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Abstract: The accurate prediction of the status of PLNM preoperatively plays a key role in treatment
strategy decisions in early-stage cervical cancer. The aim of this study was to develop and validate a
radiomics-based nomogram for the preoperative prediction of pelvic lymph node metastatic status in
early-stage cervical cancer. One hundred fifty patients were enrolled in this study. Radiomics features
were extracted from T2-weighted MRI imaging (T2WI). Based on the selected features, a support
vector machine (SVM) algorithm was used to build the radiomics signature. The radiomics-based
nomogram was developed incorporating radiomics signature and clinical risk factors. In the training
cohort (AUC = 0.925, accuracy = 81.6%, sensitivity = 70.3%, and specificity = 92.0%) and the testing
cohort (AUC = 0.839, accuracy = 74.2%, sensitivity = 65.7%, and specificity = 82.8%), clinical models
that combine stromal invasion depth, FIGO stage, and MTD perform poorly. The combined model
had the highest AUC in the training cohort (AUC = 0.988, accuracy = 95.9%, sensitivity = 92.0%, and
specificity = 100.0%) and the testing cohort (AUC = 0.922, accuracy = 87.1%, sensitivity = 85.7%, and
specificity = 88.6%) when compared to the radiomics and clinical models. The study may provide
valuable guidance for clinical physicians regarding the treatment strategies for early-stage cervical
cancer patients.

Keywords: cervical cancer; pelvic lymph node metastasis; radiomics; nomogram

1. Introduction

Cervical cancer is the fourth most common malignant tumor and the fourth leading
cause of cancer death in women worldwide [1]. Due to the promotion of tumor screening,
an increasing number of early cervical cancers have been discovered in recent years [2,3]. In
the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines on cervical
cancer, radical hysterectomy with bilateral lymph node dissection [with or without sentinel
lymph node (SLN)], carried out by laparotomy, was regarded as standard treatment in
patients with the International Federation of Gynecology and Obstetrics (FIGO) stage IA2,
IB and IIA [4,5]. However, nearly 30% of early-stage cervical cancer patients have pelvic
lymph node metastasis (PLNM), which is an extremely important factor affecting treatment
decisions [6,7]. For cervical cancer patients with PLNM, concurrent chemoradiation is
preferred instead of surgical treatment, according to ESMO Clinical Practice Guidelines [8].
A considerable number of patients have received unnecessary radical hysterectomies,
which may lead to serious complications and reduce their quality of life [4,5]. In addition,
PLNM is a poor prognostic indicator for recurrence and metastasis in early-stage cervical
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cancer [9,10]. Therefore, the accurate prediction of the status of PLNM preoperatively plays
a key role in treatment strategy decisions.

Magnetic resonance imaging (MRI) has been widely recommended as the optimal
imaging equipment for preoperative staging and lymph node exploration of cervical
cancer [11]. However, traditional MRI based on morphological assessment, such as lymph
node size and morphology, has only a low sensitivity of 75% for lymph node status [12].
Due to the presence of inflammatory hyperplasia and micrometastatic lymph nodes, the
efficacy of traditional MRI in differentiating lymph node status is difficult to satisfy [13].
Low diagnostic efficiency may result in many cervical cancer patients being understaged,
which affects clinical decision-making [14].

Radiomics, which can extract quantitative features from digital medical images and
convert them into mineable high-dimensional data, plays an important role in personalized
clinical decision-making [15]. Radiomics analysis can be used in the diagnosis, prognosis,
and prediction of curative effects in a variety of tumor types by developing appropriate
model refinement features. This method has shown a huge potential for predicting lymph
node metastatic status in a wide range of tumor types in a cost-effective and non-invasive
way [16–18]. T2-weighted MRI imaging has also been widely utilized in the staging of
cervical cancer [19].

Therefore, the purpose of this research was to develop and validate a radiomics-based
nomogram for the preoperative prediction of pelvic lymph node metastatic status in early
cervical cancer.

