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V(D)J recombination is an essential mechanism of the adaptive immune system, producing
a diverse set of antigen receptors in developing lymphocytes via regulated double strand
DNA break and subsequent repair. DNA cleavage is initiated by the recombinase complex,
consisting of lymphocyte specific proteins RAG1 and RAG2, while the repair phase is
completed by classical non-homologous end joining (NHEJ). Many of the individual steps
of this process have been well described and new research has increased the scale to
understand the mechanisms of initiation and intermediate stages of the pathway. In this
review we discuss 1) the regulatory functions of RAGs, 2) recruitment of RAGs to the site of
recombination and formation of a paired complex, 3) the transition from a post-cleavage
complex containing RAGs and cleaved DNA ends to the NHEJ repair phase, and 4) the
potential redundant roles of certain factors in repairing the break. Regulatory (non-core)
domains of RAGs are not necessary for catalytic activity, but likely influence recruitment
and stabilization through interaction with modified histones and conformational changes.
To form long range paired complexes, recent studies have found evidence in support of
large scale chromosomal contraction through various factors to utilize diverse gene
segments. Following the paired cleavage event, four broken DNA ends must now
make a regulated transition to the repair phase, which can be controlled by dynamic
conformational changes and post-translational modification of the factors involved.
Additionally, we examine the overlapping roles of certain NHEJ factors which allows for
prevention of genomic instability due to incomplete repair in the absence of one, but are
lethal in combined knockouts. To conclude, we focus on the importance of understanding
the detail of these processes in regards to off-target recombination or deficiency-mediated
clinical manifestations.
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INTRODUCTION

An essential trait of an effective adaptive immune response is the generation of a diverse set of
antigen receptors. Developing lymphocytes undergo a process of regulated DNA cleavage and
subsequent repair, termed V(D)J recombination, to progress from progenitor cells to immature B or
T cells. In this review, we focus on the mechanism as it occurs in B cells, however, many aspects can
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be applied to T cells. Genes for the production of heavy and light
chains of antigen receptors, termed variable (V), diversity (D),
and joining (J), are clustered on chromosome 14 and 2/22,
respectively, and require rearrangement to produce a large
repertoire of functional surface receptors (Little et al., 2015;
Delves and Roitt, 2000). Mechanistically, V(D)J
recombination occurs in three distinct phases: recognition
of recombination sites, induction of two double-strand
breaks, and repair of the broken DNA by ligating the
strands in a recombined configuration (Figure 1). In order
to avoid off-target effects, the V(D)J recombination process is
tightly regulated on a broad level by cell lineage,
developmental stage, and cell cycle (Lin and Desiderio,
1994; Zhang et al., 2011; Little et al., 2015). Importantly,
defects in V(D)J recombination can result in aberrant DNA
joining events or loss of function, which in turn can lead to
immunodeficiency and tumorigenesis, as we will describe in
this review (Villa and Notarangelo, 2019).

Central to V(D)J recombination are two lymphocyte specific
proteins: recombination activating genes (RAG) 1 and 2 (Teng
and Schatz, 2015; Lescale and Deriano, 2017). These proteins
were found to act as a tetrameric complex to mediate the cleavage
phase at specific recombination signal sequences (RSSs) (Bailin
et al., 1999). A multitude of these RSSs flank the V(D)J regions on
the chromosome, allowing for a large variety of potential
rearrangements. Chromatin remodelers and histone modifications

guide the RAG proteins in their search for RSSs, as we will discuss
in this review. RAG1 contains the catalytic motif essential for
cleaving the DNA at the RSS, while RAG2 mediates and
enhances chromosomal binding (Lescale and Deriano, 2017).
Since the RAG proteins were first identified, evidence has
mounted that implicates them in more than just DNA
cleavage, with special roles for the complex in regulation and
the hand-off to the Non-Homologous End Joining (NHEJ)
repair pathway (Qui et al., 2001; Schultz et al., 2001; Lee
et al., 2004). As the name indicates, NHEJ does not rely on a
homologous template for repair: on the contrary, it aims to
directly ligate two DNA ends together with minimal processing
(Lieber, 2010; Wang et al., 2020; Zhao et al., 2020). NHEJ is the
preferred pathway for V(D)J recombination, since templated
Homologous Recombination would restore the original
sequence, while alternative end joining pathways are too
error-prone (Sallmyr and Tomkinson, 2018). Here, we will
describe how the cell ensures a proper transition from the
RAG-bound post-cleavage complex to the NHEJ repair
complex. We also highlight some of the mechanisms the cell
puts in place to make the repair phase more robust, thereby
avoiding genomic instability.

In this review we aim to identify lingering gaps in the
knowledge base and establish the need for continued research
in the field due to the clinical implications of recombination
dysfunction.

The Fundamentals of V(D)J Recombination
Effective Recombination Controls Differentiation
Each antigen receptor produced through recombination in
B cells will contain a heavy (IgH) and light [IgL, (Igκ or
Igλ)] chain consisting of VDJ segments for IgH and VJ
segments for IgL. These gene clusters extend over 3 Mb,
consisting of approximately 140 Vκ, 4 Jκ, 38 Vλ, and 5 Jλ
loci for use in the IgL and approximately 150 VH, 9 DH, and
4 JH loci for use in the IgH (Jung et al., 2006; Ji et al., 2010;
Collins and Watson, 2018).

Due to expression and degradation mechanisms of the RAG
proteins discussed below V(D)J recombination is restricted to
G0/G1 phase of the cell cycle. At this point the IgH locus can
undergo recombination, first between DH-JH segments before
VH-DJH joining. Successful rearrangement of the three
segments allows for production of a pre-B cell receptor
(pre-BCR) and further differentiation to the small pre-B
stage where IgL rearrangement can begin. Gene usage
during this recombination step is skewed toward Igκ
segments over Igλ (2:1 up to 95:5) (Woloschak and Krco,
1987; Lycke et al., 2015). Surface expression of the BCR in the
immature B cell activates a checkpoint to determine whether
the receptor is autoreactive or non-functional. If either
condition occurs, secondary recombination of the Igλ gene
segments is used to substitute light chains until the
autoreactivity is diminished. Molecular signatures of this
recombination event are the usage of more upstream V
regions and more downstream J regions (Villa and
Notarangelo, 2019). Following proper reactivity, the mature
B cell is released from the bone marrow.

