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Abstract
Trigeminal neuropathic pain has been modeled in rodents through the constriction of the infraorbital nerve (CCI-ION). Sensory
alterations, including spontaneous pain, and thermal and mechanical hyperalgesia are well characterized, but there is a notable
lack of evidence about the affective pain component in this model. Evaluation of the emotional component of pain in rats has
been proposed as a way to optimize potential translational value of non-clinical studies. In rats, 22 and 50 kHz ultrasonic
vocalizations (USVs) are considered well-established measures of negative and positive emotional states, respectively. Thus, this
study tested the hypothesis that trigeminal neuropathic pain would result, in addition to the sensory alterations, in a decrease of
50 kHz USV, which may be related to altered function of brain areas involved in emotional pain processing. CCI-ION surgery
was performed on 60-day-old male Wistar rats. 15 days after surgery, von Frey filaments were applied to detect mechanical
hyperalgesia, and USV was recorded. At the same timepoint, systemic treatment with d,l-amphetamine (1 mg/kg) allowed
investigation of the involvement of the dopaminergic system in USV emission. Finally, brain tissue was collected to assess the
change in tyrosine hydroxylase (TH) expression in the nucleus accumbens (NAc) and c-Fos expression in brain areas involved in
emotional pain processing, including the prefrontal cortex (PFC), amygdala, and NAc. The results showed that CCI-ION rats
presented mechanical hyperalgesia and a significant reduction of environmental-induced 50 kHz USV. Amphetamine caused a
marked increase in 50 kHz USV emission in CCI-ION rats. In addition, TH expression was lower in constricted animals and c-
Fos analysis revealed an increase in neuronal activation. Taken together, these data indicate that CCI-ION causes a reduction in
the emission of environmental-induced appetitive calls concomitantly with facial mechanical hyperalgesia and that both changes
may be related to a reduction in the mesolimbic dopaminergic activity.

Keywords
Orofacial pain, ultrasonic vocalization, mechanical hyperalgesia, amphetamine, dopamine, nucleus accumbens

Date Received: 21 September 2021; accepted: 18 October 2021

Introduction

Trigeminal neuropathic pain is a consequence of a lesion or
disease of the trigeminal nerve and may have multiple un-
derlying causes and clinical presentations. Trigeminal neu-
ralgia (TN) is the best-known form of trigeminal neuropathic
pain, which is characterized by recurrent unilateral brief
electric shock–like pain attacks, limited to the distribution of
one or more divisions of the trigeminal nerve and triggered by
innocuous stimuli.1–3 The trigeminal nerve consists of three
main branches: ophthalmic (V1), maxillary (V2), and man-
dibular (V3), being the last two mainly affected in TN.2,3

Constriction of the infraorbital nerve (CCI-ION), the main

branch of V2, is a widely used model to study TN patho-
physiological mechanisms, consequences, and treatment
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effects in rodents.4–9 Previous studies of our group using this
model have shown that rats subjected to CCI-ION developed
late (i.e., after 10 days of surgery) but long-lasting facial
mechanical hyperalgesia (i.e., more than 3 months), which is
associated with the development of anxiety-like behavior.4,10

This finding is in agreement with clinical reports that show
the impact of TN on emotional functioning of patients, an
aspect that has gained attention but is still overlooked.11–13

Evaluation of the emotional component of pain in rats has
been proposed as a way to optimize the potential translational
value of pre-clinical studies.14 In this regard, the analysis of
ultrasonic vocalization (USV) is considered a well-
established measure of positive and negative emotional
states in rodents.15,16 It is well established that 22 kHz calls
are emitted by rats in stressful and/or painful situations to
express a negative state and/or to alert conspecifics of a
potential danger.17 In this regard, it has been shown that
formalin injection into the hind paw or into the upper lip
causes a significant increase in 22 kHz call emissions briefly
after the injection.18–20 On the other hand, 50 kHz call
emissions by rats are related to appetitive stimuli and social
interaction. At least two main categories of appetitive calls
have been described: (1) flat, which have a social-
coordinating function and (2) frequency modulated (FM),
which include step, mixed, and trill calls, that are mainly
related to rewarding and hedonic situations.15,17 In fact, drugs
with euphorigenic properties, such as amphetamine, are
potent elicitors of 50 kHz USV, possibly by causing an in-
crease in dopamine in the nucleus accumbens (NAc).21

