-19 patients’ fecal samples with three categories of disease severity, P = .001, PERMANOVA. Different samples 
of the same individual are connected by the same colored line. (b) Constrained PCoA analysis for viral communities of COVID-19 
patients’ fecal samples with three categories of disease severity, P = .001, PERMANOVA. (c) Correlation heatmap between clinical 
information of COVID-19 and bacteriome/virome relative abundance with Spearman’s rank correlation coefficient. Red circles represent 
Rho < 0, blue circles represent Rho > 0, and the circle radius reflects the correlation coefficient (Rho). * P < .05; ** P < .01.
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viromes in mouse metagenomic data but not in 
metatranscriptomic data (Figure 5b, PERMA 
NOVA, P = .02). Compared to infected (vacci
nated) mice, differential viral analysis showed that 
ten viruses belonging to Caudovirales order (three 
Siphoviridae, one Podoviridae, five Myoviridae and 
one phage of unknown family level classification) 
were significantly enriched, and three viruses (one 
unclassified virus, one Myoviridae and one phage of 
unknown family level classification) were depleted, 
in infected (unvaccinated) mice in metagenomic 
data, while only one phage (Podoviridae) in meta
transcriptomic data was observed to be significantly 
enriched in infected (unvaccinated) mice (Figure 
5c, P < .05, Wilcoxon test).

Furthermore, metagenomic analysis showed 
higher flora diversity in infected (vaccinated) mice 
than in infected (unvaccinated) mice, consistent 
with bacterial results obtained with samples from 
human gut (Figure 6a). PCoA analysis based on 
Bray-Curtis distance showed a significant differ
ence in the gut bacteriome among infected (vacci
nated) and infected (unvaccinated) mice (Figure 
6b, PERMANOVA, P = .011), which was in keeping 
with the bacterial beta diversity results observed for 
COVID-19 patients and healthy controls. 
Compared to infected (vaccinated) mice, the bac
terial communities of infected (unvaccinated) mice 
showed a significant increase in Odoribacter and 
Akkermansia muciniphila, and a notable depletion 
of Lactobacillus reuteri and Bacteroides uniformis 
(Figure 6c, P < .05, Wilcoxon test). Similarly, the 

relative abundances of Akkermansia muciniphila 
and Odoribacter were higher in COVID-19 patients 
than in healthy controls (Figure 6d), suggesting that 
they may play important roles in the disease pro
cess. Furthermore, we found similar results in the 
metatranscriptome; the gut flora diversity was 
higher in infected (vaccinated) mice than in 
infected (unvaccinated) mice, and Akkermansia 
muciniphila was more transcriptionally active in 
infected (unvaccinated) mice (Fig. S5).

Immune-related genes differentially expressed in 
control and infected mice

To elucidate that mechanisms underlying virome/ 
bacteriome differences in mice, we performed tran
scriptomic analysis of mouse intestinal epithelial tis
sues, to investigate the host genetic expression 
differences in the gut after SARS-CoV-2 infection. 
Initial PCA showed significant differences in the 
expression of intestinal epithelial host genes in 
infected (unvaccinated) and infected (vaccinated) 
mice (Figure 7a). Analysis of differentially expressed 
genes showed 149 genes upregulated and 37 genes 
downregulated in infected (unvaccinated) mice 
compared to infected (vaccinated) mice (Figure 
7b). Notably, 31 of these differentially expressed 
genes were involved in pathways associated with 
natural or adaptive immune responses, and enrich
ment analysis of immune-related genes showed that 
the vast majority of genes were highly expressed in 
infected (unvaccinated) mice (Figure 7c). Of these 

Table 2. Bacterial groups with significant correlation (FDR < 0.05) with COVID-19 disease severity, 
identified with Wilcoxon rank-sum test.