FIGURE 1 | Classical mechanism of RAG initiated cleavage. Ig loci
segments are flanked by 12/23 RSS containing a heptamer and nonamer
sequence for RAG complex association. Synapsis of two RSS sites allows for
nicking, cleavage by transesterification, and hairpin formation to form the
post cleavage complex.
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RAG-Mediated DNA Cleavage
The heterotetrameric recombination complex that binds the
antigen receptor loci at RSSs is composed of two RAG1
subunits and two RAG2 subunits (Kim et al., 2015). Two
discrete RSSs, a heptamer and a nonamer, are required for
efficient binding and cleavage. Heptamer sequences follow the
pattern of CACAGTG, where only the first three nucleotides
are highly conserved and required for cleavage. The stronger
binding nonamer sequence, ACAAAAACC, contains several
conserved positions required for initial protein complex
interaction. RSSs are separated by a 12 or 23 base pair
spacer, which exhibits low conservation, but has the
potential to introduce a significant effect on recombination
efficiency (Hirokawa et al., 2020; Lee et al., 2003). Binding
must occur at a pair of RSSs following the 12/23 rule, forming
the paired complex (PC), which can be mediated by random
collision or locus contraction (see below) (Eastman et al.,
1996). Discussed later in the clinical manifestation section,
cryptic RSSs (cRSSs) are common throughout the genome and,
due to the sequence variation allowed by the RAG complex,
may induce off-target effects. For example, frequent RAG-
mediated DSBs in c-Myc rely only on the presence of the CAC
motif of an RSS heptamer (Hu et al., 2015). Upon binding to
DNA, the RAG complex induces a conformational change to
the 12- and 23-RSS sites to enable efficient cleavage by RAG1.
The recombination complex also utilizes high mobility group
box 1/2 (HMGB1/2) to promote DNA bending, enhancing
synapsis and cleavage. Once the PC is established, cleavage first
occurs on a single strand via a 5’ nick at the heptamer-coding
flank junction. This allows for a direct transesterification
reaction where the 3’ hydroxyl group attacks the phosphate
of the bottom strand. Two cleavage events in the PC generate
four broken DNA ends, where two are covalently sealed coding
ends (CEs) and two are blunt signal ends (SEs). This reaction
takes place without a required external energy source, as the
hairpin formation energy is derived from the DNA breakage.
The RAG-DNA complex does not form a covalent
intermediate making it distinct from other site-specific
recombinases and is more similar to bacterial transposases
and HIV integrase than its mammalian counterparts (Little
et al., 2015). The nicking reaction can occur within minutes
but the hairpinning may require hours potentially indicating
simultaneous nick locations within the locus (Yu et al., 2004).

Upon cleavage the RAG complex stays associated with the
broken ends forming a post-cleavage complex (PCC). This
structure permits CEs to dissociate first, under the correct
conditions to enter the NHEJ pathway. SEs are retained in the
complex until physical disassembly can occur due to RAG2
degradation, however, this process is only speculative (Mizuta
et al., 2002). Joined SEs ultimately create a non-replicative
episome which is routinely lost during cell division (Smith
et al., 2019). As discussed in the clinical manifestation section
regulation of this component is necessary as well, due to the
potential for translocation or other off-target effects if the
complex is retained.

Non-Homologous End Joining
NHEJ proceeds through a couple of seemingly simple steps. The
exposed DNA ends are first recognized by the Ku heterodimer, a
ring-shaped protein (Fell and Schild-Poulter, 2015). Together
with the DNA-dependent protein kinase catalytic subunit (DNA-
PKcs), Ku forms the DNA-PK holoenzyme (Yue et al., 2020). This
complex binds to the break site and acts as a scaffold for other
repair proteins. XRCC4 (together with its binding partner Ligase
IV) and XLF are recruited to the break site (Mcelhinny et al.,
2000) and aid the DNA ends in coming together, a transient
process called synapsis (Reid et al., 2015; Graham et al., 2017;
Zhao et al., 2019). Structural studies and super-resolution
microscopy have shown that XRCC4 and XLF can accomplish
this by forming filaments along the DNA, which helps bridge the
two ends (Hammel et al., 2010; Ropars et al., 2011; Mahaney et al.,
2013; Reid et al., 2015; Chen et al., 2021). Once the DNA ends are
aligned, Ligase IV seals the backbones to complete repair (Conlin
et al., 2017). Over the years, it has become clear that a host of
accessory factors are implicated in NHEJ, some of which are
functionally redundant.We will discuss the best studied accessory
factors and the implications of their functional redundancies later
in this review.

If NHEJ is unavailable, repair can proceed through Alternative
End Joining (alt-EJ). Alt-EJ is a less well-defined process that
involves a different set of proteins, most prominently DNA
Polymerase Theta (PolQ), that mediate microhomology-based
annealing of resected DNA ends (Sallmyr and Tomkinson, 2018).
Alt-EJ is exceptionally error-prone and usually only serves as a
backup pathway. It does not typically occur during V(D)J
recombination, since the hand-off of the break sites to the
NHEJ machinery is tightly arranged. Indeed, deficiency in core
NHEJ factors often leads to cell death (Wang et al., 2020). If
certain key proteins in the hand-off fail, however, alt-EJ may be
employed and lead to genome instability and disease.

With this three step process established there is still
information lacking on direct influences for the recruitment of
a RAG complex to RSS regions as well as subsequent pairing to
the partner RSS, regulation by non-catalytic regions of RAG
proteins, and certain redundant features of NHEJ factors during
the repair phase, each of which will be highlighted by the
following sections.

V(D)J Regulation by RAG Non-Core
Domains
RAG1 and RAG2 each contain various domains, where the smallest
catalytically functional unit is denoted as the core region (Figure 2).
These truncated constructs have been used in reconstituted
functional studies due to their ease of purification. Deletion of
the non-core regions allowed for recombination activity to occur,
but at the cost of increased off-target effects and decreased efficiency
and diversity (Talukder et al., 2004). Therefore, non-core regions are
required for regulatory roles such as RSS recognition, complex
stability, and handoff to repair factors. Earlier research using core
proteins only and extrachromosomal substrates may require
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additional follow up studies to confirm physiological functions (Gigi
et al., 2014).