A previous study from our group reported that persistent
inflammatory pain in the orofacial region is associated with
significantly reduced 50 kHz call emissions from rats. Ad-
ditionally, it was shown that this effect was accompanied by
reduction of dopaminergic activity in the NAc.19 These
findings suggest that persistent orofacial pain may lead to a
decrease in mesolimbic dopamine, which may be related to
the reduction in the emission of 50 kHz calls. In the light of
these considerations, the present study tested the hypothesis
that trigeminal neuropathy would result in both sensory al-
terations and a decrease of 50 kHz USV, the latter of which
may be related to altered function of brain areas involved in
emotional pain processing.

Material and methods

Animals

A total of 82 male 60-days oldWistar rats weighing 250–300 g
and provided by the Federal University of Parana colony were
kept in groups of three to four per cage (41 cm× 32 cm×
16.5 cm) in a climate-controlled room (22 ± 2°C) on a 12-h
light/dark cycle with chow andwater ad libitum. Fresh sawdust
was provided every other day for bedding. Experimental
procedures were performed during the light cycle, between 7
a.m. and 7 p.m., respecting at least 48 h for the acclimatization

of the animals to the environment, in accordance with the
ARRIVE guidelines, the guidelines from the International
Association for the Study of Pain, the Federal University of
Parana and Brazilian regulations, and the Canadian guidelines
of the University of Calgary on animal welfare. The protocols
were approved by both Universities’ Ethics Committees
(CEUA/BIO-UFPR #1057 and AC18-0003). All efforts were
made to optimize the number of animals used and to reduce
their stress and suffering, respecting the 3R’s statement.

Drugs and reagents

Rats were anesthetized with an intraperitoneal injection of a
solution of ketamine (90 mg/kg; Vetica Laboratories of
Veterinary Products, São Paulo, Brazil) and xylazine (10 mg/
kg; Rhobifarma Ind. Farmacêutica, São Paulo, Brazil), or via
inhalation with 5% isoflurane (Abbott laboratories, USA).
D,l-amphetamine sulfate (1 mg/kg; sc; Sigma-Aldrich, St
Louis, Missouri, USA) was diluted in sterile saline. To
quantify the expression of c-Fos and TH by immunohisto-
chemistry (IHC), primary monoclonal antibodies rabbit
anti-Fos (Abcam, AB190289) and mouse anti-TH (Sigma-
Aldrich, T1299) antibodies were used. The secondary anti-
bodies were goat anti-mouse Alexa Fluor 488 and Alexa
Fluor 546 (Invitrogen, Thermo Fisher Scientific, CA, A21206
and A11030). For quantification of TH expression by western
blot, mouse anti-TH primary monoclonal antibodies (Sigma-
Aldrich, St Louis, MO, T1299) and secondary antibodies
(mouse anti-IgG HRP conjugate; Jackson) were used. The
loading control used was α-tubulin (Abcam, Cambridge, MA,
1: 5000). The doses of drugs and antibodies dilution were
based on previous studies.5,22–25

Constriction of the infraorbital nerve

Induction of trigeminal neuropathic pain was performed
through a constriction of the infraorbital nerve (CCI-ION)
according to the method initially proposed by VOS et al.26 and
later modified by Chichorro et al.5 First, animals were anes-
thetized with intraperitoneal ketamine and xylazine hydro-
chloride followed by local trichotomy and face asepsis with
iodinated alcohol. After establishment of anesthesia, an inci-
sion was made in the skin below the right eye, approximately
3 mm posterior to the insertion of the vibrissae. The levator
labii superiorismuscle and the superficial layer of the anterior
masseter muscle were retracted so that the rostral portion of the
infraorbital nerve was exposed close to the infraorbital fissure.
The infraorbital nerve was dissected from adjacent tissues, and
then two loose ties were placed, approximately 2 mm apart,
with 4.0 silk thread around the nerve bundle. The suture was
made with the same type of needled thread used to make the
ligatures. Sham animals underwent the same surgical proce-
dure; however, the nervous bundle was not subjected to
constriction. At the end of surgery, the animals were monitored
in a warm room until complete recovery from anesthesia.
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Assessment of facial mechanical hyperalgesia