2. Materials and Methods
2.1. Patient

This retrospective study was approved by the hospital ethics committee, and the
requirement for informed consent was waived. We retrospectively collected patients
diagnosed with cervical cancer with biopsy-proven cervical carcinoma receiving initial
treatment with surgery in our hospital from February 2017 to October 2019. The inclusion
criteria were as follows: (i) patients receiving radical hysterectomy and pelvic lymphadenec-
tomy; (ii) pathologically diagnosed cervical cancer; (iii) pretreatment MRI scan available in
our hospital; (iv) primary cancer lesions visible on sagittal T2WI; and (v) available clinical
characteristics. The exclusion criteria were as follows: (i) patients receiving other treatment
before surgery, including neoadjuvant chemotherapy, radiotherapy, or conization; (ii) ab-
sence of preoperative MRI scan in our hospital; (iii) poor MRI image quality, for example,
indistinct MRI image of the cervical structure; and (iv) rare pathological types of cervical
tumor, for example, mucoepidermoid carcinoma [20]. The MRI images were reviewed by
two radiologists with 7 and 9 years of experience.

In total, 150 patients were enrolled. Among these patients, 35 patients with PLNM and
115 patients without PLNM were treated surgically and confirmed pathologically. Baseline
clinicopathologic characteristics, including age, FIGO stage, maximal tumor diameter
(MTD), histological subtype, and stromal invasion, were derived from medical records.
The patient selection process is shown in Figure 1.

2.2. MRI Acquisition Protocol and Tumor Segmentation

The MRI scans were performed on each patient before the initial surgical treatment.
A T MRI scanner was used (Achieva 3.0 T, Philips, Amsterdam, The Netherlands), which
was equipped with a 16-channel abdominal coil. Abdomen and pelvic MRI examinations
were performed on patients. To avoid the loss of image information, the Digital Imaging
and Communications in Medicine (DICOM) images from Picture Archiving were acquired
without any compression or downsampling. The conventional protocol included T2-
weighted imaging on the axial, sagittal, and coronal planes, T1-weighted imaging, fat-
suppressed T1-weighted imaging, fat-suppressed T2-weighted imaging, and diffusion-
weighted imaging (b = 0.800 s/mm2) on the axial planes. The scanning parameters for
the fat-suppressed turbo spin echo (TSE) T2-weighted images were as follows: TR/TE:
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4854/85 ms, FOV = 300 × 300 mm; matrix = 232 × 171; slice thickness/gap: 5/1 mm;
NEX = 2.

All of the MRI images were loaded into 3D slicer software and then manually three-
dimensionally segmented (open-source software; https://download.slicer.org/, accessed
on 1 January 2022). All of the manual segmentations of the primary tumor region were
contoured as the region of interest (ROI) on axial T2WI, and the coronal and sagittal
MRI images were used for guiding the segmentation of the ROIs in the cross-sectional
plane. Segmentation was performed by a radiologist who had 7 years of experience in
gynecological MR imaging and resolved any uncertainty through consultation with another
radiologist who had 9 years of experience. The representative images of the lesions are
shown in Figure 2. The workflow of the radiomics analysis is presented in Figure 3.

2.3. Radiomic Feature Extraction

Following the hand segmentation of the tumor, the radiographic characteristics of
the tumor were extracted using open-source software called Pyradiomics. To generate
a consistent normal-distribution image distribution, standardized techniques on T2WI
pictures were applied. We collected 1688 radiological characteristics from seven imaging
types on the T2WI of the tumor. Tumor size (e.g., volume), shape (e.g., circumference,
diameter), grayscale cooccurrence matrices (e.g., energy, contrast, entropy), grayscale
run-length matrices, and grayscale dependency matrices are all quantified using these
characteristics. Python 3.7 is used to implement all functionalities. The workflow of the
radiomic feature extraction is presented in Figure 3.
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2.4. Radiomics Feature Selection and Development of the Radiomics Model

The goal of feature selection is to choose some of the most useful features from the
original features to minimize dimensionality and increase the model’s generalization ability,
as well as to speed up the fitting process. We have chosen two types of feature selection
methods: filtered and embedded. MINE, Pearson’s initial relation number, and ANOVA F
value (F Classif) are chosen in the filtered scheme, whereas ExtraTree, GBDT, and Random
Forest are chosen in the embedded scheme.

Because we used Pyradiomics to extract a vast number of features from the images,
these features are not fully associated with the prevalence of the disease. Therefore, we
chose the most effective feature extraction approach among six alternative feature fil-
tering strategies to implement feature extraction. We also evaluated the validation of
Chalkidou et al. [21], in which research showed that a stable model might be built using
10–15 characteristics. The outcomes of the experiments reveal that not all datasets will
benefit from such a selection.