RAG1 Non-Core Domain Function
RAG1 is a 1,040 aa protein consisting of a large N-terminal non-
core domain (aa 1–384), the core region (384–1,008), and a short
C-terminal non-core domain (1,008–1,040) (Schatz and
Swanson, 2011; Little et al., 2015; Lescale and Deriano, 2017;
Villa and Notarangelo, 2019). The functional core region contains
the essential sites for DNA/RSS binding, homo- and hetero-
dimerization and DNA cleavage (facilitated by D600, D708,
and E962). The nonamer binding domain (NBD) interacts
with the nonamer RSS, with the downstream dimerization and
DNA binding domain (DDBD) providing a site for RAG1 homo-
dimerization (Villa and Notarangelo, 2019). Regulation of
contact with the heptamer RSS, ssDNA, and RAG2 is
controlled by motifs within the central region. The C-terminal
core region contains nonspecific DNA binding activity to mediate
contact with the coding sequence flanking the RSS. A catalytic
triad within the central and C-terminal domains coordinates
metal ions (Mg2+) to activate water for ssDNA nicking activity. A
zinc binding domain (ZBD) also spanning the central and
C-terminal regions (722–965) is important for interaction
with RAG2.

In order to understand potential interaction partners of RAG1,
Brecht et al. examined association via a proximity-dependent
biotin identification screening (Brecht et al., 2020). Results here
indicated interaction with multiple nucleolar factors suggesting
localization to this region of the nucleus outside of G1 cell cycle
phase. By sequestering the protein to the nucleolus, off-target
recombination events were dampened and genome stability was
promoted. Upon induced recombination and G1 cell cycle arrest,

RAG1 was observed to be released from the nucleolar regions and
allowed to bind partner RAG2 and RSSs. Truncation of the full
length protein determined that two sequences within the
N-terminal non-core region were responsible for nucleolar
entry (residues 243–249) and export (1–215) (Brecht et al., 2020).

In addition to nucleolar localization, the N-terminal non-core
domains of RAG1 are responsible for regulation of cellular
protein levels, mediation of interaction with other factors, and
coordination of zinc ions, all of which act to enhance
recombination activity. The zinc dimerization domain in this
region (265–380) acts as a counterpart to the core ZBD, but here
facilitates homo-dimerization (Lescale and Deriano, 2017).
Overlapping with this domain is a RING motif, at residues
264–389, which has the capability to act as an E3 ubiquitin
ligase for both autoubiquitylation and modification of other
proteins (Grazini et al., 2010). RAG1 autoubiquitylation at
K233 has been shown to stimulate cleavage activity in a cell
free assay and exhibit post-transcriptional regulation in mice
studies (Singh and Gellert, 2015; Beilinson et al., 2021). Ubiquitin
modification of other proteins occurs at different stages of
recombination, such as polyubiquitylation of KPNA1 or the
monoubiquitylation of histones (discussed below). Sequestering
RAG1 after nuclear import may be achieved by KPNA1
interaction with the basic motif BIIa within residues 218–263,
only relieved by KPNA1 ubiquitylation for sub-nuclear
localization (Simkus et al., 2009). However, follow up reports
have discussed ubiquitylation activity mediated by additional
complexes rather than the isolated RING region (discussed
below) (Kassmeier et al., 2012). At the C-terminus of RAG1
the non-core region is only 32 residues, but inhibition of hairpin
formation is controlled by this motif (Grundy et al., 2010).
Interaction of the RAG complex with modified histones

FIGURE 2 | Domain organization of RAG1 and RAG2, with minimal core regions shaded darker. Subdomains/functional regions are noted below each region.
Residues involved in RAG1 catalytic activity and RAG2 degradation are highlighted. Abbreviations: ZDD, zinc dimerization domain; RING, really interesting new gene;
NBD, nonamer binding domain; DDBD, dimerization and DNA-binding domain; PHD, plant homeodomain.
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overcomes the inhibition possibly due to RAG2-mediated
conformation changes associated with RAG2 C-terminal regions.

RAG2 Non-Core Domain Function
RAG2 is a 527 aa protein consisting of a core domain (1–351) and
a C-terminal non-core domain (352–527). The core region is
comprised of six Kelch-like motifs which form a six bladed ß-
propeller responsible for efficient DNA cleavage (Schatz and
Swanson, 2011; Little et al., 2015; Lescale and Deriano, 2017;
Villa and Notarangelo, 2019). The second and sixth ß-strands are
responsible for making contact with RAG1 (Little et al., 2015;
Villa and Notarangelo, 2019). On its own RAG2 is monomeric,
forming a 2:2 heterotetramer with RAG1 to form the RAG
recombination complex (Bailin et al., 1999). As with RAG1,
the non-core domain is not required for recombination
activity, but regulates various parts of the recombination
mechanism.

The RAG2 C-terminal non-core region is composed of two
main components, an acidic hinge (351–408) and a plant
homeodomain (PHD, 414–487). Although many studies have
reported the RAG2 non-core region spans residues 387–527,
assays with further truncations of the RAG2 core region have
displayed efficient recombination with only residues 1–351
(Coussens et al., 2013; Kim et al., 2015). The acidic hinge,
linking core RAG2 and the PHD, contains a high
concentration of acidic residues contributing to flexibility of
the region. Neutralization of the residues severely reduces the
flexibility and leads to increased genomic instability as aberrant
repair begins to occur (Coussens et al., 2013). Two separate
regions within the acidic hinge are necessary to regulate
recombination activity. Serial truncations of the hinge by Wu
et al. lead to the discovery that the Igκ locus was hypermethylated
upon deletion of residues 350–383 and occurred in a RAG1-
independent manner (Wu et al., 2017). Demethylation of the
chromosome in this context may assist in facilitating allelic
exclusion, preventing further recombination on the locus.
Coupled with this in the acidic hinge is an autoinihibitory
function by residues 388–405, where relief is required to
promote activity. As discussed below, histone recognition
mediates this inhibition, with mutations bypassing the
necessity for this interaction (Lu et al., 2015). The PHD
component is responsible for interactions with chromatin,
specifically at modified histones, based on full-length and
truncated constructs submitted to ChIP-seq experiments (see
below) (Teng et al., 2015). Mutations to this site, such as W453A,
result in overall loss of genome localization and reduced
recombination activity (Liu et al., 2007; Teng et al., 2015). At
the far C-terminus phosphorylation of T490 promotes cell cycle-
regulated degradation at the G1-S transition (Zhang et al., 2011).
RAG2 T490A mutation can lead to persistent accumulation
throughout the cell cycle as degradation is reduced. This
overexpression results in continuous opportunities for RSS/
cRSS target cleavage in the presence of RAG1 and
recombination intermediates. The mutation also plays a role in
stabilizing genomic interaction displayed by Rodgers et al. where
slowed diffusion, measured in live cells via fluorescence recovery

after photobleaching, was indicative of stronger interactions with
modified histones (Rodgers et al., 2019).