Animals were individually habituated in acrylic observation
boxes for 2 h (from 8 to 10 a.m.) prior to the beginning of the
experiment. The start time of the experiments was defined
based on previous studies, in which an improved behavioral
response was observed. Von Frey filaments (Semmes–
Weinstein monofilaments, Stoelting, USA, 0.04; 0.07; 0.16;
0.4; 1.0; 2.0; 4.0, and 8.0 g) were progressively applied in the
vibrissa pad skin on the right side of the face, ipsilateral to the
surgery. An experimenter blind to the animal’s condition
applied each filament three consecutive times, with an in-
terval of approximately 3 s between each application. The
response threshold to mechanical stimulation corresponded to
the filament that twice evoked rapid head withdrawal be-
haviors or attack/escape reactions.4 Only rats that did not
present nociceptive behavior in the pre-selection stage with
the application of all filaments were included in the exper-
iments, so that the mechanical threshold baseline was equal to
or greater than 8.0 g.

Analysis of ultrasonic vocalizations

Ultrasonic vocalization (USV) analysis was performed as
described by Araya et al.19 The experiment was carried out in
an acoustic room with lighting at 40 lux. Each animal was
placed individually in an acrylic box (30 cm3) with fresh
bedding, an environment that was found to increase the 50 kHz
USV emission.27 An ultrasonic microphone (CM16 Avisoft
Bioacoustics, Berlin, Germany), sensitive to frequencies be-
tween 15–180 kHz, was placed at a distance of 45 cm from the
floor of the movement box allowing the capture of the USV.
The Avisoft Recorder software (version 2.95; Avisoft Bio-
acoustics) allowed the recording and subsequent analysis of the
spectrogram (Avisoft SAS Lab Pro version 4.34 Avisoft
Bioacoustics), with a frequency of 488 kHz and 0.512 ms
resolution, of the USV emissions by the animals. The call-to-
call separation was defined by an inter-call interval of at least
190–320 ms, which is the inhalation time between two vocal
calls. The duration of the USV recording test was 10 min, and
the quantification analysis was performed manually by an
experimenter blind to the animal’s condition and/or treatment,
according to the frequency and shape of each USV.18,28 The
22 kHz USVs are calls in the frequency range 18–32 kHz,
emitted in bouts or individually;29 however, these emissions
were not detected in our analysis. Moreover, all emissions
above 33 kHz were considered as 50 kHz USV, and their
classification into subtypes was based on their spectrographic
shapes being termed: flat, when the peak frequency changes
within a single call were equal to or less than 5 kHz; step, when
amain flat call also had another short flat element shifted 5 kHz
higher in frequency; trill, a single call element with peak
frequency changes in opposite directions separated by at least
5 kHz forming a “zig-zag”; and mixed, which were calls that
did not fit into other categories.28–30

Western blots

Rats were sacrificed by decapitation under deep anesthesia
with inhalation of isoflurane on day 15 after CCI-ION or
sham surgery. Brains were excised on dry ice and stored at
�80°C according to a previous study.24 The nucleus ac-
cumbens (NAc) was dissected bilaterally with a standard
puncture biopsy (tissue extension of 0.15 cm in diameter).
Tissue samples containing the NAc were lysed in modified
radioimmunoprecipitation assay (RIPA) buffer: 50 mM Tris,
100 mM NaCl, 0.2% Triton X-100 (vol/vol), 0.2% NP-40
(vol/vol), and 10 mM diethylenediaminetetraacetic acid
(EDTA) plus a protease inhibitor cocktail (Thermo Scien-
tific�A32965) at pH 7.5. Lysates were prepared by shaking
the samples for 30 min at 4°C and by centrifugation at
13,000 rpm for 20 min also at 4°C. Supernatants were
transferred to new tubes, and protein quantification followed
the Bradford method (Bio-Rad, Hercules, CA). Then the
samples (60 mg) were boiled in Laemmli sample buffer for
10 min and separated in 10% SDS-polyacrylamide gel
electrophoresis and transferred to a 0.45 mm polyvinylidene
difluoride membrane (Merck-Millipore, Darmstadt, Ger-
many). To prevent non-specific binding, membrane blocking
was performed with 0.1% tris-tween 20 buffered saline
(TBST, pH 7.6) containing 5% skim milk for 30 min. After
washing 4 times for 10 min with 10 mL of TBST, the
membranes were incubated with a mouse anti-tyrosine hy-
droxylase (TH) monoclonal antibody (Sigma-Aldrich, St
Louis, MO, T1299) at a 1:2500 dilution overnight at 4°C.
Horseradish peroxidase (HRP-Horseradish peroxidase)–
conjugated secondary antibody anti-mouse IgG (Jackson
ImmunoResearch, West Grove, PA) was diluted in 5% skim
milk in TBST solution (1:5000) and incubated for 1 h under
agitation. The loading control used was α-tubulin (Abcam,
Cambridge, MA, 1: 5000). Western blot images were
recorded with an LI-COR scanner (98–14,229, Biosciences,
Canada), and the densitometry analysis was performed using
the ImageJ software (National Institutes of Health).