We use a support vector machine model to implement the sample classification when
we have finished selecting features. The RBF kernel is also chosen in the SVM model, and
the hyperparameter C is chosen to optimize the AUC value under the training set.

To develop the clinical prediction model, the stromal invasion depth, MTD, and
FIGO phases were examined. To determine the sample classes, the SVM model is em-
ployed. The logistic regression approach with forward stepwise selection was used to
create the combined model. In the combined model, the radiomics signature and clinical
risk variables were incorporated. The combined model was presented as a radiomics-based
nomogram to make it a more user-friendly tool for the preoperative prediction of PLMN
status. The formula of the radiomics signature of the final radiomics model is shown in
Supplementary S1.

2.5. Assessment of Predictive Models

The performance of these prediction models was evaluated in the training cohort
before being verified in the validation cohort using the receiver operating characteristic
(ROC) curve. The agreement between the nomogram prediction probabilities of the PLMN
status and actual results was assessed using a calibration curve.

2.6. Statistical Analysis

All of the statistical analyses were conducted with R 3.4.1 and Python 3.7. The
independent-sample t-test of independent samples was used to assess the significance
of age and MTD between the training cohort and the validation cohort. The chi-squared
test or Fisher’s exact test was used to evaluate the significance of categorical variables
such as FIGO stage, histology type, stromal invasion, lymphovascular invasion (LVSI), and
nerve invasion (NI) between the training and validation cohorts. Two-tailed p-values less
than 0.05 were considered statistically significant.

3. Results
3.1. Patients’ Clinicopathologic Characteristics

Between February 2017 and October 2019, a total of 301 patients who underwent
surgery for cervical cancer were enrolled. According to the inclusion and exclusion criteria,
151 patients were excluded. Finally, 150 patients fulfilled the eligibility criteria and were
enrolled in the following analysis (Figure 1).

The patient characteristics are summarized in Table 1. The distribution of clinical
characteristics (age, FIGO stage, MTD) and pathological characteristics (histology type,
stromal invasion depth, LVSI, nerve invasion) were balanced between the training and
validation cohorts. The MTD, stromal invasion depth, and LVSI status showed a significant
difference between the patients with and without PLNM metastasis in the training cohorts.
The LVSI status and NI status showed a significant difference in the validation cohort, as
shown in Table 1.
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Table 1. Characteristics of the included patients.

Characteristics

Training Cohort (n = 104) Validation Cohort (n = 45)
p *

PLNM(+) PLNM(−) PLNM(+) PLNM(−)

(n = 25) (n = 80) p (n = 10) (n = 35) p

Age, years 0.095 0.312 0.520

Mean 47.12 46.66 43.30 46.60

FIGO Stage (N, %) 0.787 0.208 0.871

IA 0 2 1 0
IB 15 52 5 22
IIA 10 26 4 13

MTD, cm 0.007 0.220 0.815

Mean 3.95 2.77 2.97 3.07

Histology (N, %) 0.331 0.657 0.664

SCC 19 67 10 30
AC 4 11 0 4
ASC 2 2 0 1

Stromal Invasion <0.001 0.261 0.448

Deep 1/3 21 28 6 10
Middle 1/3 2 24 2 12
Superficial 1/3 2 28 2 13

LVSI status <0.001 0.010 0.519

Positive 2 57 1 21
Negative 23 23 9 14

NI status 0.627 0.016 0.185

Positive 23 76 6 33
Negative 2 4 4 2

Note: p is derived from the chi-squared test or Fisher’s exact test between patients with and without PLNM
in the training and validation cohorts, respectively. p * represents the difference in each clinicopathological
variable between the training and validation cohorts. Abbreviations: PLNM: pelvic lymph node metastasis; MTD:
maximal tumor diameter; LVSI: lymphovascular invasion; SCC: squamous cell carcinoma; AC: adenocarcinoma;
ASC: adenosquamous carcinoma; NI: nerve invasion.

3.2. Feature Selection and Performance of the Clinical Model and Radiomics Model

We collected a total of 1688 characteristics, with 744 associated with wavelets,
372 associated with LBP, 186 associated with squares, and 107 associated with the original.
The exponential, the gradient, and the logarithmic functions each have 93 characteristics.
Furthermore, feature filtering was accomplished utilizing two types of methods: filtered
and embedded. Overall, the filtered technique beats the embedded extraction strategy,
ignoring the fact that the embedded scheme varies significantly with different feature
extraction ratios.