Recruitment of RAGs to the Site of
Recombination
Histone Modification
To begin the process of recombination, RAG proteins must first
associate with an RSS within the Mb chromosomal antigen
receptor locus. The limiting of initial RAG binding can be
considered a regulatory mechanism to prevent DNA nicks at
random sites within the genome and may be facilitated solely by
3D diffusion to scan for sites rich in modified histones which
indicate active chromatin (Lovely et al., 2020). ChIP-seq
experiments by Teng et al. and Ji et al. determined the
binding pattern of RAG1 and RAG2 across V(D)J segments
and the entire genome revealing chromatin features which
may influence the recruitment of these proteins (Ji et al., 2010;
Teng et al., 2015). Within the antigen receptor loci both RAG1
and RAG2 were observed to bind at J segments in the Igκ locus
and both D and J segments in the IgH locus (Ji et al., 2010). In this
region, an RSS is necessary for strong binding with mutation to
the nonamer sequence reducing overall recruitment. Outside of
these loci, however, RAG1 localization is poorly indicated by RSS
presence alone, along with cRSSs and heptamers depletion from
observed binding sites suggesting that other chromatin features
may play a role in RAG complex recruitment. The genomic
localization of RAG2 is significantly broader with binding sites
dependent on regions with high levels of methylated histone 3
(H3K4me3) and physical association determined by co-
immunoprecipitation (Teng et al., 2015; Rodgers et al., 2019).
As noted above, interaction of RAG2 and H3K4me3 is facilitated
by the PHD of RAG2 (Matthews et al., 2007; Teng et al., 2015)
The necessity of H3K4me3 binding was then determined to be
due to autoinhibition of the RAG complex by RAG2 (Grundy
et al., 2010). Stimulation with exogenous H3K4me3 relieved the
reduced binding and catalysis, with truncation of this site
uncoupling the necessity for histone recognition. Studies by Lu
et al. and Bettridge et al. determined allosteric conformational
changes occur to both RAG1, at the DDBD and catalytic region,
and RAG2 at the autoinhibitory region allowing for increased
accessibility (Lu et al., 2015; Bettridge et al., 2017). Mutations to
this region can bypass the need for histone recognition to
promote activity but will likely increase off-target effects (Lu
et al., 2015). While RAG2 and H3K4me3 display a linear
correlation of interaction, the non-linear correlation of RAG1
and H3K4me3 suggests additional features. Maman et al. used
additional ChIP-seq experiments to determine possible factors
for RAG1 interaction (Maman et al., 2016). H3K4me3 overlap
with RAG1 was determined to be RAG2-histone dependent
making it insufficient to determine RAG1 binding throughout
the genome and the role methylation plays in off-target binding.
Another histonemodification, H3K27Ac, was instead determined
to be RAG2 independent and more so influenced by N-terminal
regions of RAG1, but with little direct evidence the significance is
unclear (Maman et al., 2016).
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Pairing Through Locus Contraction
In addition to initial binding, the RAG-DNA complex must
associate with a second, partner RSS to perform
recombination. Regulation at this point is achieved through
the physical proximity of the V gene segments, which are
spread across over 2 Mb of DNA (Figure 3A). While
proximal segments may be paired via random collision, large
scale chromosomal conformational changes are utilized to direct
pairing at both central and distal regions within the loci, skewing
interaction partners and providing a diverse set of antigen
receptors (Figure 3B). Various mechanisms of chromosomal
looping enables regions to be brought into close proximity
during pro- and pre-B stages via proteins such as YY1, Ikaros,
Pax5 and CTCF.

Distal VH utilization is facilitated by each of the proteins under
slightly different mechanisms. Within the IgH locus are enhancer
regions, intronic enhancer (iEµ) and a 3’ regulatory region which
provide sites for contraction protein binding. Yin Yang 1 (YY1) is
a zinc finger protein with multiple functions in regards to
transcription activation and repression (Liu et al., 2007).
Knockouts of this protein during B-cell development yield a
block at the pro-B cell stage due to insufficient VH-DJH
recombination without influencing expression of additional
V(D)J recombination components (Figure 3Ci). Using ChIP
and 3D DNA FISH Liu et al. were able to determine that YY1
binds to iEµ sites to provide a node for locus contraction (Liu
et al., 2007). Deletion of iEµ does not inhibit YY1 binding to the
overall chromosome loci, indicating that additional sequences
and factors influence the contraction (Guo et al., 2011). In
addition, YY1 may have heterotypic interactions with CTCF,
however, changes to rearrangement if CTCF levels are decreased
are not as pronounced as the knockdown of YY1 in reducing
recombination efficiency (Degner et al., 2011; Weintraub et al.,
2017). Ikaros, also a zinc finger protein, contributes various roles
in differentiation control and chromosome accessibility (Reynaud
et al., 2008). In a similar manner, reduction of Ikaros leads to
overall low VH-DJH recombination with heavily skewed usage of
proximal VH segments (Figure 3Ci). Pax5, a B-cell commitment
factor for differentiation, controls transcription, but also
functions by positioning chromatin towards the central
nuclear regions ensuring active chromatin is in an extended
state and promotes locus contraction (Ebert et al., 2011; Fuxa
et al., 2004). When Pax5 is deleted, cells will have characteristic
features of uncommitted progenitors, such as the ability to change
differentiation pathway following cytokine stimulation, and
exhibit reduced diversity due to a 50-fold reduction of distal V
recombination (Figure 3Ci). Contraction by Pax5 is mediated
through Pax5-activated intergenic repeats (PAIRs) over 750 kB of

FIGURE 3 | Contraction mediated conformational changes of the Ig
locus. (A) The IgH locus contains V, D, and J segments spread over 2.8 MB of
the chromosome, with regulatory regions distrubuted throughout the locus.
(B) Under normal conditions contraction of the locus allows for gene

(Continued )

FIGURE 3 | segments to be brought into close proximity as the rosette
conformation is formed with varying loop sizes. (C) When proteins mediating
this contraction are dysregulated V(D)J recombination diversity may be
skewed towards one segment of the VH region through collision (i) or
contraction (ii, iv). Only under WAPL repression is diversity increased as
cohesin-mediated loop size increases due to cohesin retention on chroma-
tin (iii).
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the distal VH gene which allow for interaction with iEµ sites
(Verma-Gaur et al., 2012). Via Bio-ChIP-chip Ebert et al. showed
that this mechanism is specifically lost in the pre-B cell stage
where other mechanisms must be used to promote distal gene
usage (Ebert et al., 2011).