Correlation Species p-value FDR

Enriched in severe s__Corynebacterium_durum 9.7006E-05 0.01108106
s__Rothia_mucilaginosa 0.000105061 0.01108106
s__Enterococcus_faecium 6.68909E-05 0.01108106
s__Campylobacter_gracilis 0.000129225 0.01108106
s__Corynebacterium_glucuronolyticum 0.001274125 0.030395375
s__Rothia_aeria 0.001274125 0.030395375
s__Alloscardovia_omnicolens 0.001118065 0.030395375
s__Enterococcus_avium 0.001274125 0.030395375
s__Enterococcus_casseliflavus 0.001118065 0.030395375
s__Leuconostoc_lactis 0.001274125 0.030395375
s__Weissella_confusa 0.001274125 0.030395375
s__Delftia_unclassified 0.001393266 0.030395375
s__Eikenella_corrodens 0.001274125 0.030395375
s__Campylobacter_concisus 0.001274125 0.030395375
s__Citrobacter_freundii 0.00141786 0.030395375
s__Enterobacter_aerogenes 0.001274125 0.030395375
s__Streptococcus_infantis 0.002441794 0.046529735
s__Megasphaera_micronuciformis 0.002351595 0.046529735

Enriched in mild s__Eubacterium_rectale 9.04381E-05 0.031020272
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Figure 5. Composition and alteration of the virome between infected (unvaccinated) mice and infected (vaccinated) mice. (a) 
Composition of mouse viruses based on integrated viral genome databases in metagenomic and metatranscriptomic data. The left 
side of the dashed red line represents infected (vaccinated) mice, and the right side represents infected (unvaccinated) mice. 
“unCaudovirales” represents an unknown family under the order Caudovirales. (b) Alpha – and beta-diversity of the virome in infected 
(unvaccinated) and infected (vaccinated) mice based on metagenomic and metatranscriptomic data, respectively. P values were 
calculated using PERMANOVA. (c) Bar plot of differential viruses between infected (unvaccinated) and infected (vaccinated) mice based 
on the Wilcoxon test (P < .05). The graphs on the left represent differential viruses found in metagenomic data, and on the right, 
differential viruses found in metatranscriptomic data.
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genes, a considerable proportion were involved in 
immune regulation as components of the immune 
system. For example, the polymeric immunoglobu
lin receptor (PIGR), which is upregulated in infected 
(unvaccinated) mice, was proven to play an impor
tant role in the maintenance of epithelial integrity 
and mucosal homeostasis in the colonic 

epithelium,30 and C3, a member of the complement 
system of serum proteins, is an import host defense 
mechanism for influenza A virus infection.31 

Interleukin-15 (IL-15), as a cytokine, can perform 
antiviral functions via an interferon-dependent 
mechanism.32 Differential expression of other genes 
associated with SARS-CoV-2 virus infection was 

Figure 6. Alteration of the bacteriome between infected (unvaccinated) mice and infected (vaccinated) mice. (a) Comparison of 
bacterial Shannon diversity between infected (unvaccinated) and infected (vaccinated) mice. (b) Constrained PCoA analysis of 
bacteriome in mice using Bray-Curtis dissimilarity, P = .011, PERMANOVA. (c) Bar plot of differential bacterial communities among 
infected (unvaccinated) and infected (vaccinated) mice, which was performed using the Wilcoxon rank-sum test (P < .05). The red bar 
represents infected (unvaccinated) mice, and blue bar represents infected (vaccinated) mice. (d) Comparison of the relative 
abundances of Akkermansia muciniphila and Odoribacter between COVID-19 patients and healthy controls.
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determined to be associated with SARS-CoV-2 virus 
infection. ACE2 expression was inhibited by upre
gulated zinc finger E-box-binding homeobox 1 
(ZEB1) in SARS-CoV-2-infected lung cells,33 The 

apolipoprotein E (APOE) gene variant was deter
mined to be correlated with the risk of Alzheimer’s 
disease and associated with COVID-19,34 and 
Mamoor demonstrated that Tribbles pseudokinase 