Immunohistochemistry

Rats underwent transcardiac perfusion with 4% parafor-
maldehyde under deep anesthesia with inhalation of iso-
flurane on day 15 after CCI-ION or sham. Brains were
submerged in 4% paraformaldehyde overnight and then
transferred to 30% sucrose solution for 3 days. Subsequently,
a tissue block was made with Tissue-Tek on dry ice and stored
at�80°C. 30 mmNAc slices were obtained with cryostat cut,
then washed three times with phosphate-buffered saline
followed by blocking for 2 h with a solution containing 0.5%
bovine serum albumin, 10% bovine serum normal goat, and
0.3% Triton X-100 in phosphate-buffered saline. Sections
were then incubated with anti-TH or anti-c-Fos primary
antibody overnight at 4°C and washed three times (same
solution as above) before incubation with secondary antibody
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for 2 h at room temperature. After washing three times in
phosphate-buffered saline, the sections were mounted on
slides. All images were captured digitally with an 8-bit
camera, thus giving color level (intensity) values from 0 to
255. Immunostaining was visualized using a 40 × 0.4 nu-
merical aperture objective lens on a Zeiss LSM510META
confocal system, run speed 6. ImageJ (National Institutes of
Health) was used to quantify fluorescence intensity. This
protocol was adapted from Huang et al.23

Experimental procedures

Facial mechanical threshold (baseline) was assessed ran-
domly in all animals at 10 a.m. after 2 h of individual ac-
climatization in an acrylic box (according to protocol 2.4)
prior to surgery (according to protocol 2.3). Likewise, on day
15 after CCI-ION or sham surgery, the development of
mechanical hyperalgesia was confirmed in constricted (n = 8)
compared to sham animals (n = 7). At the same time point,
after a 4-h interval, the same animals were exposed to a USV
test (according to protocol 2.5) to detect CCI-ION–induced
changes related to hyperalgesia (Figure 1A). The evaluation
was performed randomly by an experienced experimenter
blind to the condition of the animals.

Similarly, to identify the involvement of the motivational
system, the effect of amphetamine on USV emission was
investigated once nociception was established, on day 15 after
CCI-ION. Independent groups of animals were treated sub-
cutaneously with saline or d,l-amphetamine (sham-SAL n = 6,
CCI-ION-SAL n = 7, sham-AMPH n = 6, CCI-ION-AMPH n
= 8) 15 min before the USV recording test with a duration of
10 min (Figure 2A). First, saline-treated animals were exposed
to the USV test, followed by amphetamine-treated animals to
reduce experimental bias in control animals. In addition, the
animals that underwent the test were kept in a separate ex-
perimental room from the animals that had not undergone USV
recording to avoid communication between them. Quantifi-
cation was performed manually in a condition- and treatment-
blind manner (according to protocol 2.5).

At the same time point, on day 15 after surgery, brains of the
CCI-ION and sham rats were collected to quantify the ex-
pression of TH in the NAc, and thus identify possible changes
in the mesolimbic dopaminergic function in animals with
trigeminal neuropathic pain (Figure 3A). Independent groups
of animals were used for western blots (sham n = 8, CCI-ION n
= 8) and immunohistochemistry assays for TH immuno-
staining (sham n = 8, CCI-ION n = 8) in the NAc. In addition,
quantification of c-Fos expression by immunohistochemistry
(sham n = 4, CCI-ION n = 4) was performed in several central
areas implicated in pain processing including the NAc, medial
prefrontal cortex (mPFC), central amygdala (CeA), and ba-
solateral amygdala (BLA). It is important to emphasize that all
animals were mechanically stimulated in the vibrissa pad skin
between 1 and 2 h before euthanasia for harvest tissue (ac-
cording to the protocol 2.7).