CCCTC-binding factor (CTCF) is another zinc finger protein
with diverse functions for transcriptional control, but also
mediating chromosomal contacts across the genome (Phillips
and Corces, 2009; Degner et al., 2011). Deletion of CTCF reduces
overall B-cell maturation and arrests development at pre-B stage
for those progressing that far. Mediation of contraction here is
regulated by the presence of CTCF-binding elements (CBEs),
14 bp conserved targets within the Ig loci (Hu et al., 2015).
Association of pairs of convergently oriented CBEs bound by
CTCF and the cohesin complex form loop domains of the antigen
receptor loci restricting the V segments (Zhao et al., 2016; Zhang
et al., 2019). Cohesin, consisting of multiple subunits including
Rad21, will form loops of various sizes by extrusion of chromatin
in an ATP-dependent manner until reaching a CTCF bound CBE
(Ba et al., 2020). The loop extrusion process is dynamic and
allows for a subset of CTCF/cohesin formed loops to exist at any
given time enhancing genetic diversity (Degner et al., 2011). Large
chromosomal structural rearrangements also compete with the
short range collisional recombination which is extinguished
during CTCF downregulation as RAG proceeds to distal VH

regions without obstruction therefore limiting diversity
(Figure 3Cii), yet in the Igκ locus proximal usage is increased
(De Almeida et al., 2011; Ba et al., 2020; Zhang et al., 2022). In
contrast, deletion of cohesin subunit Rad21 eliminates all
recombination at most sites, except for proximal regions
which form a synapse due to collisional diffusion
(Figure 3Ci). Cohesin unloading is regulated by the
expression of WAPL throughout the cell cycle. Pax5
repression of the WAPL promoter during pro- and pre-B cell
stages allows for increased cohesin residence time on chromatin
extending loop sizes by circumventing CBE obstructions (Hill
et al., 2020; Dai et al., 2021). Under these circumstances, there is a
general increase of recombination at all sites (Figure 3Ciii). For a
comprehensive look into cohesin-mediated loop extrusion, we
refer the reader to the recent review by Zhang et al., (2022).

Enhancer and intergenic regions of the antigen receptor loci
are also important for CTCF mediated loop extrusion as deletion
or mutation of these sites provides limited diversity and
dysfunction. iEµ in the IgH locus is required for efficient
recombination, where deletion increases proximal gene usage
and reduced chromosomal relocation to the central nuclear
regions to limit total accessibility (Guo et al., 2011). The
intergenic control region 1 (IGCR1), between VH and DH

segments, contains CBEs to suppress VH usage prior to DH-JH
rearrangement. Deletion of the IGCR1 region promotes proximal
VH usage, but also induces off-target breaks spreading up to
120 kb upstream of the proximal VH segments for potential cRSS
replacement (Figure 3Civ). CBEs within the VH region prevent
distal usage past these segments in the absence of IGCR1
regulation (Hu et al., 2015). The Vκ-Jκ locus contains
additional DNase hypersensitive (HS) regions which influence
chromosomal conformation change. Upon deletion of HS3-6

there is only a moderate decrease of middle gene usage, with
overall insignificant changes to locus contraction. However, HS1-
2 deletion results in at least a 7-fold increase of proximal gene
usage with 3D DNA FISH indicating a 50% decreasing in overall
contraction of the Ig locus (Xiang et al., 2013).

Hand-Off of the Post-Cleavage Complex to
the DNA Repair Machinery
Cleavage by the RAG proteins triggers the DNA damage
response. A proper hand-off to NHEJ machinery is essential
for successful recombination: alt-EJ may lead to aberrant joining
events and genomic instability, especially in p53-deficient
environments. The idea that the role of the RAG proteins
extends beyond the cleavage step, came when several RAG
mutants were found to be proficient for cleavage but exhibited
aberrant joining (Qui et al., 2001; Schultz et al., 2001; Lee et al.,
2004). Exactly how the RAG proteins channel the repair to NHEJ
is unclear, although three elements seem to be important for
pathway choice. The first is the dependence of RAG activity on
the cell cycle: by limiting recombination to G1, HR is not available
(Zhang et al., 2011). Moreover, expression of PolQ is very low in
G0 and G1, limiting the possibilities for alt-EJ as well (Yu et al.,
2020). RAG2 residue T490 is a CDK phosphorylation site, that is,
instrumental in targeting RAG2 for breakdown when the cell
moves to S phase; indeed, the T490A mutation is enough to lead
to aberrant recombination (Zhang et al., 2011). The second
element is the ability of the RAG1 N-terminal domain to bind
a multi-protein complex, containing Ku, that steers repair to
NHEJ (Raval et al., 2008; Kassmeier et al., 2012). Ku was recently
shown to suppress alt-EJ of RAG-induced DSBs, indicating it aids
in shepherding breaks to NHEJ during V(D)J recombination
(Liang et al., 2021). Other proteins in the complex are VprBP,
DDB, Cul4A and RocI: these act as a RING E3 ligase that can
ubiquitylate nearby proteins (Kassmeier et al., 2012). Disruption
of VprBP (by conditional excision of two exons) leads to defects
in recombination and increased mutations in the D and J
segments in mice. Based on the mutational signature, the
authors suggest that VprBP specifically regulates terminal
transferase activity through a mechanism that involves
ubiquitylation of an unknown target, and thus suppresses
other error-prone repair pathways. The third element is the
stability of the PCC, which was found early on to influence
the choice of repair pathway: unstable PCCs are more prone to
lead to alt-EJ instead (Lee et al., 2004). Stability of the PCC seems
to be closely related to the conformation of the acidic hinge in the
RAG2C-terminus, an intrinsically disordered domain with a high
negative charge. Mutations that neutralize this charge destabilize
the PCC and allow repair through alt-EJ (Coussens et al., 2013).
The RAG2 C-terminus has been shown to influence pathway
choice on more occasions (Corneo et al., 2007; Gigi et al., 2014;
Mijuskovic et al., 2015). The exact mechanism, however, still
remains unclear. Interestingly, the RAG2 C-terminus was found
to be redundant with XLF for what appears to be a function in
stabilization of DNA ends: mice that are deficient for XLF but
express the core RAG2 show severe defects in V(D)J
recombination which in turn leads to lower numbers of
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lymphocytes (Lescale et al., 2016a). This opens the intriguing
possibility that the RAG proteins interact with XLF in the
synaptic complex.