Figure 7. Differentially expressed genes between infected (unvaccinated) and infected (vaccinated) mice. (a) PCA plot of gene 
expression in mice. (b) Volcano plot of differential gene expression in infected (unvaccinated) versus infected (vaccinated) mice. 
Genes were considered significantly differentially expressed for a log 2 fold change and p value of 0.05. The top 10 (up – and/or 
downregulated) differentially expressed genes are shown. (c) Heatmap of immune-associated gene expression. (d) Gene ontology 
enrichment of differential genes in infected (unvaccinated) versus infected (vaccinated) mice.
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1 (TRIB1) may be involved in the cellular response to 
COVID-19 infection.35 Other genes have anti- 
inflammatory or antiviral effects, such as inflamma
tory and metabolic pathways in mouse intestinal 
mucosa associated with MUC2 mucin.36 Hugh 
et al. demonstrated that multiple proteins involved 
in bacterial invasion can be modulated by Ras 
GTPase-activating-like protein IQGAP1 (IQG 
AP).37 Subsequently, we performed a gene ontology 
enrichment analysis, where many immune-related 
biological processes were significantly enriched, 
such as regulation of immune system processes, 
further suggesting that SARS-CoV-2 infection in 
mice induces the body’s immune system to resist 
viral invasion (Figure 7d).

Discussion

COVID-19 is still rapidly spreading worldwide 
and exhibits nearly no sign of slowing, while 
multiple lines of vaccines are being developed. 
With the development of therapeutic measures, 
including antibodies and small molecules in var
ious stages of clinical trials, one major concern 
is that rapid mutations of SARS-CoV-2,38 an 
RNA virus, could hinder the efficacy of vaccines 
or treatments. Thus, investigating genetic varia
tions, particularly their potential correlation with 
the disease severity of COVID-19, is of consider
able value for clinics. However, among the large 
number of reported genomes in the GISAID 
database, very little information is available 
regarding disease severity and other parameters, 
rendering it difficult to perform such analysis. In 
this study, we employed an amplification-based 
approach to profile the genomes of SARS-CoV-2 
virus, and found that at least in our cohort, no 
SNP significantly contributed to disease severity 
or important clinical parameters. A recent study 
suggests that a particular D614G mutation in the 
spike protein increases its ability to infect host 
cells by increasing the efficiency of protease 
clearance,39 but this mutation was not found in 
our cohort, and the current findings did not 
mention the disease severity. Not all patients 
have a sufficient amount of viral RNA in their 
upper respiratory tracts (throat swabs) or gastro
intestinal tracts (fecal samples) to permit viral 
genome sequencing, thereby limiting the number 

of genomes available; screening a larger number 
of patients could alleviate this problem.

Next, we analyzed the gut virome of COVID-19 
patients by isolating VLPs and amplifying viral DNA 
and RNA with Oxford Nanopore sequencing. We 
found that while SARS-CoV-2 virus can be detected 
using a quantitative PCR approach in some patients’ 
fecal samples, overall, the presence of viral sequences 
in VLPs was low, and only four patients had detectable 
SARS-CoV-2 sequences in the gut virome data. It is 
likely that SARS-CoV-2 virus particles are relatively 
low in abundance and below the sequencing thresh
old, or in many cases, the virus nucleotides may be 
present but not enveloped. Overall, virome structure is 
closely associated with bacteriome structure and it is 
not entirely dominated by phages, as we detected 
a significant proportion of eukaryote-associated 
viruses, although due to a general lack of research 
and references, their taxonomy has not been fully 
elucidated. A few viruses related to plant RNA viruses 
and unclassified viruses were found to be enriched in 
multiple patients, suggesting that unestablished intest
inal viruses could be involved in SARS-CoV-2 infec
tions or, more importantly, could reflect or even affect 
the host immune status and response to viral infec
tions. As the COVID-19 pandemic is still ongoing, 
and it is important to understand its pathology, as well 
as other important aspects, the virome we investigated 
may provide a different perspective for future efforts 
to study, characterize, and treat COVID-19, particu
larly regarding the early diagnosis and treatment of 
severe versus common cases, which may be confirmed 
as evidence accumulates and relevant research is 
determined to be useful.