Although the AUC increases by over 90% as the number of features embedded grows,
the outcomes are more heavily influenced by the number of chosen features. In contrast,
when the number of features grows, the filtered solution maintains a consistent rising trend.
MINE outperforms F Classification and Pearson in regard to feature selection, with a rank
of 138. The MINE approach is focused on a feature number of 138 for later trials (Figure 4).

In the training cohort (AUC = 0.925, accuracy = 81.6%, sensitivity = 70.3%, and speci-
ficity = 92.0%) and the testing cohort (AUC = 0.839, accuracy = 74.2%, sensitivity = 65.7%,
and specificity = 82.8%), the clinical models that combined stromal invasion depth, FIGO
stage, and MTD performed poorly (Table 2). In both the training (AUC = 0.975, accuracy =
91.8 percent, sensitivity = 92.0 percent, and specificity = 91.7 percent) and testing cohorts
(AUC = 0.852, accuracy = 77.1 percent, sensitivity = 82.9 percent, and specificity = 71.4 percent),
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the radiomics model outperformed the clinical model significantly, as depicted in the ROC
curves (Figure 5).

Figure 4. Six different feature screening approaches are illustrated, with the horizontal coordinate
showing the number of features selected and the vertical coordinate showing the classifier’s AUC.
The filtered scheme includes (a–c). The embedded scheme includes (d–f).

Figure 5. The ROC curves of the clinical model, radiomics models, and combined model in the
training cohort (a) and testing cohort (b).
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Table 2. Performance of models.

Training Cohort Testing Cohort

AUC ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%)

Clinical

stage 0.832 0.816 0.708 0.920 0.767 0.771 0.657 0.886

pathology 0.476 0.531 0.08 0.96 0.527 0.485 0.08 0.886

diameter 0.712 0.714 0.75 0.68 0.728 0.729 0.771 0.685

Stage+pathology+diameter 0.925 0.816 0.703 0.920 0.839 0.742 0.657 0.828

Radiomics model 0.975 0.918 0.920 0.917 0.852 0.771 0.829 0.714

Combined model 0.988 0.959 0.920 1.00 0.922 0.871 0.857 0.886

3.3. Performance of the Combined Model and the Radiomics Nomogram

Tumor stage, tumor infiltration depth, and radiomics signature were chosen throughout
the creation of the integrated model. The combined model had the highest AUC in the
training cohort (AUC = 0.988, accuracy = 95.9%, sensitivity = 92.0%, and specificity = 100.0%)
and the testing cohort (AUC = 0.922, accuracy = 87.1%, sensitivity = 85.7%, and specificity
= 88.6%) when compared to the radiomics and clinical models (Table 2 and Figure 5). The
combined model has a better performance than the clinical model in both the training and test
cohorts. The radiomics-based nomogram and the combined model are shown in Figure 6. The
calibration curves of the radiomics-based nomogram demonstrated satisfactory agreement
between the predictive and observational possibility of the PLMN status in both the training
and validation cohorts.

Figure 6. The radiomics-based nomogram (a). Calibration curves in the training cohort (b) and
validation cohort (c). A closer fit to the diagonal line indicates a better evaluation.
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4. Discussion

For patients with early-stage cervical cancer, pelvic lymph node (LN) status is one of
the most important factors taken into account when making clinical decisions regarding
surgery or radical chemoradiotherapy. Many inspection methods have been made to
enhance the accurate evaluation of LN status before surgery, such as sentinel lymph node
(SLN) biopsy, magnetic resonance imaging (MRI), and positron emission tomography (PET)-
computed tomography (CT). SLN biopsy can acquire optimal diagnostic efficiency, but the
absence of a standard surgical technique and the surgeon’s training and experience may
influence the outcome of SLN biopsy [22]. In addition, SLN biopsy is an invasive approach
and is not routinely applied. MRI has widely been used in preoperative staging evaluation
and lymph node detection of cervical cancer. Although MRI has the potential to identify
LNM status according to the MRI morphological appearances of PLNM, such as size and
shape, its efficiency and sensitivity in diagnosing PLNM are unsatisfactory [23]. Several
previous studies have shown that a considerable proportion of cervical cancer patients
were misclassified according to morphologic criteria on MRI images [24,25]. Although
PET-CT shows favorable performance and is superior to MRI, considering the availability
of PET-CT devices and high inspection costs, its wide application has a long way to go [26].