Statistical analysis

Two-way analysis of variance (ANOVA)with repeatedmeasures
followed by Bonferroni post-hoc test was used to analyze the
time course of mechanical hyperalgesia, according to condition
(i.e., sham/CCI-ION) and time as independent factors. Two-way
ANOVA followed by Bonferroni post-hoc test was performed to
analyze the USV emission after d,l-amphetamine treatment.
Analyzes of western blot and immunofluorescence intensity
were performed using the unpaired two-tailed Student’s t-test.
Sample size was determined based on the GPower 3.1 soft-
ware31 defining a large standardized effect size of F = 0.5; power
of 0.8; and α = 0.05, and estimated six to eight rats per group in
the different experimental designs. For c-Fos detection, the
sample size was based on previous studies32,33 to recruit the
smallest number of rats. All data were expressed as mean ±
SEM, and the results were considered statistically significant if p
< 0.05. GraphPad Prism version 6 for Windows was used for
statistical analysis of data (GraphPad Software, San Diego, CA).

Results

Changes in the facial mechanical threshold and
ultrasonic vocalization emission after constriction of
the infraorbital nerve

Baseline (BL) threshold to mechanical stimuli was similar in
all selected rats (22/32) before surgery. It is important to
mention that the surgery did not affect the weight of the ani-
mals, their coat, or the brightness of their eyes, showing signs of
well-being. On day 15 after surgery, 8/15 CCI-ION rats de-
velopedmechanical hyperalgesia (time factor F (1,13)=111.8, p
< 0.01; condition factor F (1,13)=111.8, p < 0.01; and inter-
action factor F (1,13)=111.8, p < 0.01; Figure 1B). Moreover,
hyperalgesic rats subjected to nerve constriction showed a
significant reduction in the total number of 50 kHz call
emissions (condition factor F (1,65)=15.41, p < 0.01; treatment
factor F (4,65)=9.020, p < 0.01; and interaction factor F (4,65) =
4.232; p < 0.01; Figure 1C). More specifically, the reduction
was detected in the flat calls subtype (p < 0.01; Figure 1C).
Figure 1D illustrates the total number of calls in each group and
the percentage of each subtype within the group. Despite the
marked reduction in call emissions by CCI-ION rats, the
percentage of 50 kHz subtypes did show statistical differences
between groups (p > 0.1; Figure 1D). Non-hyperalgesic CCI-
ION rats were excluded from the experiment.

Influence of amphetamine in ultrasonic vocalization
emission by rats subjected to constriction of the
infraorbital nerve

Sham animals (12/12) and CCI-ION rats (15/15) were ran-
domly treated with amphetamine or vehicle on day 15 after
surgery. D,l-amphetamine (1 mg/kg; sc; AMPH) administered
on sham rats did not change the emission of flat calls (p > 0.1;
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Figure 2B) or the total number of 50 kHz USVemissions (p >
0.1; Figure 2B) compared to sham rats treated with vehicle
(saline, 1 mL/kg; sc). CCI-ION promoted a considerable re-
duction in the total number of 50 kHz USVs and specifically in
the flat subtype (condition factor F (1,55)=43.05; p < 0.01;
treatment factor F (4,55)=14.92; p < 0.01; and interaction factor
F (4,55)=12.66; p < 0.01; Figure 2B) compared to sham rats
treated with vehicle. On the other hand, d,l-amphetamine
treatment in CCI-ION rats resulted in a significant increase in
both the total number of USV emissions (condition factor F
(4,115)=8.629; p < 0.01; treatment factor F (3,115)=6.674;
p < 0.01; and interaction factor F (12,115)=1.941; p < 0.05

Figure 2B) and flat calls (p < 0.01; Figure 2B) when compared to
CCI-ION group treated with vehicle. Figure 2B illustrates the
total number and percentage of 50 kHz subtypes within each
group. There was no difference in the number or subtype of
emissions between sham groups (p > 0.1; Figure 2C). However,
in CCI-ION rats, d,l-amphetamine caused a marked increase in
the number of 50 kHz call emissions (p < 0.01 compared to
sham-SAL and p<0.05 compared to CCI-ION-SAL; Figure 2C),
but without changing the percentage of each emission subtype (p
> 0.1, flat; p > 0.1, step; p > 0.1, mixed; and p > 0.1, trill;
compared to CCI-ION-SAL; Figure 2C).