Furthermore, the gut bacteriome affects an impor
tant proportion of host immune functions, and while 
previous studies of the gut-lung infection axis 
focused primarily on a mouse influenza model,40,41 

several studies have also reported dysbiosis of the gut 
bacteriome in COVID-19 patients,19,20 denoted by 
a reduction in the diversity of bacterial communities. 
Our study of patients in Beijing adds to the findings 
obtained in Hong kong and Hangzhou and reaffirms 
that a decrease in the diversity of the gut bacteriome 
is common in patients infected with COVID-19. In 
addition, we found that Ruminococcus gnavus, which 
was significantly enriched in COVID-19, was asso
ciated with Crohn’s disease, producing an inflamma
tory polysaccharide that induces dendritic cells to 
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produce cytokines, such as TNFα.42 Coprobacillus 
and Clostridium ramosum, which are enriched in the 
patients, were shown by Zuo et al. to be positively 
correlated with the severity of COVID-19.20 More 
critically, we observed a microbial signature of disease 
severity in which butyrate-producing bacterial groups, 
including Eubacterium, were depleted in severe cases 
of COVID-19, while opportunistic pathogens were 
enriched, including Corynebacterium, Enterococcus, 
Campylobacter, Cirtrobacter, and Enterobacter, 
which is in keeping with the findings of Zuo et al.20 

regarding the general pattern of the gut microbiome in 
COVID-19 patients. Another study by Zuo et al.43 

found an enrichment of Lachnospiraceae bacterium 
1_1_57FAA in patients with low to nonexistent SARS- 
CoV-2 infectivity. However, COVID-19 patients in 
our cohort were observed to have higher levels of 
Lachnospiraceae bacterium 2_1_58FAA than healthy 
individuals. Since we are still in the early stages of 
studying and understanding microbiome differences 
and dynamics of COVID-19, the earliest studies may 
be expected to be limited in sample size and the uni
versality of the results. These limitations have been 
observed for many biological and medical topics in 
which increasingly reliable results can be obtained by 
more independent studies, thereby overcoming 
potential cohort differences caused by cohort genetics, 
geographical factors and other environmental factors. 
We surmise that the differences we observed are due 
to 1) the relatively small number of cohorts used to 
date in microbiome-related research and 2) the cohort 
differences that do exist, which means that the marker 
taxa that we identified are cohort-specific instead of 
common or universal. Also, despite the necessity of 
utilizing antibiotics in treating secondary infections, 
we observed that they lead to additional shifts in the 
gut bacteriome of COVID-19 patients, as exemplified 
by the undesirable decrease in butyrate-producing 
bacteria (for instance Roseburia hominis and 
Faecalibacterium prausnitzii). Thus, it may be useful 
to control for this confounding effect while analyzing 
the bacteriome from patients, as it remains difficult to 
disentangle the effects of antibiotics vs. disease severity 
on the bacteriome.

Finally, deeper insights into the potential mechan
isms underlying virome/bacteriome shifts were 
obtained using a mouse COVID-19 model, in 
which we investigated the gene expression in gut 
epithelial cells in tandem with the virome and 

bacteriome. In our mouse model, SARS-CoV-2 did 
not directly infect the GI tract, as demonstrated by 
sequencing efforts. Nonetheless, we found significant 
differences between infected (unvaccinated) mice 
and infected (vaccinated) mice in terms of host 
gene expression, where we found enrichment of 
immune – and anti-infection-related genes differen
tially expressed between groups. Among these genes, 
many were already reported to be key genes in host- 
microbiome or host-virus cross-talk, including IL15, 
C3 and MUC2, while genes related to SARS-CoV-2 
infection or severity also exhibited changes in 
expression, including ZEB1 and pleiotropic APOE. 
This result, combined with the finding that SARS- 
CoV-2 was limited in the lungs of mice, suggests an 
overall modulation of immune functions in the host 
as a result of infection, rather than the changes 
simply being directly triggered by SARS-CoV-2. On 
the bacteriome side, the results in mice confirmed 
key characteristics of bacteriome changes observed 
in COVID-19 patients, particularly Odoribacter and 
Akkermansia muciniphila, both key bacteria impli
cated in a list of diseases,44,45 and their correlation to 
infection/disease severity warrants further investiga
tion. Accompanying virome shifts are largely clus
tered in mouse bacteriophages and are tightly 
associated with shifts in the bacteriome. Impor 
tantly, the current investigations were primary and 
particularly limited by the biosafety requirements of 
experimenting with SARS-CoV-2, as well as the con
sequent limitations to sample size; in future research, 
more mechanistically oriented studies are warranted.