Although both proceed through NHEJ, the repair of coding
and signal ends is slightly different. Signal ends are blunt (Roth
et al., 1993), while coding ends are hairpins that need processing
(Roth et al., 1992). After cleavage, the RAG proteins are more
likely to stay bound to the signal ends, at least in vitro (Ramsden
and Gellert, 1995; Livak and Schatz, 1996; Agrawal and Schatz,
1997; Hiom and Gellert, 1998). The sealed coding ends, which
will be quickly bound by Ku, are a target for DNA-PKcs (Figure
4A). Once this enzyme binds to the break site, it will act as a
regulator for further processing steps. As has recently been shown
through a crystal structure of DNA-PKcs, the hairpin DNA
substrate will trigger DNA-PKcs to phosphorylate itself, which
results in a large conformational change that creates room for the
Artemis endonuclease to bind (Liu et al., 2022). Artemis is
capable of opening the hairpins, which it does asymmetrically
to create a 3’ 2 nucleotide overhang (Ma et al., 2002; Karim et al.,
2020; Yosaatmadja et al., 2021). This overhang is the reason
repaired coding ends typically show indels; it serves as a substrate
for the TdT polymerase, which can add nucleotides to the
overhang without the need for a template (Motea and Berdis,
2010). As such, 3’ overhang elongation is an additional
mechanism to create diversity at V(D)J junctions. The two
ends, which may have diffused apart in the meantime, then
need to be brought together in a synaptic complex for repair
to proceed. The signal ends, on the contrary, are blunt and held
together by the RAG proteins, obviating the need for a pre-
processing step or formation of a synaptic complex. As a
consequence, the aforementioned interaction between XRCC4
and XLF to form filaments that bridge DNA ends is not necessary
for signal end repair (Roy et al., 2012). Signal end repair does,
however, need kinase activity from either DNA-PKcs or ATM,
probably to remove the RAG proteins from the break site (Zha
et al., 2011b; Gapud et al., 2011; Gapud and Sleckman, 2011). In
the absence of filament formation, signal end repair is also more
dependent on XRCC4 than on XLF, which is in line with the role
of XRCC4 to carry Ligase IV to the break site.

Functional Redundancies and Newly
Identified Non-Homologous End Joining
Factors
The core factors Ku, XRCC4 and Ligase IV are absolutely
essential for NHEJ: knock-outs of these genes in mice lead to
severe phenotypes or embryonic lethality (reviewed in Wang
et al., 2020 and Zhao et al., 2020) (Wang et al., 2020; Zhao et al.,
2020). There is, however, a considerable degree of functional
redundancy among most other NHEJ factors. These
redundancies make repair more robust, and prevent genomic
instability associated with unrepaired breaks or alt-EJ pathways
(Chang et al., 2017). A number of functional redundancies have
been identified in mouse models: while a single knock-out of a
redundant NHEJ factor may only lead to a mild phenotype, a
more severe phenotype in a double knock-out suggests a
functional redundancy between those two NHEJ factors. These

redundancies have for years obscured the role some proteins play
in NHEJ, like XLF (Li et al., 2008) or the more recently identified
roles of PAXX (Ochi et al., 2015; Xing et al., 2015) and MRI
(Hung et al., 2018). For this reason, functional redundancies with
XLF have been particularly well studied and have shed some light
on the molecular mechanism of end joining. For a relatively
recent overview of the effect of single or double knock-outs in
NHEJ we would like to refer toWang et al., (2020). Here, we focus
on redundancies of XLF with some of the newly identified NHEJ
factors PAXX and MRI, and with ATM and H2AX.

PAXX, a paralog of XRCC4 and XLF, was discovered not so
long ago as a player in NHEJ (Ochi et al., 2015; Xing et al., 2015).
PAXX bears strong structural similarity to XRCC4 and XLF, but
is slightly smaller. Consistent with a role in DNA repair, PAXX is
recruited to damage sites; moreover, PAXX deficiency leads to an
increased sensitivity to ionizing radiation in human somatic
U2OS cells (Ochi et al., 2015). The conserved C-terminal
region of PAXX binds to the N-terminal region of Ku80,
revealing a mechanism for PAXX recruitment to DSBs (Ochi
et al., 2015; Liu et al., 2017). This interaction is essential, since
PAXX does not appear to have any DNA binding activity by itself.
Considering its similarity to XRCC4 and XLF, it was surprising to
find that PAXX does not participate in bridging of DNA ends.
Rather, its interaction with Ku seems to promote the
accumulation of XLF and Polymerase Lambda at DSBs
(Craxton et al., 2018), as well as to promote further
accumulation of Ku (Liu et al., 2017). In the context of simple
DSBs, PAXX function seems to be redundant with XLF, whereas
PAXX and XLF work together in the repair of more complex
breaks (Xing et al., 2015). Interestingly, PAXX is dispensable for
V(D)J recombination in a mouse pro-B cell line, as long as XLF is
present (Kumar et al., 2016; Lescale et al., 2016b). This reveals a
functional redundancy between these two proteins in the context
of V(D)J recombination. Since XLF itself is redundant with ATM
in the same context, one might wonder if PAXX, in turn, is also
redundant with ATM. It turns out this is not the case, indicating
that these proteins act at more than one stage and only some
functions overlap (Kumar et al., 2016). Lescale et al. proposed a
two-tier model of an initial synapsis stage and a subsequent
ligation stage (Lescale et al., 2016b). In the synapsis stage, XLF
forms filaments with XRCC4, bridging the break site (Figure 4B).
ATM has a similar, but independent role. In the ligation stage,
XLF stabilizes the ligation complex. Here PAXX has a similar
function, thus creating the redundancy with XLF (Figure 4C).
Gaps due to incompatible ends can then be filled in by
Polymerase Lambda. In line with this redundancy, mouse
models showed that PAXX is dispensable for normal
development (Gago-Fuentes et al., 2018), but PAXX and XLF
double knock-out mice died as embryos (Balmus et al., 2016; Liu
et al., 2017; Abramowski et al., 2018). In summary, the role of
PAXX in NHEJ fits with the general theme of redundancy.