Figure 2. Influence of amphetamine in USV emission after CCI-
ION. (A) Timeline of the experimental procedures. Constriction
of the infraorbital nerve (CCI-ION) or sham surgery was
performed on day zero (DO). On day 15 after (D15) CCI-ION, rats
were treated with d,l-amphetamine (1 mg/kg; sc; AMPH) or saline
(1 mL/Kg; sc.; SAL) 15 min before USV recording during 10 min. (B)
Shows the number of call emissions and (C) Illustrates the total
number of 50 kHz calls of each group and the percentage of each
call subtype within the group (sham+SAL n = 6; CION+SAL n = 7;
sham+AMPH n = 6; CION+AMPH n = 8). Data are expressed as
mean ± SEM *p < 0.05 when compared with sham+SAL and #p <
0.05 when compared with CION+SAL. Two-way ANOVA
followed by Bonferroni post-hoc test.

Figure 1. Pain-related responses induced by CCI-ION in rats. (A)
Timeline of the experimental procedures. Constriction of the
infraorbital nerve (CCI-ION) or sham surgery was performed on
day zero (DO) after evaluation of the baseline mechanical threshold
(BL). (B) On day 15 (D15) after CCI-ION, constricted rats (n = 8)
developed mechanical hyperalgesia compared to sham (n = 7). (C)
At the same time point, CCI-ION rats showed a reduction in the
emission of flat calls and in the total number of 50 kHz USV
compared to sham. (D) Illustrates the reduction in the total number
of 50 kHz calls, but with no change in the percentage of subtypes
emission between groups. Data are expressed as mean ± SEM *p
< 0.05 when compared with sham. Two-way ANOVA (C andD)
with repeated measures (B) followed by Bonferroni post-hoc test.
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Analysis of tyrosine hydroxylase expression in the
nucleus accumbens after constriction of the
infraorbital nerve

TH expression was determined on day 15 after surgery by
western blot and immunohistochemistry. It first revealed a re-
duction in TH protein expression in the NAc of constricted
compared to sham rats (t (14)=3.487; p < 0.01; Figure 3B).
Figure 3C provides a representative image for western blot of
TH. Moreover, the immunohistochemistry technique demon-
strated a reduction in the TH-positivefibers expressed in theNAc
shell of the CCI-ION compared to the sham group (t (14)=5.437;
p < 0.01; Figure 3D). Figure 3E provides a representative image
of TH-positive fibers expression in sham and CCI-ION rats.

Activation of pain-processing brain areas after
constriction of the infraorbital nerve

The expression of c-Fos by immunohistochemistry allowed
us to identify changes in neuronal activation in brain areas

associated with pain processing. CCI-ION rats presented an
increase in c-Fos expression in the ipsi- and contralateral
sides in the nucleus accumbens shell compared to the sham
group (Condition factor F (3,12)=7.498, p < 0.01; NAc;
Figure 4A), in the medial prefrontal cortex (Condition factor
F (3,12)=8.259, p < 0.01; mPFC; Figure 4C), in the central
amygdala (Condition factor F (3,12)=22.47, p < 0.01; CeA;
Figure 4E), and in the basolateral amygdala (Condition factor
F (3,12)=11.73, p < 0.01; BLA; Figure 4G) of CCI-ION
compared to sham rats. Figures 4B,D,F,H show representa-
tive images of c-Fos immunofluorescence in the NAc, mPFC,
CeA, and BLA, respectively, of sham and CCI-ION rats.