Methods and Materials

Study subject and design

In this study, a cohort of 18 subjects was recruited, 
including 13 COVID-19 patients from the Fifth 
Medical Center of PLA General Hospital (Fig. S6) 
and five healthy volunteers from our previous 
study.25 SARS-CoV-2-infected patients were con
firmed using the Novel Coronavirus (SARS-CoV-2) 
Nucleic Acid Detection kit (BioGerm), as recom
mended by the CDC in China. According to the 
Seventh Revised Trial Version of the Novel 
Coronavirus Pneumonia Diagnosis and Treatment 
Guidance,46 the disease severity of patients infected 
with SARS- 
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CoV-2 was classified into three categories: (1) severe, 
for adults, respiratory distress (≥ 30 breaths/min), 
oxygen saturation ≤ 93% at rest and arterial partial 
pressure of oxygen (PaO2)/fraction of inspired oxygen 
(FiO2) ≤ 300 mmHg (1 mmHg = 0.133 KPa). For 
children, tachypnea (RR ≥ 60 breaths/min for infants 
aged below 2 months; RR ≥ 50 BPM for infants aged 
2–12 months; RR ≥ 40 BPM for children aged 
1–5 years, and RR ≥ 30 BPM for children above 
5 years old) was independent of fever and crying, 
oxygen saturation ≤ 92% on finger pulse oximeter 
taken at rest, labored breathing (moaning, nasal flut
tering, and infrasternal, supraclavicular, and intercos
tal retraction), cyanosis, and intermittent apnea, 
lethargy and convulsion, difficulty feeding and signs 
of dehydration; (2) moderate, showing fever and 
respiratory symptoms with radiological findings of 
pneumonia; and (3) mild, the clinical symptoms 
were mild, and there was no sign of pneumonia on 
imaging. All subjects in our study provided written 
informed consent.

SARS-CoV-2 qPCR of COVID-19 patients

Throat swabs and fecal samples of COVID-19 
patients were resuspended in sterile phosphate 
buffered saline (PBS) and treated by heating in 
a 56°C water bath for 30 min for inactivation. 
Viral RNAs of throat swabs and fecal samples 
with inactivating treatment were extracted based 
on the QIAamp Viral RNA Mini Kit Handbook 
(Qiagen). Viral RNAs were detected and quanti
fied by real-time reverse-transcriptase- 
polymerase chain-reaction (RT-PCR) assay 
according to the novel coronavirus (2019- 
nCoV) N gene, ORF1ab gene, and S gene triple 
nucleic acid assay kit (MABSKY). The real-time 
RT-PCR included 17 μl of RT-PCR solution, 2 μl 
of primer probe mixture, 1 μl of mixed enzyme 
solution and 5 μl of RNAs in a final reaction 
volume of 25 μl. Reverse transcription at 50°C 
for 30 min, pre-denaturation at 95°C for 3 min, 
followed by 45 cycles of amplification reactions 
at 95°C for 5 s and 55°C for 30 s. The cycle 
threshold (Ct) values of real-time RT-PCR were 
converted into virus titers (TCID50) based on 
a standard curve prepared from 10-fold serial 
dilutions of SARS-CoV-2 provirus extracts 
(Table S6).

Amplification and sequencing of SARS-CoV-2 
genome

According to the nCoV-2019 sequencing protocol 
reported by the ARTIC network,47 extracted RNAs 
were subjected to reverse transcription using the 
SuperScript III Reverse Transcriptase kit (Invitrogen) 
based on the manufacturer’s random hexamer primer 
protocol. Viral cDNAs were specifically amplified 
using a set of primers based on the nCoV-2019 
sequencing protocol (V3). Library preparation was 
performed using an adjusted protocol for the 
Nextera XT DNA Library Preparation Kit from 
Illumina and sequencing was performed using 
NovaSeq (PE250).