Another recently identified player in NHEJ is theModulator of
Retroviral Infection (MRI). This small disordered protein
interacts with DNA-PKcs, Ku, PAXX, XLF and XRCC4
through its N-terminal domain and with ATM and the MRN
complex through its C-terminus (Arnoult et al., 2017; Hung et al.,
2018). MRI is thought to stabilize these other proteins on the
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chromatin around the break site, potentially by forming
multimeric structures through its disordered regions (Hung
et al., 2018). In mice, MRI deficiency alone does not result in
a detectable phenotype. However, MRI-/- XLF-/- and MRI-/-
DNA-PKcs-/- mice show embryonic lethality, while the double
knock-outMRI-/- PAXX-/- does not result in a severe phenotype
(Castaneda-Zegarra et al., 2020). This again indicates a degree of
redundancy between different repair factors; the severe
phenotype with DNA-PKcs and the milder phenotype with
PAXX suggests that the major role of MRI is relatively early
in repair, during the synapsis stage.

Interestingly, XLF is also functionally redundant with ATM
(Zha et al., 2011a; Xing and Oksenych, 2019). The ATM kinase is
an important regulator in NHEJ and the DNA damage response
in general (Lee and Paull, 2021). It phosphorylates H2AX, which
alters the local chromatin architecture to create a favorable
environment for DNA repair processes. XLF also has
redundant functions with H2AX directly. Consistent with all
of this, the XLF/ATM redundancy only exists in the context of
chromatin, and does not occur in assays that utilize
extrachromosomal DNA (Zha et al., 2011a). It has been shown
that H2AX keeps break sites together (Yin et al., 2009), and is
therefore likely to have a role in the synapsis phase of repair,
where the redundancy with XLF would then originate. The exact
molecular mechanism, however, remains unclear. Rather than
interacting directly with the coding and signal ends,
phosphorylated H2AX could keep the double-strand breaks
together in a confined space by forming a biomolecular
condensate in the chromatin. The role of such condensates or
repair foci has received a lot of attention recently [reviewed in
(Fijen and Rothenberg, 2021)]. As discussed earlier, chromatin
remodeling is also a key process in the initiation of
recombination. Further research into the role of the chromatin
architecture and biomolecular condensates throughout the
recombination process could provide an interesting new
perspective on the regulation and efficiency of V(D)J
recombination.

Clinical Manifestation of V(D)J
Recombination Defects
While healthy cells should be able to restrict recombination
activity to G1 cell cycle phase, isolating RAG-mediated breaks

to prevent off-target repair pathways, the large number of
components involved during this mechanism can lead to
harmful implications. Various types of immunodeficiency and
potential tumorigenesis can be initiated by aberrant
translocations and deletions through RAG complex mutation
or deficiency.

Immunodeficiency
Deficiency in RAG proteins results in an overall lack of
recombination efficiency and diversity, with lower expression
leading to a harsher clinical outcome. This deficiency can lead to
several phenotypes including severe combined
immunodeficiency (SCID), combined immunodeficiency with
granulomas or autoimmunity (CID-G/AI) and Omenn
Syndrome (OS) (Schwarz et al., 1996; Schuetz et al., 2008). For
an extensive analysis of the pathogenesis of these RAG-mediated
deficiencies we refer the reader to the recent review from
Bosticardo et al. (Bosticardo et al., 2021). SCID, and to the
lesser extent CID-G/AI, can cause major vulnerability to
minor infections, with current treatment through methods
such as bone marrow transplant (Buckley, 2004). Recent large
cohort studies for RAG deficiency show occurrence in 12% of
SCID cases and 42% of atypical SCID cases (Dvorak et al., 2019).
OS patients display a complex pathogenesis with symptoms
similar to SCID, except an estimated 90% of cases are due to
RAG mutations (Marrella et al., 2011). Over 60 naturally
occurring mutations resulting in immunodeficiency have been
mapped to just the core regions of RAGs with effects such as
destabilized structures between RAGs or other components,
decreased DNA binding, and catalytic deficiency (Kim et al.,
2015). Two example mutations related to OS, V779M and
C328G in RAG1, reduce recombination through different
mechanisms, decreased cleavage efficiency and joint
formation, respectively (Grazini et al., 2010; Matthews et al.,
2015). Lee et al. and Tirosh et al. determined the recombination
efficiency of RAG1 and RAG2, respectively, using mutations
present in patient samples with varying disease type and severity
(Lee et al., 2014; Tirosh et al., 2019). A high density of mutations
occur in the NBD and mutations to this region or the heptamer
binding motif of RAG1 tend to exhibit significantly lower
activity even though the protein is catalytically active (Lee
et al., 2014). In RAG2 samples, the overrepresentation occurs
in the PHD, affecting histone interaction and the autoinhibitory

FIGURE 4 | Schematic overview of Non-Homologous End Joining. (A) Broken DNA ends are recognized by Ku and DNA-PKcs. Hairpins in coding ends are
opened by the Artemis nuclease. (B) Ends are brought in close proximity in a process called synapsis. XLF and XRCC4 are thought to form filaments that mediate this
process. As discussed in the text, ATM, the RAG2 C-terminus and H2AX also have a role in synapsis. (C) Ends are ligated by Ligase IV. PAXX joins in this stage of repair.
Please note that, while care was taken to represent the architecture of the complexes as accurately as possible, many structural features still remain unknown.
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mechanism. Various mutations in RAGs may also circumvent
the checkpoints related to autoreactivity leading to reduced
functional circulating B-cells in addition to the reduced
repertoire (Villa and Notarangelo, 2019). As noted in
Figure 3, interfering with locus contraction leads to
decreased antigen receptor diversity and mutations to
proteins involved, such as cohesin subunits and Ikaros, have
been associated with immune disease (Bjorkman et al., 2018;
Kuehn et al., 2021). Recurrence of the same low activity
mutations in RAGs or other proteins required for
recombination could allow for prediction of disease severity
in newly diagnosed patients and potential for personalized
medicine for achieving a significant level of recombination
based on genotype.