Discussion

The main finding of the present study is that trigeminal
neuropathic pain causes a reduction in the emission of ap-
petitive calls, concomitantly to facial mechanical hyper-
algesia, which may be related to a reduction in the
mesolimbic dopaminergic activity. These data corroborate

Figure 3. Quantitative analysis of tyrosine hydroxylase in the nucleus accumbens after CCI-ION. (A) Timeline of the experimental
procedures. Constriction of the infraorbital nerve (CCI-ION) or sham surgery was performed on day zero (DO). Samples of the nucleus
accumbens (NAc) were extracted from sham and CCI-ION rats on day 15 (D15) after surgery for quantification of tyrosine hydroxylase
(TH). (A) Representative image for western blot of TH; (B) Protein expression levels of TH by western blot (sham n = 8, CION n = 8; (C)
Immunofluorescence for quantification of tyrosine hydroxylase (TH) expression observed in the dopaminergic fibers reaching the nucleus
accumbens shell (NAc) by fluorescence microscopy (sham n = 8; CCI-ION n = 8). (D) Representative images of ipsilateral NAc shell
expressing TH-positive fibers from sham and CCI-ION rats. Data are expressed as mean ± SEM *p < 0.05 when compared with sham.
Unpaired two-tailed t-test.
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our previous observations19 and reinforce the idea that
analysis of USV can contribute to a better understanding of
pain-related phenotypes associated with different rat models.

Sensory alterations after CCI-ION arewell characterized in the
literature. Long-lasting facialmechanical hyperalgesia4–6,8,26,34 has
been associated with the development of anxiety-like behavior in
this model, possibly due to persistence of hypersensitivity.10,35 It
has been proposed that analysis of USVmay be useful in the study
of the affective component of pain.18,20 Previous studies of our
group showed that inflammatory orofacial pain that lasts for a few

days causes a decrease in the emission of 50 kHz USVemission,
which is accompanied by the development of anxiety-like be-
havior, suggesting that persistence of pain can induce mood
changes and affect social interaction.19 Accordingly, the current
study shows that animals subjected to CCI-ION present a sig-
nificant reduction in environmental-induced emission of 50 kHz
USV compared to sham,more specifically in theflat calls subtype.
The full implication of this finding remains to be elucidated, but it
is possible to speculate that the chronic pain states cause im-
pairment in social interaction, an idea that is corroborated by

Figure 4. Quantification of c-Fos expression levels in pain-processing brain areas after CCI-ION. Euthanasia for tissue harvesting was
performed on day 15 after infraorbital nerve constriction (CCI-ION) or sham surgery. (A) Quantification of c-Fos (sham n = 4; CCI-ION n
= 4) expression in neuronal nuclei in the nucleus accumbens shell (NAc); (C) in the medial prefrontal cortex (mPFC); (E) central amygdala
(CeA); and (G) basolateral amygdala (BLA) by intensity of fluorescence. (B, D, F, and H) Representative images for c-Fos immunofluorescence
from sham and CCI-ION rats. Data are expressed as mean ± SEM *p < 0.05 when compared with sham. One-way ANOVA followed by
Bonferroni post-hoc test.
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previous clinical and non-clinical observations.18,36–38 It is note-
worthy that we failed to detect the emission of aversive (i.e.,
22 kHz) USV in the protocol used herein. Previous studies that
aimed to analyze 22 kHz USV emission in chronic pain models
have similarly failed to see such emissions, suggesting that this call
subtype may serve to signal danger, potential danger, or an
aversive situation.39,40 In this regard, it has been extensively shown
that acute pain in rats is associated with increased emission of
22 kHz USV.18–20,41–44 On the other hand, it was recently
demonstrated in a different rat model of neuropathic pain that
when USV was recorded in a 24 h-period (in 15 min bins), rats
showed both a decrease in the emission of 50 kHzUSV, as well as
an increase in the emission of 22 kHz USV.45 However, other
studies have observed mixed results.46 As observed in the present
study, when the rat was monitored alone in a test arena (or in the
cage), 22 kHz USV was not detected or detected at a very low
rate.46,47 Thus, it is possible that some methodologies (e.g., USV
recording for longer periods or at different time points, during
social interaction or group cage maintenance, different chronic
pain model, etc.) could influence changes in 22 kHz calls in
chronic pain states 39,45,48,46