Enrichment of virus-like particles and cDNA 
sequencing

Virus-like particles of inactivated fecal samples 
were enriched and purified according to the mod
ified workflow we developed in a previous study.25 

In brief, each fecal sample (approximately 500 mg) 
was resuspended in 15 ml PBS and centrifuged at 
4,500 rpm for 10 min at the 4°C to remove large 
food residues (Beckman Coulter AllegraTM 

X-22 R). The supernatant was transferred to fresh 
tubes and centrifuged at 4,500 rpm for 10 min at 
the 4°C again. The supernatant was then filtered 
through a 0.45 μm PVDF membrane (Millipore) 
twice and centrifuged at 180,000 × g at 4°C for 3 h 
(Beckman Coulter XP-100). The pellets were resus
pended in 400 µl PBS and treated with RNase A and 
DNase I at 37°C for 30 min. Viral nucleic acids, 
including DNA and RNA, were extracted by using 
a QIAamp MinElute Virus Spin Kit (Qiagen). The 
viral nucleic acids underwent reverse transcription, 
random amplification and agarose gel electrophor
esis to obtain cDNA to prepare the sequencing 
library.

PromethION library preparation was performed 
according to the manufacturer’s instructions for 
barcoding cDNA/DNA and native DNA (SQK- 
LSK109, EXP-NBD104 and EXP-NBD114). When 
multiplexing, all the samples were pooled together. 
Oxford Nanopore Technologies (ONT) Min 
KNOW software (v.19.10.1) was used to collect 
raw sequencing data, and Guppy (v.3.2.4) was 
used for real-time base calling of the raw data.
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Bacteriome sequencing

The PVDF membranes left over from the VLP 
enrichment and purification process were employed 
to isolate bacterial communities. The nucleic acids of 
bacterial communities in membranes were extracted 
by using the AllPrep PowerFecal DNA/RNA Kit 
(Qiagen). Similarly, a modified protocol for the 
Nextera XT DNA Library Preparation kit from 
Illumina was used for library construction and 
sequencing was performed using HiSeq XTen 
(PE250) and NovaSeq (PE150).

Transcriptome, metagenome and 
metatranscriptome sequencing in a mouse model

Nine hACE2 transgenic C57BL/6 mice at 6 to 
8 weeks of age were randomly allocated to two 
groups. Four mice were immunized with 1 × 1011 

vp of recombinant type 7 chimpanzee adenovirus 
vaccine expressing the spike protein of COVID-19 
virus and five mice were inoculated with PBS. All 
mice received a second identical dose of vaccine or 
PBS on day 28. Fourteen days later, mice were 
infected with 5 × 105 TCID50 SARS-CoV-2 virus 
through the intranasal route. On day three postin
fection, mice were sacrificed and necropsied to 
collect the small intestine and fecal contents. 
Mouse small intestines were homogenized and 
mixed with TRIzol for RNA extraction. An 
AllPrep Powerfecal DNA/RNA Kit (Qiagen) kit 
was used to extract DNA and RNA from the 
mouse fecal contents according to the manufac
turer’s protocol. Viral particles in the lung were 
quantified using RT-PCR, and the infected groups 
averaged 8.72 in log(10) copies/g, which was sig
nificantly higher than that of the control group 
(average 6.37, P = .035, Wilcoxon test).

The ribosomal RNAs of mouse small intestine 
tissue were removed using the KAPA RiboErase Kit 
(HMR) Human/Mouse/Rat. Library preparation 
was performed using the KAPA RNA Hyperprep 
Kit, and sequencing was performed using HiSeq 
XTen (PE150). The metagenome and metatran
scriptome were sequenced using NovaSeq 6000 
(PE150) and HiSeq XTen (PE150), respectively. 
DNA libraries were prepared using the Rapid 
DNA Library Prep Kit for Illumina, and RNA 
libraries were prepared using the KAPA RNA 

Hyperprep Kit. The RibominusTM Transcriptome 
Isolation Kit – Bacteria (Invitrogen) was used to 
remove ribosomal RNAs.

SNP calling of SARS-CoV-2 genome

SNP calling was performed based on the modified 
Variant Calling Pipeline using GATK448 published 
by Mohammed Khalfan (https://gencore.bio.nyu. 
edu/variant-calling-pipeline-gatk4/). Briefly, qualified 
raw data were mapped to the SARS-CoV-2 reference 
genome (NC_045512) using BWA-MEM,49 and then 
bam files were marked in duplicate and sorted using 
Picard. Next, variant calling was performed using 
GATK (v4.1.6) followed by extracting SNPs and filter
ing SNPs with parameters ‘QUAL < 30 MQRankSum 
< −12.5 FS > 60.0 ReadPosRankSum < −8.0 MQ < 40.0 
QD < 2.0 DP < 8.0ʹ. Finally, SnpEff (v4.3) was used to 
annotate and predict the effects of SNPs on genes.