Tumorigenesis
Human lymphomas can involve RAG-mediated deletions or
potential translocations between the Ig locus V(D)J segments and
non-Ig locus. The main area of concern is the presence of cRSSs
which mimic the RSS motif, but exist outside of the antigen receptor
loci (Onozawa and Aplan, 2012; Hu et al., 2015; Teng et al., 2015).
RAG-mediated cleavage at cRSS sites could be detrimental to cell
viability as uncontrolled regions are disturbed. Notch-1, a ligand
activator transcription factor which transduces signaling
information from the cell surface to the nucleus, contains 14
cRSSs within the 30 kb locus (Mijuskovic et al., 2015). N-terminal
truncation caused by cRSS-mediated deletion exhibits constitutive
ligand independent intracellular activity. Using ChIP-seq data from
Ji et al., RAG2-H3K4me-Notch-1 5’ binding and colocalization
indicates that RAG-mediated cleavage has a high likelihood of
occurring in this region (Onozawa and Aplan, 2012). Multiple sets
of cRSSs are also involved in the deletion of Jak1 exons 6–8, leading
to activation with multiple roles in cell growth and survival
(Mijuskovic et al., 2015). Additional RAG-mediated deletions
have occurred at Trat1, Phlda1, Agpat9, CDKN2a/b, Ikaros, and
have been attributed to Tal1-Sil fusion (Mullighan et al., 2008;
Onozawa and Aplan, 2012; Larmonie et al., 2013; Mijuskovic et al.,
2015). Even so, a majority of other oncogenic breakpoints detected
in lymphomas do not contain cRSS sites andmay be due to event at
non-B form DNA structures (Raghavan et al., 2004).

Translocation due to off-target RAG-mediated events would be
more detrimental to cell viability, but have eluded direct detection
in the genome. Translocations themselves are common and likely
due to recombination events, but as of July 2019, there have been
no documented cases of leukemia and lymphomas which could be
traced directly to a RAG-mediated transposition event (Zhang
et al., 2017; Smith et al., 2019). Even translocations which involve
the antigen receptor loci, such as Bcl2-IgH or BCR-ABL1, lack
substantial evidence of initial RAG-mediated DSBs (Mossadegh-
Keller et al., 2021; Yuan et al., 2021). This may be due to a lack of
ability to screen for these type of lesions as the limitations of some
sequencing methods may overlook certain breakpoint features,
however, recent improvements to next generation sequencing and
whole genome sequencing will allow for higher discovery rate of
these off-target RAG induced breaks (Nordlund et al., 2020;
Afkhami et al., 2021; Xiao et al., 2021). The excised signal circle
(ESC) complex consisting of the SEs, RAG proteins, and other

factors is another source of potential reintegration into the genome
(Kirkham et al., 2019). This complex can be extremely dangerous
for oncogenic upregulation due to the presence of V region
adjacent promoters. More likely are asymmetric cleavage events
(“cut and run”), where a closed ESC binds and cleaves at a cRSS
before continuing on a series of unchaperoned DNA DSBs. These
events have yet to proven in vivo, yet acute lymphoblastic leukemia
patients have shown oncogenic activation through translocation
events, such as ETV6-RUNX1 gene fusion, which could be
facilitated by RAG-mediated ‘cut and run’ events, however,
more research is necessary to understand a direct involvement
of RAGs in this type of tumorigenesis (Papaemmanuil et al., 2014;
Kirkham et al., 2019). In addition, translocation of the DNA
fragment of the ESC complex may not be due to new RAG-
mediated cleavage events, but instead insertion at independently
formedDSBs, leading to further genomic instability (Antoszewska-
Smith et al., 2017; Rommel et al., 2017).

CONCLUDING REMARKS AND OUTLOOK

Historically, focus on V(D)J recombination research has been on
the molecular mechanism of single recombination events, while
more recently the regulation has gained more attention. Efficient
V(D)J recombination is dependent on a tight regulation of locus
recognition, DNA cleavage and repair. Here we discussed the
latest insights regarding target binding and robustness of the
NHEJ pathway, but details of some key processes remain to be
established. RAG non-core domains have been only recently
studied for their regulatory roles, noted here is the importance of
these regions in sub-nuclear localization (PHD), efficient transition to
repair (acidic hinge), and maintenance of protein degradation
(RING). Additional research will be necessary to further
investigate these roles and potential allosteric mechanisms
influencing function. We discussed RSS binding and pairing, but
Maman et al. determine histone modification itself is not enough for
initial recruitment (Maman et al., 2016). Simple 3D diffusion may
account for RSS association, however, the choice of a partner RSS
may be influenced by several rounds of binding/release during locus
contraction. The role of local chromatin architecture and condensate
formation has been gaining significant traction lately, with the role of
disordered protein domains and long non-coding RNAs being
recognized (Fijen and Rothenberg, 2021). We see potential for
advanced imaging techniques to resolve the recruitment dynamics
and large-scale features of the recombination center and repair foci.
We noted here that the repair-associated kinases ATM and DNA-
PKcs are required for efficient recombination, but the specific
contribution of each and potential redundant roles remain poorly
understood. We anticipate that the phosphorylation profile of repair
factors has an impact on stability of the recombination complex,
joint formation, and repair factor recruitment. Dysregulation of
these events have significant influence on off-target breaks or repair
deficiency resulting in immunocompromising phenotypes and
potential tumorigenesis. Certain mutations and RAG-mediated
deletions are implicated in these disease states yet likely direct
involvement of RAGs in oncogenic translocations fails to be
detected. Extraction of this aberrant joining from the tumor
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genome proves challenging, but would be vital for clinical
therapeutics and personalized medicine.
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