In this study, we successfully developed and validated a noninvasive individualized
radiomics-based nomogram integrating the radiomics signature and clinicopathologic
factors for predicting PLNM in patients with early-stage cervical cancer before surgery. The
proposed radiomics nomogram exhibited a favorable performance in discriminating lymph
node status in the training and validation sets. This radiomics nomogram also showed
more predictive efficacy than the traditional diagnostic criteria of PLNM.

Chalkidou and colleagues proposed a solution to the problem of picking a limited
number of finite features [21], which is the focus of this study. The results of the studies
reveal that only a subset of datasets fit the criteria, not all of them. As part of our related
work on lymphovascular space invasion, we substituted the study population in the
original dataset in this experiment. It was not possible to achieve a decent result in Lasso’s
technique based on the theory presented by Chalkidou et al. To achieve this, two broad
categories of feature selection strategies were chosen for validation, and all experiments
consistently indicated that even the same dataset might have a significant influence on the
selected features when the experimental aim is changed.

The findings of the experiments indicate that the tree-based feature extraction approach
may not be suited for feature extraction in imagingomics. The tree scheme is not ideal
for processing continuous features, and the continuity of the final derived features is
quite visible. Second, the tree-based algorithm’s performance tends to be poor when
processing data with substantial feature correlation, and the generated features are highly
correlated. The other set of approaches, on the other hand, makes better use of data
correlation and hence beats the tree-based strategy in the experimental comparison. MINE
is the most effective of these approaches since it finds not only the linear but also the
nonlinear correlations between the variables. It is possible that this is why the MINE
scheme outperforms the others.

By combining the radiomics signature with easily available, preoperative clinical risk
factors, we developed a quantified radiomics nomogram, which is convenient to utilize for
clinicians. The radiomics nomogram could generate a personalized probability of PLNM
for patients before surgery, which could provide more information for clinicians to make
treatment decisions. This individualized treatment is in line with the trend of personalized
precision medicine [27].

In our study, some clinical characteristics were independently correlated with LNM
status, including MRI-reported LN status and FIGO stage. These clinical characteristics
were quite similar to those from other previous studies based on conventional MRI ana-
lytical methods, indicating that the LNM status was closely related to the total status of
the primary tumor [24,25,28]. Recently, some studies [29–31] developed combined models
for predicting LNM status in cervical cancer patients based on clinical and histological



Diagnostics 2022, 12, 2446 10 of 12

information and MRI images. These studies utilizing the radiomics method showed com-
parable prediction performance with ours. Compared with these previous studies, our
study provides an easier visual tool for doctors to evaluate the PLNM status preoperatively
and noninvasively.

There were several limitations in our study. First, we performed radiomics analysis on
the T2WI sequence. During the segmentations, we excluded the T1WI for the unsatisfactory
performance in displaying the lesions. Therefore, we did not continue the segmentations
on T1WI. We also excluded DWI due to the low signal-to-noise ratio and motion artifacts.
In future research, we will combine or compare more MRI sequences to improve diagnostic
efficiency. Second, the cervical lesions that were difficult to recognize or invisible on MRI
were excluded, which may lead to potential selection biases. Third, due to the relatively
small number of cases in this single-center retrospective study, a larger sample size, multiple
centers, and prospective datasets are needed to optimize the performance of the radiomics
model in the future. Finally, all of the manual segmentations of the tumor tissues on axial
T2WI and contrast-enhanced T1-weighted spin–echo images were performed by a radiolo-
gist who had 5 years of experience in gynecological MR imaging, and each segmentation
was validated by a senior radiologist who had 12 years of experience. Therefore, the final
segmentations were revised and verified by two experienced radiologists. However, the
concordance between the two observers was not measured. In the future, we will perform
the analysis of concordance to provide more precise data. Automatic tumor segmentation
and extraction with machine learning could be further explored [32].

5. Conclusions

This study provides an effective and noninvasive tool for the individualized preopera-
tive prediction of PLNM status. This radiomics-based nomogram would aid the selection
of the optimal therapeutic strategy and clinical decision-making for individuals. The study
may provide valuable guidance for clinical physicians regarding treatment strategies for
early-stage cervical cancer patients.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/diagnostics12102446/s1, Supplementary S1: The formula of the
radiomics signature.
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