Bioinformatics analysis of the virome and 
bacteriome in humans

To obtain a comprehensive viral genome, we inte
grated two viral genome databases using Mash50 

and Nucmer51 with 95% nucleotide identity and 
70% sequence coverage, including the NCBI Viral 
genome database and Cenote Human Virus 
Database,52 the latter of which includes 52,750 non
redundant virus OTUs extracted from nearly 6,000 
human metagenomic samples, resulting in 61,843 
integrated viral genomes. Adaptor and barcode 
sequences of ONT sequencing raw data were 
trimmed by using Porechop (v0.2.3)53 with default 
parameters. Trimmed reads were subjected to viral 
taxonomic classification by aligning them with the 
integrated viral genome database using minimap2 
(v2.1.7).54 Only those viral genomes that met 
a coverage greater than 30% and had a mapped 
read number greater than 10 were retained for 
further analysis. The relative abundance of the vir
ome was calculated using the average coverage 
depth of the viral genome, which was enumerated 
by samtools (v1.3.1 with ‘samtools coverage’).

For bacteriome analysis, bacterial raw reads were 
deduplicated using Kneaddata (v0.7.4 with parameters 
‘–trimmomatic-options “SLIDINGWINDOW:4:20 
MINLEN:50”’)55 to trim and filter low-quality 
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sequences, as well as contaminating human reads with 
the GRCh38 human genome reference. Profiling of 
the composition of bacterial communities was per
formed using MetaPhlAn2 (v2.7.5)56 by mapping 
reads to clade-specific markers.

Virome/bacteriome and transcriptome analysis in 
a mouse model

Metagenomic and metatranscriptomic sequences 
were deduplicated using Kneaddata55 to trim and filter 
low-quality sequences, as well as contaminating 
mouse reads with the mm10 mouse genome reference. 
Viral composition analysis was performed using bow
tie2 to align clean reads to the integrated viral genome 
database. Profiling the composition of bacterial com
munities was performed using MetaPhlAn2 (v2.7.5)56 

by mapping reads to clade-specific markers.
To analyze the transcriptome of mouse intestinal 

epithelial tissues, adapter and low-quality sequences of 
raw data were removed and filtered using Fastp.57 

Clean data were aligned to the mouse reference 
mm10 using HISAT258 with default parameters, and 
read count-matched host genes were calculated with 
HTseq.59 Differential expression gene analysis was 
performed used DESeq2.60 The FUMA website61 was 
used to conduct gene functional mapping and 
annotation.

Statistical analysis

All statistical analyses were performed in R 
(v3.6.1). Shannon diversity and principal coordi
nates analysis based on Bray-Curtis dissimilari
ties were performed by using vegan packages 
(v2.5–6). Two groups were compared using the 
Mann-Whitney-Wilcoxon rank-sum test, while 
three groups were compared using the Kruskal- 
Wallis test. Multivariate analysis was performed 
using PERMANOVA in vegan.

Analysis of differences in bacterial and/or viral 
communities between COVID-19 patients and 
healthy controls was performed using the Mann- 
Whitney-Wilcoxon rank-sum test. Differential bacter
ial and viral taxa among COVID-19 patients with/ 
without antibiotic treatment were identified using 
Multivariate Association with Linear Models 
(MaAsLin2),62 and box plots were employed to show 

variances of the bacteriome and virome (Wilcoxon 
rank-sum test). The WilcoxTest function in the 
GSALightning package (v1.14) was used for differen
tial enrichment analysis within different COVID-19 
severities. Procrustes analysis is a statistical method 
that analyses the consistency of two-dimensional 
graphs produced by overlaying principal component 
analysis of two datasets. Procrustes analysis was per
formed based on the Bray-Curtis distances of eigen
values for both bacteriome and virome using the 
Procrustes function in vegan packages. Correlations 
between the bacteriome and virome were calculated 
using SparCC,63 and an association network graph 
was generated using igraph packages (v1.2.5) in 
R (v3.6.1).
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