After CCI of the sciatic nerve, rats also showed reduced
rates of 50 kHz USV during the tickling test, which is a
hedonic stimulus.45 Here, we also used a hedonic stimulus to
try to revert the influence of CCI-ION on the emission of
appetitive calls. Dopaminergic psychostimulants, including
amphetamine, are considered the most potent non-social
elicitors of 50 kHz USV.21 According to our data, sys-
temic administration of amphetamine caused a marked in-
crease in the emission of 50 kHz USV in CCI-ION rats,
without affecting the emission of USV by sham rats. This
finding contrasts with previous observations that acute ad-
ministration of amphetamine in rats stimulates the emission
of total 50 kHz USV in naı̈ve rats.21,28,49–51 Interestingly, we
did not observe an increase in the emission of FM calls, which
are mainly related to hedonic situations, but we observed a
drastic enhancement (well above sham levels) in the emission
of flat calls by amphetamine treatment. Althoughmost studies
have shown that amphetamine influences mainly trill-type
USVs, there are reports of increase in flat calls after its acute
administration.49,51 The reason for this discrepancy requires
further investigation, but some factors had already been
shown to influence the effect of amphetamine on USV, such
as dose, site of injection, the cathecolaminergic effect of
amphetamine, and the dopamine content in the present
condition.21,52 For instance, administration of propranolol in
rats previously challenged with amphetamine caused a
change in the call profile, resulting in suppression of trill calls
and significant enhancement of flat calls.22 Altogether, these
findings suggest that the chronic pain states may be associated
with the reduction of both hedonic and non-hedonic 50 kHz
USV and reinforce the idea that USV analysis can be used to
capture pain-induced changes in the positive emotional
arousal expressed by 50 kHz USV emission.

There is accumulating evidence for a role of the meso-
limbic dopaminergic system in the affective pain component,
and particularly the NAc has been implicated, since it is
considered a master regulator of motivational drive and has
several connections to other pain modulating brain areas.
Ongoing pain produces decreases in dopaminergic tone in the
NAc, while pain relief is associated with increase in dopa-
mine release in NAc shell (for review see 14,53). Moreover, in
TN patients, a decrease in NAc gray matter volume has been
reported, but also that there is an increase in the neuronal
activity in this structure.54,55 In line with these observations,
results of the current study demonstrated significant neuronal
activation of NAc neurons after CCI-ION, which was ac-
companied by a reduction in the expression of TH. Protein
levels of TH were shown to be diminished in CCI-ION rats
compared to sham, indicating reduced content levels of
dopamine in NAc. A lower dopaminergic activity in the
mesolimbic system can contribute to the maintenance of the
chronic pain state. Also, it may account for the reduction in
the emission of flat calls observed in CCI-ION rats, since
50 kHz calls, to both social and non-social contexts, are
associated with an augmentation in dopaminergic activity in
the NAc.17,52 Thus, the present data corroborate previous
observations that pain states cause a significant reduction in
the emission of 50 kHz calls, which may be related to de-
creased dopaminergic activity in the mesolimbic
system.19,56–58

Human imaging studies have helped the identification of
changes in brain circuits associated with chronic pain. There
are several reports of alterations of structural and functional
connections in TN patients.12,55,59–61 Relevant to the current
study, we noted the clinical observation that TN patients
presented reduced gray matter volumes in the bilateral
amygdala, but increased functional circuits between the
amygdala and the mPFC, compared with healthy control
subjects. Interestingly, this circuit was associated with
emotional state ratings.12 Also, it has been shown that in-
creased functional connectivity of the NAc with the PFC
predicts pain persistence, suggesting that this circuit con-
tributes to the transition to chronic pain (for review see53).
Here, we showed increased neuronal activation in the NAc,
amygdala, and the mPFC in CCI-ION rats compared to sham
animals. Although these findings are preliminary, they are in
agreement with several clinical observations that, although a
decrease in the gray matter volume of these structures may
occur in chronic pain states, the neuronal activity in these
areas collectively increases.53–55,62 Taken together, these
findings indicate that CCI-ION alters the function of the
mesolimbic system, which includes a reduction in the do-
paminergic activity in the NAc. These changes may have a
role in the maintenance of the chronic pain state and affect its
emotional perception. Considering that dysfunctions of this
system can contribute to chronic pain comorbidities, a better
comprehension of its functioning in chronic pain states may
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also provide new insights on pain-related disorders, such as
depression or drug addiction.
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